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Abstract—Amplitude detection (AD) is a low-complexity
scheme for information retrieval, as it only considers the
envelop of the received signal. This makes it ideal for low-
cost low-powered devices for applications such as the Internet
of Things. In this paper, we deal with a basic point-to-point
(P2P) system and develop a unified analytical framework for
the error performance evaluation of the maximum-likelihood
decoder with on-off keying. We consider generalized fading
channels and derive closed form asymptotic bounds on the
average bit error rate performance. Moreover, we provide the
exact diversity order along with a lower and upper bound
on the coding gain in terms of the channel parameters. Our
results provide important insights into the effects of the fading
parameters on the performance of P2P-AD systems.

Index Terms—Nonlinear detection, amplitude detection,
maximum-likelihood, diversity, coding gain.

I. INTRODUCTION

Future Massive Internet of Things (m-IoT) envisages a
rapid increase in connectivity among a large number of low-
cost/low-power devices and sensors [1]. Therefore, designing
low-complexity receivers for IoT-enabled wireless networks
is crucial. Conventional communication receivers employ lin-
ear detection, which requires expensive and power consuming
circuitry, such as linear amplifiers and frequency synthesizers
[2]. On the other hand, nonlinear detection techniques are of
low complexity since they process only the amplitude/phase
of the received signal [3]. Despite, this approach affects the
performance and loses degrees of freedom, it is more energy
and cost efficient and hence ideal for m-IoT applications.

A simple and well known nonlinear detection technique is
amplitude detection (AD), which only processes the envelop
of the received signal [3], [4]. Since AD can only differentiate
between symbols with different magnitudes, a suitable modu-
lation scheme is on-off keying (OOK). OOK has increasingly
being used in energy-constrained wireless applications such
as sensor networks, where efficient design is required to
minimize the power consumption and extend the operation
lifetime [5]. Furthermore, due to its low-complexity and
energy efficiency, OOK is also suitable for wireless energy
transfer [6], backscatter communications [7], and optical
wireless communications [8]. In [9], a closed form expression
for the asymptotic error probability of OOK modulation
with envelop detection over additive white Gaussian noise
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(AWGN) channels is derived. It has been shown that the error
probability associated with each OOK symbol contributes
equally to the total error probability. In [10], the ratio of
asymptotic probability of error for the two symbols is derived
over Rician channels in a tabular form. Recently, G. K.
Psaltopoulos et. al. [11]–[14] studied various fundamental
aspects of AD with OOK such as asymptotic error per-
formance, achievable rate and diversity-multiplexing trade-
off, for a basic multiple-input multiple-output (MIMO) set-
up. Contrary to the widely used conventional non-coherent
OOK [4], [10], they propose a coherent OOK system, where
channel knowledge is available at the receiver. In addition to
the proposed theoretical framework, they have implemented
a practical MIMO setup and validated the error performance
for OOK modulation over Rayleigh channels.

However, to the best of our knowledge, there is no unified
framework that provides simple and tractable bounds on the
error performance for the OOK modulation with AD over
generalized fading channels. To this end, we consider a point-
to-point (P2P) system that employs AD at the receiver and
we study the average bit error rate (BER) performance of
the maximum likelihood (ML) decoder over various fading
models with OOK. We refer to this set-up as P2P-AD system
in the rest of this paper.

Specifically, the main contributions presented in this paper
are as follows:
• We develop a complete analytical framework for the

BER of a P2P-AD system, which takes into ac-
count generalized fading models: Rayleigh, Nakagami-
n, Nakagami-q (Hoyt), and Nakagami-m.

• We derive asymptotic closed form expressions for the
lower and upper bounds on the BER performance for
all considered fading models.

• Based on the asymptotic expressions, we derive the
exact diversity order along with a lower and upper bound
on the coding gain, in terms of the fading parameters.

To the best of authors’ knowledge, no previous work has
studied the framework discussed in this paper to analyze
diversity order and coding gain in the context of nonlinear
AD receivers. The developed framework provides a way
to acquire important insights into the effects of the fading
parameters on the performance of such systems.

The remainder of this paper is organized as follows. In
Section II, the system model along with the ML decoder
for a P2P-AD system is presented. Section III deals with
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a mathematical framework to study the BER performance
for the P2P-AD system with OOK modulation over various
fading models. Numerical results are shown and discussed in
Section IV, followed by conclusive remarks in Section V.

