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Abstract—We propose a procedure to demodulate analog
signals encoded by a multicarrier modulator, with slowly-varying
carrier shapes. We prove that the asymptotic demodulation error
can be made arbitrarily small. The intended application is the
“sensorless” control of AC electric motors at or near standstill,
through the decoding of the PWM-induced current ripple.

Index Terms—analog demodulation, multicarrier signals,
slowly-varying carriers, multiple access methods, PWM injection

I. Introduction
We consider a composite signal H of the form

H(C) :=
=∑
8=1

I8 (C)B8
(
C, CY

) + 3 (C, CY ) + O(Y: ), (1)

where the B8’s are (known) 1-periodic functions in the second
variable; Y being a (known) “small” parameter, the B8’s can
been seen as rapidly oscillating carriers with slowly varying
shapes modulating the (unknown) I8’s. The function 3 is
a disturbance, also 1-periodic in the second variable, about
which little is known except that for each C the support of 3 (C, ·)
is contained in a “well-behaved” known subset �C of [0, 1).
In other words, on each period of the carriers, part of the
signal H is garbled and considered useless. Finally, the O(Y: )
term corresponds to “small” disturbances, where O denotes
the (uniform) “big O” symbol of analysis, i.e. 5 (C, Y) = O(Y: )
if ‖ 5 (C, Y)‖ ≤  Y: for some  independent of C and Y.
The objective is to recover by an implementable causal

process the unknown I8’s with an accuracy of up to O(Y: )
from the known H and B8’s, provided the B8’s and I8’s satisfy
some suitable regularity assumptions.

The motivation for this problem is the following. When
operating an AC electric motor through a PWM inverter with
period Y, an analysis based on the theory of averaging reveals
that the currents in the motor have the form

H(C) = H0 (C) + YHE (C)B
(
C, CY

) + O(Y2) + 3 (C, CY ) ,
which is a particular instance of (1) with I1 := H0, I2 := YHE ,
B1 := 1, and B2 := B, where B is determined by the PWM
process [1], [2]. The O(Y2) term corresponds to a small
higher-order ripple which can be ignored. The disturbance 3
consists of short spikes appearing at each PWM commutation,
due to stray capacitances in the power electronics. A typical
(synthetic) signal H is shown in Fig. 4, see also [2, Fig. 9]

for experimental data. In “sensorless” industrial drives, these
currents are the only measurements, and controlling the motor
at or near standstill with this sole information is a difficult
problem for several theoretical and technological reasons. A
way to achieve this it to extract H0 and YHE from the modulated
currents H; a suitable processing of HE then gives access
to the motor angular position [2], which is instrumental in
controlling the motor. It is therefore very important to ensure
the demodulation error is at most O(Y2).
The demodulation procedure proposed in this paper, essen-

tially consisting of multiplications by known signals followed
by low-pass filters, is reminiscent of various schemes in
communication theory and signal processing. Nevertheless,
nothing really close seems to exist in the literature, let alone
a quantitative analysis of the demodulation error:

• it is of course a generalization of coherent demodulation
in quadrature carrier multiplexing, with more than two
carriers not restricted to sine and cosine, see e.g. [3,
section 4.4]; but even in this simple case, no analysis
of the error is usually performed, the challenges being
more on carrier reconstruction

• it somewhat looks like synchronous decorrelating detec-
tion in Code-Division Multiple Access communication
systems, where the B8’s would play the roles of the
signature waveforms and the I8’s the role of the symbols,
see e.g. [4, section 5.1]; but the encoded signals being
there digital, the issues and analysis are very different

• it is also akin to multicarrier reception, with or without
multiple access, see e.g [5, section 12.2] and [6, section
2.2]; but once again that field is exclusively concerned
with digital encoded signals

• finally, it bears some resemblance for its filtering part with
the interpolation/compensation filters used in ΔΣ analog-
to-digital converters, see e.g. [7, chapter 14].

The paper extends the previous work [8] in two ways that
are paramount for the intended application: on the one hand,
it considers carriers with slowly-varying shapes, which makes
the error analysis much more difficult; on the other hand,
the procedure is not restricted to “orthogonal” demodulation,
hence can directly handle the disturbance 3 without ad-hoc
prefiltering as in [2].
The paper runs as follows: in section II, we collect notations
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and definitions, in particular the A: regularity property; in
section III we state and prove the main result; in section IV
we illustrate this result and confirm the error estimates with
numerical experiments.

