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Abstract—In this paper, we derive two performance lower bounds
for blind system identification in the presence of channel order
estimation error. The first bound deals with models where
both the channel and unknown symbols are deterministic, and
obtained via the constrained misspecified Cramer-Rao bound
(MCRB). When transmitted symbols are unknown random vari-
ables i.i.d. drawn from a stochastic Gaussian process, variance
of any unbiased estimators is always higher than the second
MCRB bound. Both proposed MCRB bounds reduce to the
classical Cramer-Rao bounds when the channel order is known
or accurately estimated. Besides, the stochastic MCRB is lower
than the deterministic bound, especially at high SNRs.

Index Terms—Peformance lower bounds, Constrained Cramer-
Rao bound, Misspecification, MIMO, Channel order.

I. INTRODUCTION

Channel estimation is one of the most fundamental prob-
lems in wireless communications. Many efficient methods
have been proposed for channel estimation so far. One can
categorize them into two main classes: data-aided and blind
estimation [1]. Data-aided estimators exploit pilot symbols at
the receiver to estimate the channel. Blind estimators, on the
other hand, can identify the channel parameters directly from
output observations without the need for pilots. Accordingly,
blind channel estimation is a promising candidate to solve
the pilot overhead and increase the spectral efficiency of
communication systems. However, their accuracy is often less
than that of data-aided estimators, in which case one might
rely on semi-blind approaches [1].
For many channel estimators, accurate estimation of the
channel order is of great importance and determines the
performance of the channel estimation. There are several
methods designed for channel order estimation in the literature
such as [2]–[5]. However, these methods only work well under
certain conditions and do not always result in the true order in
practice. This work focuses on evaluating performance lower
bounds for channel estimators in the presence of channel order
estimation error.
It is well known that the Cramer-Rao bound (CRB) provides a
lower bound on the variance of any unbiased estimators and is
often used as a benchmark for parameter estimators [6]. Many
studies have been conducted to derive analytical expressions
of the CRB for channel estimators in general and for blind
estimators in particular, for examples [7]–[13]. These CRB
bounds, however, are appropriate only for perfect specification
models, i.e., the true channel order is either known in ad-
vance or accurately estimated. This limitation motivates us to
look for new performance bounds dealing with the imperfect
knowledge of channel order information.

Contribution: We propose to use the misspecified CRB
(MCRB), which is an extended version of the CRB for
misspecfication models [14]–[16], in order to analyze the theo-
retical performance limit of blind estimators when the channel
order is misspecified. In particular, a new interpretation of
MCRB via the Moore–Penrose inverse, called generalized
MCRB (GMCRB), is proposed to deal with the inherent
ambiguity in blind identification. The proposed GMCRB is the
tightest constrained MCRB among all choices of parametric
constraints to regularize the singular problem. The GMCRB
is not only identical to the usual MCRB for regular problems
but also consistent with the classical CRB under well-specified
models. Two closed-form expressions of the GMCRB are
then derived for unbiased channel estimators when unknown
transmitted symbols are (i) deterministic (GMCRBDet

) and
(ii) stochastic (GMCRBStoch

). The two proposed GMCRBs,
for the first time, provide performance lower bounds for blind
channel estimation techniques under model order misspecifi-
cation.

II. SYSTEM MODEL

We consider a convolutive MIMO system with Nt transmit
antennas and Nr receive antennas whose individual channels
are modeled as finite impulse responses (FIR). The output
vector y[t] = [y1[t], y2[t], . . . , yNr [t]]

⊺
∈ CNr×1 received at

Nr receive antennas is formulated by

y[t] =
L−1

∑
i=0

H[i]x[t − i] +n[t], t = 0,1, . . . ,N − 1. (1)

where H is the overall Nr × Nt MIMO channel of order
L − 1, {x[t] ∈ CNt×1}t∈Z represent the transmitted symbols,
and n[t] is an Nr × 1 additive noise vector drawn from an
i.i.d. circular complex Guassian distribution CN (0, σ2

nINr),
E{n[t]n[t]⊺} = 0. For simplicity, it is assumed that a
preamble block of zero samples is added to avoid intersymbol
interference from two successive blocks, i.e. x[t] = 0 for t < 0.
One often stacks the N output samples {y[t]}N−1

t=0 into a single
vector y ∈ CNNr×1 as

y = [y[0]⊺,y[1]⊺, . . . ,y[N − 1]⊺]
⊺
. (2)