Notations: R+ and C denote the set of positive real
numbers and complex numbers, respectively. CN denote the
complex Gaussian random variable. <{·} and ={·} represent
real part and imaginary part, respectively. E[·] and | · | stand
for the expectation operation and the amplitude function,
respectively.

II. SYSTEM MODEL

We consider a P2P communication system over a flat-
fading channel that employs AD at the receiver. Let xs ∈ R+

be the transmitted symbol from the source, h ∈ C be the
channel realization, and n be the complex AWGN at the re-
ceiver with mean zero and variance σ2, i.e., n ∼ CN (0, σ2).
Then, the received signal can be obtained as

yD =
∣∣hxs + n

∣∣, (1)

where |z| ,
√
<(z)2 + =(z)2. An ML symbol-by-symbol

decoder is used for detecting the received signal and we
assume full channel state information at the receiver [14].

A. ML Decoder

If the symbol xs is drawn from an equiprobable modula-
tion alphabet set X , then for a given channel realization, the
ML decision rule is given by

x̂s = arg max
xs∈X

f(yD
∣∣xs, h), (2)

where f(yD|xs, h) is the likelihood of the received symbol.
For the received signal given in (1), the likelihood function
is written as [4, Eqn. (1.4.26)]

f(yD|xs, h) =
2yD
σ2

exp

(
−y

2
D + |xs h|2

σ2

)
I0

(
2yD |xs h|

σ2

)
, (3)

where I0(·) is the modified Bessel function of the first kind
and zeroth order. The likelihood function depends only on
the amplitude of the transmitted symbol (not on the phase)
and therefore the ML can only differentiate between symbols
with different amplitudes.

B. Asymptotic Analytical Framework

The conditional error probability, i.e., probability of error
for a given fading/channel realization of a communication
system, depends on the average transmit signal-to-noise ratio
(SNR) γ and the random variable β that represents the fading
power. If for a given SNR, the conditional error probability
of a communication system is represented by Pe(β), then the
average bit error rate can be evaluated as

P̄e , E[Pe(β)] =

∫ ∞
0

Pe(β)fβ(β)dβ, (4)

where fβ(β) is the PDF of the random variable β. The
average BER is dominated by the near-origin behaviour
of fβ(β) at high SNRs (for details see [15]). For most

of the channel models, fβ(β) can be approximated by a
single polynomial term as fβ(β) = aβt + o(βt+ε) near the
origin, where ε and a are positive constants. The parameter
t quantifies the order of the smoothness of fβ(β) near the
origin. Thus, the asymptotic BER can be obtained as [15]

P̄e,∞ ,
∫ ∞

0

Pe(β) aβtdβ, (5)

in terms of the near-origin parameters of fβ(β). We refer to
the parameters (t, a) as the near-origin parameters of fβ(β).
The parameters (t, a) corresponding to various channel mod-
els are provided in [15, Table 1].

Asymptotically, the BER can be approximately written as

P̄e,∞ ≈ (gγ)−d (6)

for linear modulations, where g and d are the coding gain
and the diversity order, respectively [16]. Thus, by taking into
account the expression in (6), the diversity order is obtained
as d = lim

γ→∞
− log P̄e,∞

log γ . The diversity order determines the

slope of the BER versus the SNR curve (in a log-log scale), at
high SNRs. On the other hand, the coding gain (in decibels)
determines the shift of the BER curve in SNR relative to a
benchmark BER curve of γ−d.

The above analytical framework is used to study the
asymptotic BER performance for the P2P-AD system con-
sidered, and to draw insights into the effect of the parameters
(t, a) on the coding gain and the diversity order.

III. ERROR PERFORMANCE ANALYSIS

In this section, we first analytically characterize the BER
performance for the P2P-AD system described in Section II
for OOK modulations and then derive simple and tractable
asymptotic BER performance bounds. In order to obtain the
asymptotic upper bound, we first derive a novel exponential
type upper bound on the conditional error probability. We
deliberately derive an exponential type upper bound since
it satisfies the assumptions used in [15, Proposition 1] and
hence asymptotic analysis (see (4)) could be invoked. 1

A. BER Performance

For a basic OOK scheme, the modulation set is given by
X = {0, A}, and the transmit SNR can be written as γ ,
A2

2σ2 . Let λ be the optimal detection threshold of the ML
decoder that corresponds to the solution of

f(yD|0, h) = f(yD|A, h), (7)

where f(yD|·, ·) is given by (3); then by using (3) in (7), we
can write

I0

(
2λ |Ah|
σ2

)
= exp

(
|Ah|2

σ2

)
. (8)