II. Notations and definitions
We collect here definitions used throughout the paper. The

most important notion is theA: regularity property introduced
in proposition 1, which is needed in lemma 4 to repeatedly
integrate by parts; this property, which is paramount for han-
dling carriers with slowly-varying shapes, is trivially satisfied
for fixed-shape carriers as in [8].

Let 6(C, f) be a function of two variables; informally speak-
ing, C represents the slow timescale and f the fast timescale.
We will often use the convenient notation 6Y (C) := 6

(
C, CY

)
.

The function 6 is 1-periodic in the second variable if 6(C, f+
1) = 6(C, f) for all C. Its mean in the second variable is the
function 6(C) :=

∫ 1
0 6(C, f)3f. For brevity, we will usually

omit the phrase “in the second variable”. If 6 is 1-periodic with
zero mean, any of its primitives (in the second variable) is also
1-periodic, in particular its zero-mean primitive 6 (−1) (C, f) :=∫ f

0 6(C, g)3g −
∫ 1

0

∫ Z
0 6(C, g)3g3Z . Likewise, 6 (−:−1) denotes

the zero-mean primitive of 6 (−:) .
We say 6 is Lipschitz if ‖6(C1, f) − 6(C2, f)‖ ≤ !‖C1 − C2‖

for some ! independent of C1, C2 and f.
Finally, we introduce the A: regularity property.

Definition 1 (A: property). Let 6(C, f) be 1-periodic with
zero mean. It is said to be A: , : ≥ 1, if 6 (−:) is : − 1 times
differentiable in the first variable, with bounded derivatives at
all orders, and m:−1

1 6 (−:) Lipschitz.

A typical A: function encountered in practice is 6(C, f) =
sign

(
D(C) −2) − 2D(C) + 1 where 2 := f mod 1; D(C) ∈ (0, 1)

represents the PWM duty cycle and is assumed : − 1 times
differentiable, with bounded derivatives at all orders, and
D (:−1) Lipschitz.

It is easy to show that if on the one hand 6(C, f) is A: ,
and on the other hand I(C) is : − 1 times differentiable, with
bounded derivatives at all orders, and I (:−1) Lipschitz, then
the product I6 is also A: .

III. The demodulation procedure
The demodulation procedure for an error of order Y:

consists of multiplications by a suitable demodulating basis
' := (A1, . . . , A=)) , followed by a bank of low-pass finite
impulse response filters with kernel  ̃: ; see section III-A for
a discussion of how to select '. The kernel  ̃: is a “com-
pensated” :-times iterated moving average, namely a suitable
linear combination of shifted instances of  : , where the kernel
 : is defined recursively by  1 := 1

Y1[0, Y ] and  : :=  :−1∗ ,
see e.g. [9, chapter 6.7] for explicit expressions. For instance
for : = 3, the linear combination is

 ̃3 (C) := 17
4  3 (C) − 5 3 (C − Y) + 7

4 3 (C − 2Y),
see section III-B for more details.

Fig. 1 illustrates the whole demodulation procedure:

LPF 𝐾𝑘

LPF 𝐾𝑘

(·)−1

𝑦(𝑡)

𝑆𝜀 (𝑡)
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𝑦(𝑡)𝑅𝑇𝜀 (𝑡)
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𝑍𝑇 (𝑡) + O(𝜀𝑘 )
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−1 (𝑡) + O(𝜀𝑘 )

Figure 1. The demodulation procedure.

• H(C) is multiplied by ')Y (C), and filtered by  ̃: ; the result,(
 ̃: ∗

(
H')Y

) ) (C), turns out to be /) (C)(') (C) + O(Y: ),
where / := (I1, . . . , I=)) is the vector signal to recover

• the modulating basis ( := (B1, . . . , B=)) is also multiplied
by ')Y (C), and filtered by  ̃: ; the result,

(
 ̃:∗

(
(Y'

)
Y

) ) (C),
turns out to be (') (C) + O(Y: )

• finally,
(
 ̃: ∗

(
H')Y

) ) (C) is multiplied by the inverse of the

matrix
(
 ̃: ∗

(
(Y'

)
Y

) ) (C); the result,
(
 ̃: ∗

(
H')Y

) ) (C) ×(
 ̃: ∗

(
(Y'

)
Y

) )−1
(C), is as desired /) (C) + O(Y: ).