Accordingly, we can recast the convolution (1) into the fol-
lowing standard expression

y = T (h)x +n, (3)

where the input vector x and the noise vector n are given by

x = [x[−L + 1]⊺, . . . ,x[0]⊺, . . . ,x[N − 1]]
⊺
, (4)

n = [n[0]⊺,n[1]⊺, . . . ,n[N − 1]⊺]
⊺
, (5)
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and T (h) is a NrN ×Nt(L+N −1) block matrix representing
the convolution:

T (h) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H[L − 1] . . . H[1] H[0]
⋱ . . . H[1] H[0]

⋱ ⋱ ⋱

H[L − 1] . . . H[0]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

T (h) is the block Toeplitz matrix depending on the channel
coefficients h = [h⊺L−1, . . . ,h

⊺
0]
⊺
, with hi = vec(Hi). For

well-definedness [17], [18], we suppose that T (h) is of full
column-rank and has more rows than columns, i.e., NrN >

Nt(L +N). For short, we denote T (h) by H.
Thanks to the “vec trick” in [19, Lemma 4.3.1], we can express
(3) as a linear operation on the channel coefficient vector h:

y = Xh +n = (X⊺
⊗ INr

)h +n, (7)

where X ∈ CLNt×N is the matrix formed by input samples

X=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . x[N −L]

⋮ ⋮ . .
.

⋮

⋮ 0 . .
.

⋮

0 x[0] . . . x[N − 2]
x[0] x[1] . . . x[N − 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8)

and operator “⊗” denotes the Kronecker product.

III. MISSPECIFIED CRAMER-RAO BOUND

In this section, we briefly review an extended version of
the CRB when dealing with misspecification models, called
misspecified CRB (MCRB) [16]. For further information about
its derivation, properties, and applications, we refer the reader
to [14]–[16] and references therein.
Assume that data samples are i.i.d drawn from the true
distribution fy. However, users adopt a different distribution
g(y∣θ),θ ∈ Θ to characterize statistics of y instead, where
g(y∣θ) ≠ f(y) ∀θ is allowed. For the users, the problem of
interest is now to estimate θ1.

A. Pseudo-true Parameter θpt

In this context, Kullback-Leibler (KL) divergence is used to
determine the “best” performance unbiased estimators might
attain in the presence of misspecification models [16].
The KL divergence measures the amount of information loss
when we use the assumed gy∣θ to approximate the true fy,
which is defined by

KL(fy ∥ gy∣θ)
∆
= Ef{ log(

f(y)

g(y∣θ)
)}. (9)

The unique parameter minimizing KL(fy ∥ gy∣θ) is so-called
the pseudo-true parameter, θpt. In practice, KL(fy ∥ gy∣θ)
cannot be obtained since the true density fy is generally
unknown, so we can estimate the maximum likelihood (MLE)

1When dealing with a mixture of both real parameters (θr) and complex
parameters (θc), we consider the following augmented representation: θ =

[θ⊺c ,θ
H
c ,θ

⊺

r ]
⊺

. The real (dual) representation θ = [Re(θc)⊺, Im(θc)⊺,θ⊺r ]
⊺

is another option, but there always exists a linear and invertible map L such
that θ ↦ θ = L(θ̄) = Lθ, where L is the matrix representation of L.
Therefore, the two forms are interchangeable [20].

for the density instead. Particularly, minimizing (9) is equiv-
alent to maximizing the expectation of the misspecified log-
likelihood function `(y∣θ) ∆

= log g(y∣θ), i.e.,

θpt
∆
= argmin

θ∈Θ
KL(fy ∥ gy∣θ) = argmax

θ∈Θ
Ef{`(y∣θ)}. (10)

Accordingly, it is shown in [14], [21] that the “quasi” MLE
θ̂MLE converges in probability to θpt.
In the following, we always assume the existence and the
uniqueness of the pseudo-true parameter and provide the
closed-form expression of θpt if possible.