1In order to derive the asymptotic lower bound, Q-type lower bound on
the conditional error probability is used. The lower bound on the conditional
error probability is based on the analysis in [11]. Further, the Q-type error
functions satisfies the assumptions given in [15] and hence the asymptotic
analysis is feasible.
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The exact solution for the equation in (8) can only be
evaluated numerically; however, a tight approximation is
given in [3, Eqn. (4.15)]

λ ≈ σ√
2

√
2 +

A2|h|2
2σ2

=
σ√
2

√
2 + γ |h|2. (9)

It is noted that λ is a function of γ and the closed form
expression for λ at high SNRs (γ →∞) can be obtained as

λ∞ = lim
γ→∞

σ√
2

√
2 + γ |h|2 ≈

√
γσ
√

2
|h| = A|h|

2
. (10)

From (9) and (10), it follows that λ∞ ≤ λ.
Next, for the ML decoder defined in (2), the conditional

error probability of the OOK modulation can be written as

Pe(β)=
1

2

(
Pe|0 + Pe|A

)
=

1

2

[ ∞∫
λ

f(yD|0, h) dyD +

λ∫
0

f(yD|A, h) dyD

]

(a)
=

1

2

[
exp

(
−λ

2

σ2

)
+ 1− Q1

(√
2A|h|
σ

,

√
2λ

σ

)]
, (11)

where Pe|X is the probability of the error event, when
X was transmitted, Q1(·, ·) is the first order Marcum Q-
function, and (a) follows from (3) along with the fact that
Q1

(
0,
√

2λ
σ

)
= exp

(
−λ

2

σ2

)
from [17, Eqn. 4.22]. Note that

due to the Marcum Q-function, it is not straightforward to
evaluate the exact average BER by averaging (11) over the
random variable β. However, in what follows, we derive
simple and tractable bounds on the BER performance.

B. Bounds and Asymptotic Approximations

In what follows, we provide bounds (Proposition 1) on
the conditional error probability and then approximations for
high SNRs (Lemma 1) on the average error performance.

Proposition 1. The conditional error probability for the
OOK modulation can be bounded as

P lb
e (β) ≤ Pe(β) ≤ P ub

e (β), where (12)

P ub
e (β) =

3

4
exp

(
−γ

2
β
)
− 1

4
exp

(
−9γ

2
β

)
, (13)

P lb
e (β) = Q

(√
β γ
)
. (14)

Proof. See Appendix A.

Next, by using (5), we provide asymptotic bounds on the
average BER performance for the OOK modulation in terms
of the near-origin parameters (t, a) of the PDF fβ(β).

Lemma 1. For a given fading PDF fβ(β) with the near-
origin parameters (t, a), the asymptotic average BER per-
formance for the OOK modulation can be bounded as

P̄ lb
e,∞ ≤ P̄e,∞ ≤ P̄ ub

e,∞, where (15)

P̄ ub
e,∞ = aΓ(t+ 1)2t−1

(
3−

(
1

9

)t+1
)
γ−(t+1), (16)

P̄ lb
e,∞ =

2taΓ
(
t+ 3

2

)
√
π(t+ 1)

γ−(t+1). (17)

Proof. See Appendix B.2

Thus, from Lemma 1, the diversity order corresponding to
the upper bound (16) and the lower bound (17), is given by

du = t+ 1, and dl = t + 1,

respectively. Similarly, the coding gains corresponding to the
two bounds are given by

gu =

(
aΓ(t+ 1)2t−1

(
3−

(
1

9

)(t+1)
)) −1

t+1

,

gl =

(
2taΓ

(
t+ 3

2

)
√
π(t+ 1)

) −1
t+1

.

(18)

We now obtain the exact diversity order and a closed
interval for the coding gain of the OOK modulation.

Theorem 1. The diversity order and the coding gain of the
OOK modulation are given, respectively as

d = t+ 1, and g ∈ [gu, gl], (19)

where gu and gl are given by (18).

Proof. See Appendix C.

The developed mathematical approach is helpful in de-
riving the exact diversity order and a closed interval for
the coding gain for all of the considered fading models
which are summarized in [15, Table 1]. For instance, for
the case of Rayleigh fading with unity gain, i.e., with
PDF fβ(β) = exp(−β), by using t = 0 and a = 1 in
Theorem 1, we get the diversity order and the coding gains
as d = 1, g ∈ [0.6923, 2].