As pointed out in the introduction, this demodulation scheme
is at first sight not completely surprising. What is much less
obvious is that the overall demodulation error is indeed of
order Y: .

A. Main result
We assume that the B8’s are independent outside the sub-

set �C containing the support of the disturbance 3 (C, ·), i.e. that
the B̌8’s defined by B̌8 (C, f) :=

(
1−1�C

) (f)B8 (C, f) are linearly
independent. We can thus choose the demodulating basis ' :=
(A1, . . . , A=)) such that '3 = 0 and (') is invertible, where
( := (B1, . . . , B=)) is the modulating basis; one simple choice
is for instance '(C, f) :=

(
1−1�C

(f))((C, f). A delicate point
is to select ' also such that (') − (') is A: , provided
of course that �C is “well-behaved” (for instance a finite
union of intervals with sufficiently regular moving bounds).
For simplicity, we just assume this is the case (and check
it a posteriori in the numerical experiments of section IV).
Finally, we assume the I8’s are : −1 times differentiable, with
bounded derivatives at all orders, and I (:−1)

8 Lipschitz, so that
I8

(
(') − (') )

is also A: .
Theorem 1. / := (I1, . . . , I=)) can be recovered to order Y:
from H by the causal process %: defined by

%: [H] (C) :=
(
 ̃: ∗

(
H')Y

) ) (C) × (
 ̃: ∗

(
(Y'

)
Y

) )−1
(C).

In other words, /) (C) = %: [H] (C) + O(Y: ).
B. Proof of theorem 1
Rewriting (1) as

H(C) = /) (C)( (C, CY ) + 3 (C, CY ) + O(Y: ),
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right-multiplying by ')Y and convolving with  : yields(
 : ∗

(
H')Y

) ) (C) = (
 : ∗

(
/) (Y'

)
Y

) ) (C) + O(Y: )
=

[
 : ∗

(
/)

(
(Y'

)
Y − (')

) )] (C)
+

(
 : ∗

(
/) (')

) ) (C) + O(Y: )
=

(
 : ∗

(
/) (')

) ) (C) + O(Y: );
to obtain the last line, we have applied Lemma 4 with
6(C, f) := /) (C) (((C, f)') (C, f) − (') (C)) , which is by con-
struction zero-mean and A: . The result obviously holds also if
 : (C) is replaced by the shifted kernel g)  : (C) :=  : (C −)).
On the other hand, [8, Theorem 1] asserts that a C: -function

i with bounded i (:) is left unchanged to order Y: by a
suitable linear combination  ̃: of the shifted kernels g8 Y : ,
8 = 0, . . . , : − 1, i.e. ( ̃: ∗ i) (C) = i(C) + O(Y: ). For instance,

 ̃1 (C) :=  1 (C)
 ̃2 (C) := 2 2 (C) −  2 (C − Y),
 ̃3 (C) := 17

4  3 (C) − 5 3 (C − Y) + 7
4 3 (C − 2Y).

Actually, we must slightly extend the result to the case where
i is : −1 times differentiable with i (:−1) Lipschitz, which we
omit by lack of space. As a consequence,(

 ̃: ∗
(
H')Y

) ) (C) = (
 ̃: ∗

(
/) (')

) ) (C) + O(Y: )
= /) (C)(') (C) + O(Y: ).

Since (') (C) is invertible, / (C) can be recovered to order Y: .
To make the process truly implementable in practice, notice

(') (C) can be computed to order Y: by(
 ̃: ∗

(
(Y'

)
Y

) ) (C) = (') (C) + O(Y: ),
which is an instance of the previous equation with / (C) = �=.