B. Unconstrained MCRB

Let θ̂ be an estimator derived under the misspecified model
g(y∣θ) from the output samples. We call θ̂ misspecified (MS)-
unbiased estimator if and only if

Ef{θ̂(y)} = ∫ θ̂(y)f(y)dy = θpt. (11)

We define the two matrices Jθ and Aθ as follows2

Jθ = Ef{
∂`

∂θ∗
(
∂`

∂θ∗
)

H

}, Aθ = Ef{
∂2`

∂θ∂θH
}. (12)

When Aθ is non-singular at θ = θpt, the total covariance of
any MS-unbiased estimator θ̂(y) is bounded by MCRB [16]

VAR(θ̂(y)) ≥MCRB(θpt)
∆
= A−1

θptJθptA
−1
θpt . (13)

C. Constrained MCRB

When additional constraints are imposed on θ, the constrained
version of the MCRB, called constrained MCRB (CMCRB),
has been recently introduced by Stefano et al. in [22], [23].
Suppose that θ is required to satisfy the following constraint
u(θ) = 0. If the Jacobian matrix ∇u(θ)

∆
=
∂u(θ)
∂θ∗

is of full rank
for any θ ∈ Θ and there exists U spanning its null space,

∇u(θ)U = 0 and UHU = I, (14)

then the following expression holds for the CMCRB

VAR(θ̂(y)) ≥ U(UHAθptU)
−1

(UHJθptU) ×

× (UHAθptU)
−1UH ∆

= CMCRB(θpt),
(15)

under the assumption that UHAθptU is nonsingular.

IV. PROPOSED MCRB FOR BLIND CHANNEL ESTIMATION

Blind techniques consider the estimation of channel parame-
ters from only the channel outputs. Due to the inherent matrix
ambiguity, the matrix Aθ is singular, the usual MCRB may
not exist and its properties cannot be applied directly. In this
section, we propose a new interpretation of the MCRB, called
generalized MCRB (GMCRB), which is able to deal with
blind channel estimation in particular and singular problems

2If θ = [θ1, θ2, . . . , θn]
⊺, then ∂

∂θ
= [ ∂

∂θ1
, ∂
∂θ2

, . . . , ∂
∂θn

]
⊺, ∂

∂θ∗
=

[ ∂
∂θ∗

1
, ∂
∂θ∗

2
, . . . , ∂

∂θ∗n
]
⊺, ∂

∂θ⊺
= [ ∂

∂θ1
, ∂
∂θ2

, . . . , ∂
∂θn

], and ∂
∂θH =

[ ∂
∂θ∗

1
, ∂
∂θ∗

2
, . . . , ∂

∂θ∗n
].

1647



in general. Our main result is stated in the following lemma
whose detailed proof is omitted here due to the space limit.

Lemma 1. Let θ̂(y) be an MS-unbiased estimator derived
under model misspecification from observed data. The total
variance of θ̂(y) is lower bounded according to

varf (θ̂(y)) ⪰A#
θpt
JθptA

#
θpt

∆
= GMCRB(θpt), (16)

where (⋅)# denotes the Moore–Penrose inverse operator and
the two matrices Jθpt and Aθpt are defined as in (12).

Proof Sketch. When Aθpt is nonsingular, i.e., A#
θpt

= A−1
θpt

,
the proposed GMCRB reduces to the usual MCRB in (13).
When Aθpt is singular with rank r, there is no MS-unbiased
estimator θ̂(y) with finite variance. In this case, additional
constraints should be imposed on θ to insure its uniqueness.
For a given constraint u(θ) with a full-rank ∇u(θ), we prove

CMCRB(θpt) ⪰ GMCRB(θpt). (17)

We first exploit the fact that the pseudo-inverse matrix of Aθpt
can be expressed as follows

A#
θpt

= UrΣ
−1
r U

H
r

= Ur(U
H
r AθptUr)

−1
UH
r , (18)

where Ur and Σr are the eigenvector matrix and the matrix of
non-zero eigenvalues of Aθpt respectively. Accordingly, (16)
becomes

GMCRB(θpt) = Ur(U
H
r AθptUr)

−1
×

× (UH
r JθptUr)(U

H
r AθptUr)

−1
UH
r ,

(19)

which is identical to the CMCRB as in (15). Next, it is easy
to find a constraint u(θ) satisfying ∇u(θ)Ur = 0, thus the
proposed GMCRB holds for the CMCRB.
Now, for any orthogonal matrix U such that UHAθptU is
nonsingular, we can show that

λi[A
#
θpt

] ≤ λi[U(UHAθptU)
−1
UH], i = 1,2, . . . , r, (20)

where λi[M] is the i-th largest eigenvalue of M . In parallel,
we show that given three positive-semidefinite Hermitian
matrices of the same rank M ,N , and X , if M ⪰ N then
MXM ⪰NXN . Accordingly, we can conclude that

A#
θpt
JθptA

#
θpt

⪯ U(UHAθptU)
−1
UH

×

× JθptU(UHAθptU)
−1
UH

= CMCRB(θpt). (21)

It ends the proof.