IV. NUMERICAL RESULTS

Computer simulations are carried out in order to vali-
date the proposed analytical framework. A P2P-AD system
with OOK modulation is simulated over Nakagami-m and
Nakagami-n channel models. In all simulations, we assume
a normalized channel with σ2 = 1.

In Fig. 1, we present the BER performance as a function
of SNR over Nakagami-m channels with m = {0.5, 1, 2}.
From Fig. 1, we can observe that the upper and lower
bounds are parallel along the exact BER simulation curve.
We also observe that the asymptotic behaviour of the bounds
is captured by the asymptotic upper bound in (16) and the
asymptotic lower bound in (17) (e.g., for m = 1, the blue

2We note that, the upper bound (see (13)) has exponential form. In
addition to using (13) for the asymptotic scenario, we can also obtain
corresponding average BER (which is valid for all SNRs) in terms of the
moment generating function (MGF) corresponding to the fading type, i.e., for
a given MGFMβ(γ) =

∫∞
0 fβ(β) exp(−βγ)dβ, the upper bound on the

BER performance, i.e., P̄e ≤ E[Pub
e (β)] = 3

4
Mβ

(
1
4
γ
)
− 1

4
Mβ

(
9
4
γ
)
.
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Fig. 1: BER vs SNR for Nakagami-m.

solid line perfectly matches with the solid red line with “?”
after SNR > 15 dB). The slope of both the asymptotic
bounds (straight lines) is the same, that correctly provides the
diversity of the OOK modulation (e.g., d = 1 for m = 1).
Further, the simulated exact BER curve lies in between the
two straight lines having the same slope; and therefore the
coding gain of the OOK scheme lies in between the coding
gains associated with the two asymptotic bounds. We also
observe that the asymptotic behaviour of the bounds shows
up at relatively high SNRs for larger values of m. The slope
of the BER curves/diversity order depends on the value of
m and increases as m increases.

Similarly, in Fig. 2 we show the BER performance as a
function of SNR over Nakagami-n with n = {0, 2}. Note that
the Nakagami-n channel is the same as the Rician-K channel
with the scale factor K = n2. All the key observations
made for Nakagami-m channel also hold for the Nakagami-n
channels. However, a distingushing remark is that the slope of
the BER curves is independent of n, whereas for Nakagami-
m channels the slope depends on m. However, the BER
curve shifts towards the left as n increases, and therefore
the coding gain increases. Note that this observation is also
in line with the analytical results derived, as both the upper
and the lower bounds on the coding gain given by (18)
(with t = 0 and a = (1 + n2) exp(−n2)), respectively, are
increasing functions of n.

V. CONCLUSIONS

In this paper, we developed a mathematical framework
to study bounds on the BER performance for P2P-AD sys-
tems with OOK modulation and also derived the asymptotic
behaviour of these bounds as a function of the channel
parameters. The BER can be characterized by the diversity
order and the coding gain at high SNRs. The developed
framework is general and can be used to study the asymptotic
performance (i.e., diversity order and coding gain) for a large

0 5 10 15 20 25 30
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10
-2

10
-1

10
0

Fig. 2: BER vs SNR for Nakagami-n.

class of fading channels. Theoretical results are validated via
Monte Carlo simulations. We have shown that the asymptotic
approximation for each bound perfectly matches with their
corresponding bounds at high SNRs.

APPENDIX A
PROOF OF PROPOSITION 1

We derive upper and lower bounds on the conditional error
probability. We first obtain an upper bound on the conditional
error probability by using the fact that λ∞ < λ (which
provide an upper bound), and then by further using an upper
bound on the Q1(·, ·) function. Finally, we present the lower
bound based on the analysis in [11].

Upper bound: The conditional error is given by

Pe(β)=
1

2

[ ∞∫
λ

f(yD|0, h) dyD +

λ∫
0

f(yD|A, h) dyD

]

(a)
=

1

2

[∞∫
λ∞+c(γ)

f(yD|0, h) dyD +

λ∞+c(γ)∫
0

f(yD|A, h) dyD

]

=
1

2

[ ∫ ∞
λ∞

f(yD|0, h) dyD +

∫ λ∞

0

f(yD|A, h) dyD

−
∫ λ∞+c(γ)

λ∞

f(yD|0, h)− f(yD|A, h) dyD︸ ︷︷ ︸
≥0

]