In conclusion, / (C) is recovered to order Y: by

%: [H] (C) :=
(
 ̃: ∗

(
H')Y

) ) (C) × (
 ̃: ∗

(
(Y'

)
Y

) )−1
(C)

= /) (C) + O(Y: ),
where the process %: is causal since the kernel  ̃: is supported
on [0, :Y] ⊂ R+.
C. Technical lemmas

This section is quite technical and can be skipped without
disturbing the flow of ideas. Its goal is to establish Lemma 4,
which is instrumental in the proof of Theorem 1. Lemma 4
relies on Lemma 3, which itself relies on Lemma 2. Lemmas
4 and 3 are in some sense properties of the convolution
kernel  : , whereas Lemma 2 extends to our context a classical
result of finite-differences calculus. Notice the use of the A:
property when integrating by parts in Lemma 4, which is the
main trick to extend the ideas of [8] to slowly-moving carriers.

Define the : th-order backward difference Δ:6Y of the func-
tion 6Y (C) := 6(C, CY ) by

(Δ:6Y) (C) :=
:∑
8=0
(−1)8

(
:

8

)
6Y (C − 8Y).

On the other hand, recall that  : is : − 1 times differentiable,
with compact support for all the derivatives. As for  (:): ,
it can be defined in the distributional sense, and is a linear
combination of Dirac delta functions, and in particular also
has compact support; for instance,  (1)1 = 1

Y

(
X0 − XY

)
.

Lemma 2. Let 6(C, f) be 1-periodic, and : − 1 times dif-
ferentiable in the first variable with m (:−1)

1 6 Lipschitz. Then
(Δ:6Y) (C) = O(Y: ).
Proof. By the Lipschitz form of Taylor’s formula [10, (2.1)],

6(C + `, f) =
:−1∑
9=0

` 9

9!
m
9

1 6(C, f) + `: dC (`, f),

where the remainder dC is O(1) since it satisfies

`dC (`, f) = 1
(: − 2)!

∫ 1

0
(1 − g):−2

× (
m:−1

1 6(C + `g, f) − m:−1
1 6(C, f))3g.

Applying this to 6
(
C − 8Y, C−8 YY

)
= 6

(
C − 8Y, CY

)
since 6 is 1-

periodic yields

(Δ:6Y) (C) =
:∑
8=0
(−1)8

(
:

8

)
6
(
C − 8Y, C−8 YY

)

=
:∑
8=0
(−1)8

(
:

8

) (:−1∑
9=0

(−8Y) 9
9!

m
9

1 6(C, CY ) + O(Y: )
)

=
:−1∑
9=0

(−Y) 9
9!

m
9

1 6(C, CY )
:∑
8=0
(−1)8

(
:

8

)
8 9 + O(Y: )

As
∑:
8=0 (−1)8 (:8 )8 9 = 0, see [11, Cor. 2], this gives the desired

result. �

Lemma 3. Let 6(C, f) be 1-periodic, and : − 1 times dif-
ferentiable in the first variable with m (:−1)

1 6 Lipschitz. Then(
 (:): ∗ 6Y

) (C) = O(1).
Proof. We first prove by induction that  (:): ∗ 6Y = 1

Y:
Δ:6Y .

Indeed,  ′1 ∗ 6Y = 1
Y

(
X0 − XY

) ∗ 6Y = 1
YΔ16Y . Assuming the

property holds at rank : ,

 (:+1):+1 ∗ 6Y = ( : ∗  1) (:+1) ∗ 6Y
=  (:): ∗  ′1 ∗ 6Y
=

1
Y:
Δ: ( ′1 ∗ 6Y)

=
1
Y:
Δ:

(Δ16Y
Y

)
=

1
Y:+1

Δ:+16Y .

To obtain the second line, we have repeatedly used () ∗ () ′ =
) ′ ∗ ( = ) ∗ (′.