In the following, we propose to use the generalized interpre-
tation (16) of the MCRB to determine the performance limit
of unbiased blind estimators. Particularly, we focus on the
deterministic model (GMCRBDet

) and the stochastic model
(GMCRBStoch

). In the former case, the unknown transmitted
symbols are assumed to be deterministic, whereas in the latter
case, we assume that they are unknown random variables i.i.d.
drawn from a Gaussian distribution.

A. Deterministic GMCRBDet

In this model, the output vector y is drawn from the Gaussian
distribution CN (Hx, σ2

nINrN)3 and the vector of unknown
parameters is φ = [h⊺,x⊺,hH ,xH , σ2

n]
⊺
.

In the presence of channel order estimation error (i.e., L̃ ≠ L),
the users will fit the assumed g(y∣θ) to y

g(y∣θ) =
1

(πσ2)NrN
exp( −

1

σ2
∥y − H̃x̃∥2

2
), (22)

where x̃ = [0⊺
Nt(L̃−1), x[0]

⊺,x[1]⊺, . . . ,x[N − 1]⊺]
⊺

∈

CNt(L̃+N−1)×1 and H̃ is assumed to be formed by

H̃ = [H̃1∣H̃2] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H[L̃ − 1] . . . H[0]
⋱ ⋱

H[L̃ − 1] . . . H[0]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (23)

where the sub-matrix H̃1 contains the first Nt(L̃−1) columns
of H̃, H̃2 contains the remaining columns. Instead of φ, the
parameter of interest now becomes

θ = [h̃⊺,x⊺, h̃H ,xH , σ2]
⊺
. (24)

The misspecified log-likehood function is given by

`(y∣θ) = const−NrN log(σ2
) −

1

σ2
∥y − H̃x̃∥2

2
. (25)

The pseudo-true parameter θpt is derived from minimizing
KL(fy∣∣gy∣θ) or maximizing the expectation of `(y∣θ) over
the true distribution fy, i.e.,

θpt = argmin
θ∈Θ

{NrN log(σ2
) +

σ2
nNrN + ∥µ − H̃x̃∥2

2

σ2
}, (26)

where µ ∆
= Ef{y} =Hx is the true mean of y. The minimizer

of (26) can be obtained directly by applying the maximum
likelihood estimation (MLE) or elegant methods reviewed
in [17], e.g.

H̃pt = argmin
H̃

∥(I −PH̃)µ∥
2

2
, (27)

xpt = (H̃H
2,ptH̃pt)

#H̃H
2,ptµ, (28)

σ2
pt = σ

2
n +

∥µ − H̃ptx̃pt∥
2
2

NrN
, (29)

where PH̃
∆
= H̃(H̃HH̃)−1H̃.

The first partial derivative of `(y∣θ) is given by

∂`

∂h̃∗
=

1

σ2
X̃H(y − X̃ h̃), ∂`

∂h̃
=

1

σ2
X̃ ⊺(y∗ − X̃ ∗h̃∗),

∂`

∂x∗
=

1

σ2
H̃H

2 (y − X̃ h̃), ∂`

∂x
=

1

σ2
H̃⊺

2(y
∗
− X̃ ∗h̃∗),

∂`

∂σ2
=

1

σ4
∥y − X̃ h̃∥2

2
−
NrNp

σ2
.

Let us denote e the error mean, i.e., e = µ − X̃pth̃pt.
Accordingly, we have

Ef{(y − X̃ h̃)(y − X̃ h̃)H} = σ2INrN + eeH ,

Ef{(y − X̃ h̃)(y − X̃ h̃)⊺} = ee⊺.

3Due to the commutativity of convolution, i.e., Hx = Xh, we can state
y ∼ CN (Hx, σ2

nINrN) or y ∼ CN (Xh, σ2
nINrN).
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From (??), Jθpt is derived from Ef{
∂`

∂θ∗
(
∂`

∂θ∗
)

H

} at θ = θpt

Jθpt =
1

σ4
pt

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Jh,h Jh,x Jh,h∗ Jh,x∗ 0
Jx,h Jx,x Jx,h∗ Jx,x∗ 0
Jh∗,h Jh∗,x Jh∗,h∗ Jh∗,x∗ 0
Jx∗,h Jx∗,x Jx∗,h∗ Jx∗,x∗ 0