(b)

≤ 1

2

[∞∫
λ∞

f(yD|0, h) dyD +

λ∞∫
0

f(yD|A, h) dyD

]
. (20)

In order to get (a), we use λ∞ ≤ λ ∀γ and therefore for
a given γ we can write λ = λ∞ + c(γ), where c(γ) is a
non-negative function of γ; (b) follows from the fact that
f(yD|0, h) ≥ f(yD|A, h), yD ≤ λ and equality holds when
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yD = λ. Thus, by using expressions for f(yD|0, h) and
f(yD|A, h) in (20), we have

Pe(β) ≤ 1

2

(
exp

(
−λ

2
∞
σ2

)
+ 1− Q1

(√
2

σ
A|h|,

√
2λ∞
σ

))
.

Next, by using (10), we substitute λ∞ = A|h|
2 in the above

equation, and we have

Pe(β) ≤ 1

2

(
exp

(
−A

2|h|2

4σ2

)
+ 1− Q1

(√
2

σ
A|h|, A|h|√

2σ

))
(a)

≤ 1

2

(
exp

(
−A

2|h|2

4σ2

)
+

1

2

[
exp

(
−A

2|h|2

4σ2

)
+ exp

(
−9A2|h|2

4σ2

)])
(b)
=

3

4
exp

(
−βγ

2

)
− 1

4
exp

(
−9βγ

2

)
, (21)

where (a) follows from the inequality [17, Eqn. (4)]

Q1(p, q) = 1− 1

2

(
exp

(
− (p− q)2

2

)
−exp

(
− (p+ q)2

2

))
,

where p > q ≥ 0, with p =
√

2
σ A|h| and q = A |h|√

2σ
. Then, by

using β = |h|2 and γ = A2

2σ2 in (a) we get (b).
Lower bound: The ML error performance of the system

with output as r , |hxs| + n provides a lower bound on
the error performance of the P2P-AD system under study,
i.e., yD = |hxs + n| [11]. The error performance of the
system model r = |hxs| + n is well studied (this is a
conventional AWGN channel for a given channel realization);
and the corresponding conditional error probability with

OOK scheme is given by Q
√
|hA|2
2σ2 . Thus, we can write

Q(
√
βγ) ≤ Pe(β), (22)

which corresponds to a lower bound on Pe(β).
Thus, from (21) and (22), we obtain an upper and lower

bounds on the conditional error probability. This completes
the proof.

APPENDIX B
PROOF OF LEMMA 1

In order to prove Lemma 1, we derive the asymptotic upper
and lower bounds by averaging the corresponding conditional
error functions over the random variable β. We utilize the fact
that the BER depends only on the the near-origin parameters
(t, a) of fβ(β) at high SNRs.

Asymptotic upper bound: With P ub
e (β) = 3

4 exp
(
−γ β2

)
−

1
4 exp

(
− 9γ β

2

)
, and fβ(β) ≈ aβt near the origin, the

asymptotic upper bound is given by P̄ ub
e,∞ =

∫∞
0
P ub
e (β) ×

aβtdβ, which after integration simplifies to

P̄ ub
e,∞ == aΓ(t+ 1)2t−1

(
3−

(
1

9

)t+1
)
γ−(t+1), (23)

where Γ(z) =
∫∞

0
xz−1e−xdx.

Asymptotic lower bound: From [15, Proposition 1], we
have

lim
γ→∞

E
[
Q
(√

kβ γ
)]

=
2taΓ

(
t+ 3

2

)
√
π(t+ 1)

(kγ)−(t+1). (24)

Thus, the expression for P̄ lb
e,∞ = lim

γ→∞
E
[
Q(
√
β γ)

]
is

obtained by replacing k with 1 in (24). Hence, we have

P̄ lb
e,∞ =

2taΓ(t+ 3
2 )√

π(t+1)
γ−(t+1), and the proof is completed.

APPENDIX C
PROOF OF THEOREM 1

Asymptotically, the BER performance for the OOK mod-
ulation is bounded as P̄ lb

e,∞ ≤ P̄e,∞ ≤ P̄ ub
e,∞. By substituting

each asymptotic BER expression with its corresponding
expression in terms of coding gain and diversity order, we
get (glγ)−d

l ≤ (gγ)−d ≤ (guγ)−d
u

. It is simple to deduce
that du ≤ d ≤ dl. And if du = dl = d, then gu ≤ g ≤ gl.
This completes the proof.
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