Applying Lemma 2, we eventually find ( (:): ∗ 6Y) (C) =
1
Y:
Δ:6Y (C) = 1

Y:
O(Y: ) = O(1). �

Lemma 4. Let 6 be A: . Then
(
 : ∗ 6Y

) (C) = O(Y: )
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Proof. We sketch the proof for : = 3, the general result
following by induction. Notice that by assumption 6 (−3) is
twice differentiable in the first variable with m2

16
(−3) Lipschitz,

which will be used each time Lemma 3 is invoked.
We first prove

(
 ′′3 ∗

(
6 (−2) )

Y

)
(C) = O(Y). Starting from

( (
6 (−3) )

Y

) ′
=

(
m16
(−3) )

Y +
1
Y

(
m26
(−3) )

Y

=
(
m16
(−3) )

Y +
1
Y

(
6 (−2) )

Y ,

we find after convolving with  ′′3 and integrating by parts

 ′′3 ∗
(
6 (−2) )

Y = Y 
′′′
3 ∗

(
6 (−3) )

Y − Y ′′3 ∗
(
m16
(−3) )

Y;

the boundary terms vanish since  ′′3 has compact support.
The first term is O(Y) by Lemma 3. Using  ′′3 = ( 1 ∗ 2) ′′ =
 1∗ ′′2 , the second term reads Y 1∗

(
 ′′2 ∗

(
m16
(−3) )

Y

)
, hence is

also O(Y) by Lemma 3. The sum of the two terms is therefore
also O(Y).

We next prove
(
 ′3 ∗

(
6 (−1) )

Y

)
(C) = O(Y2). Indeed, using

successively (
6 (−1) )

Y = Y
(
6 (−2) ) ′

Y − Y
(
m16
(−2) )

Y(
m16
(−2) )

Y = Y
(
m16
(−3) ) ′

Y − Y
(
m2

16
(−3) )

Y

yields(
6 (−1) )

Y = Y
(
6 (−2) ) ′

Y − Y2 (m16
(−3) ) ′

Y + Y2 (m2
16
(−3) )

Y .

Convolving with  ′3 and integrating by parts,

 ′3 ∗
(
6 (−1) )

Y = Y 
′′
3 ∗

(
6 (−2) )

Y − Y2 ′′3 ∗
(
m16
(−3) )

Y

+ Y2 ′3 ∗
(
m2

16
(−3) )

Y;

the boundary terms vanish since  ′3 has a bounded support. We
already know the first two terms are O(Y2). Using  ′3 = ( 2 ∗
 1) ′ =  2 ∗  ′1, the last term reads Y2 2 ∗

(
 ′1 ∗

(
m2

16
(−3) )

Y

)
,

hence is also O(Y2) by lemma 3. The sum of the three terms
is therefore also O(Y2).
We finally prove

(
 3 ∗ 6Y

) (C) = O(Y3). Indeed, using
successively

6Y = Y
(
6 (−1) ) ′

Y − Y
(
m16
(−1) )

Y(
m16
(−1) )

Y = Y
(
m16
(−2) ) ′

Y − Y
(
m2

16
(−2) )

Y(
m2

16
(−2) )

Y = Y
(
m2

16
(−3) ) ′

Y − Y
(
m3

16
(−3) )

Y ,

we find

6Y = Y
(
6 (−1) ) ′

Y − Y2 (m16
(−2) ) ′

Y

+ Y3 (m2
16
(−3) ) ′

Y − Y3 (m3
16
(−3) )

Y .

Convolving with  3 and integrating by parts,

 3 ∗ 6Y = Y ′3 ∗
(
6 (−1) )

Y − Y2 ′3 ∗ (m16
(−2) )

Y

+ Y3 ′3 ∗
(
m2

16
(−3) )

Y − Y3 3 ∗
(
m3

16
(−3) )

Y;

the boundary terms vanish since  3 has a bounded support.
We already know the first and third terms are O(Y3). The
second term reads

Y2 ′3 ∗ (m16
(−2) )

Y = Y
3 ′3 ∗

(
m16
(−3) ) ′

Y − Y3 ′3 ∗
(
m2

16
(−3) )

Y

= Y3 ′′3 ∗
(
m16
(−3) )

Y − Y3 ′3 ∗
(
m2

16
(−3) )

Y

= Y3 1 ∗
(
 ′′2 ∗

(
m16
(−3) )

Y

)
− Y3 ′2 ∗

(
 ′1 ∗

(
m2

16
(−3) )

Y

)
,

and is also O(Y3) by using Lemma 3 twice. Finally, by Young’s
convolution inequality, the fourth term satisfies

‖Y3 3 ∗ m3
16
(−3) ‖∞ ≤ Y3‖ 3‖1‖m3

16
(−3) ‖∞,

hence is also O(Y3); notice m3
16
(−3) is bounded by assumption,

and so is  3. The sum of the four terms is therefore also O(Y3),
which concludes the proof. �
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2
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Figure 2. Encoded signals I1 (C) , I2 (C) , I3 (C) .
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Figure 3. Carriers B1 (C) , B2 (C) , B3 (C) (zoom).
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5
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Figure 4. Composite signal H (C) (zoom).

IV. Numerical experiments

We illustrate the error analysis of Theorem 1 with numerical
experiments for : = 1, 2, 3. Consider the composite signal H
defined on [0, 5] by

H(C) = I1 (C)B1 (C, CY ) + I2 (C)B2 (C, CY ) + I3 (C)B3 (C, CY ) + 3 (C, CY ),
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5

·10−3

e1
e2
e3

0 1 2 3 4 5

−4

−2

0

2

4

·10−4

e2
e3

Figure 5. Errors 4: (C) for Y = 10−2: full view (top), zoom (bottom).

with encoded signals I1, I2, I3 (see Fig. 2)

I1 (C) := 2 sin(C) − 1.5 sin
(
C
2
)

I2 (C) := cos(C) − 1.2 sin
(
C
4
)

I3 (C) := 1.4 cos( C3 )2;

and carriers B1, B2, B3 (see Fig. 3)

B1 (C, f) := 1
B2 (C, f) := sign

(
C

20 + 2 − 0.5
)

B3 (C, f) :=

{
cos(C) + 2 2 ≤ 0.5
cos(C) + 1 − 2 2 ≥ 0.5,

where 2 := f mod 1. The support of the disturbance 3 is

�C :=
[
5 (C) − 1

20 , 5 (C) + 1
20

] ∪ [
6(C) − 1

20 , 6(C) + 1
20

]
,

with 5 (C) := 1
2
(
1+ sin(C)) and 6(C) := 1

2
(
1+ cos(C)); hence, on

a window of length Y between 10 % (when the two intervals
coincide) and 20 % (when the two intervals are disjoint) of the
signal is corrupted. Fig 4 displays the resulting signal H, with
the spikes caused by 3 clearly visible.
We select the simplest demodulating basis that is zero

on �C , namely '(C, f) :=
(
1 − 1�C

(f))((C, f); tedious but
routine computations show (') − (') is A: for : = 1, 2, 3.
We check numerically that (') (C) is invertible by plotting
its condition number ^, see Fig. 6: indeed, (') (C) is always
well-conditioned, except during the filter initialization.

0 1 2 3 4 5
0

200

400
κ

Figure 6. Condition number ^ (C) of matrix (') (C) .

10−2.6 10−2.4 10−2.2 10−2 10−1.8 10−1.6

10−8

10−6

ε

‖e1‖
‖e2‖
‖e3‖

Figure 7. !2-error ‖4: ‖ as a function of Y.

We focus on the recovery of I2, since it is modulated
by the least regular carrier. We consider the error 4: (C) :=
I2 (C) − %2

: [H] (C), where %2
: [H] denotes the second component

of %: [H]. For Y fixed, the error decreases as anticipated with : ,
see Fig 5. To study the asymptotic behavior as a function
of Y, we consider the !2-error ‖4: ‖ :=

(∫ 5
1

(
4: (C)

)2
3C

) 1
2 ; the

first second of data is discarded to ensure the filters are well
initialized. As anticipated, the plots in log scale are straight
lines with slopes equal to the orders of the estimates, see Fig. 7.

V. Conclusion
We have proposed a demodulation procedure to recover ana-

log signals encoded by multiple carriers with slowly-varying
shapes. Though the procedure is not completely surprising
at first sight, proving that the overall demodulation error is
arbitrarily small is not obvious. Arguably, the framework is
somewhat peculiar, which explains why no similar work seems
to exist in the literature. Nevertheless, the result is exactly
what we need for the application we have in mind, namely the
“sensorless” control of AC electric motors at or near standstill.
In this application, the composite signal H to be decoded is
the (vector) current in the motor, the motor itself acting as a
multicarrier modulator when fed by a PWM inverter; a suitable
processing of the demodulated signal then yields the rotor
angle, which is needed to accurately control the motor.
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