0 0 0 0 NrN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (30)

where

Jh,h = (Jh∗,h∗)
∗
= X̃H

(σ2
nI + ee

H
)X̃ ,

Jh,x = (Jx,h)
H

= X̃H
(σ2
nI + ee

H
)H̃2,

Jh,h∗ = (Jh∗,h)
H

= X̃Hee⊺X̃ ∗,

Jh,x∗ = (Jx∗,h)
H

= X̃Hee⊺H̃∗
2,

Jh∗,x = (Jx,h∗)
H

= X̃ ⊺e∗eHH̃2,

Jh∗,x∗ = (Jx∗,h∗)
H
= X̃ ⊺

(σ2
nI + e

∗e⊺)H̃∗
2,

Jx,x = (Jx∗,x∗)
∗
= H̃H

2 (σ2
nI + ee

H
)H̃2,

Jx,x∗ = (Jx∗,x)
H

= H̃H
2 ee

⊺H̃∗
2.

Taking the expectation of the second partial derivative of
`(y∣θ) over fy yields Aθpt as

Aθpt =
−1

σ2
pt

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X̃HX̃ X̃HH̃2 0 0 X̃He

H̃H
2 X̃ H̃H

2 H̃2 0 0 H̃H
2 e

0 0 X̃ ⊺X̃ ∗ X̃ ⊺H̃∗
2 X̃ ⊺e∗

0 0 H̃⊺
2X̃ ∗ H̃⊺

2H̃∗
2 H̃⊺

2e
∗

eHX̃ eHH̃2 e⊺X̃ ∗ e⊺H̃∗
2

NrN
σ2
pt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (31)

B. Stochastic GMCRBStoch

Suppose that the unknown transmitted symbols are circular
Gaussian random variables i.i.d. drawn from CN (0, σ2

xINt)
4.

Accordingly, the vector of true unknown parameters is φ =

[h⊺,hH , σ2
x, σ

2
n]

⊺ and the received signal y is a circular
Gaussian variable with zero-mean and covariance C which
is given by C = σ2

xHHH + σ2
nINrN .

Due to the imperfect knowledge of L, the following distribu-
tion function gy∣θ is used instead

g(y∣θ) =
1

πNrN det(R)
exp ( − yHR−1y), (32)

with the misspecified covariance R = σ2
xH̃H̃H + σ2INrN ,

while the zero-mean µ is correctly specified, thanks to
Ef{x} = 0. The parameter of interest now becomes

θ = [h̃⊺, h̃H , σ2
x, σ

2]
⊺
. (33)

We obtain that KL(fy∣∣gy∣θ) has the closed-form expression

KL(fy∣∣gy∣θ) = log (det (RC−1)) + tr{R−1C} − 1. (34)

Unfortunately, minimization (34) w.r.t. θ is not an easy prob-
lem to solve. As mentioned in Section III-A, we can apply the
MLE to estimate the covariance R and θpt.

4For simplicity, we assume that the sources are with equal power, σ2
x,k =

σ2
x, k = 1,2, . . . ,Nt.

The partial derivative of `(y∣θ) = log g(y∣θ) is

∂`

∂θ∗i
= − tr{R−1 ∂R

∂θ∗i
} + yHR−1 ∂R

∂θ∗i
R−1y. (35)

where ∂R
∂h̃∗i

= σ2
xT (h̃)T ( ∂h̃

∂h̃i
)
H

, ∂R
∂h̃i

= ( ∂R
∂h̃∗i

)
∗
, ∂R
∂σ2

x
= H̃H̃H ,

and ∂R
∂σ2 = INrN .

The misspecified FIM Jθ is derived from Ef{
∂`

∂θ∗i

∂`

∂θj
}

Jθ(i, j) = tr{R−1 ∂R

∂θ∗i
R−1CR−1 ∂R

∂θj
R−1C}

+ tr{R−1 ∂R

∂θ∗i
(R−1C − I)} tr{R−1 ∂R

∂θj
(R−1C − I)}.

(36)

Taking Ef{
∂2`

∂θj∂θ∗i
}, we obtain Aθ as follows

Aθ(i, j) = − tr{R
−1 ∂R

∂θj
R−1 ∂R

∂θ∗i
(R−1C − I)} (37)

+ tr{R−1 ∂2R

∂θj∂θ∗i
(R−1C − I)} − tr{R−1 ∂R

∂θ∗i
R−1 ∂R

∂θj
R−1C}.

V. EXAMPLES & DISCUSSIONS

The following simulations correspond to the convolutive
MIMO system: the number of receive antennas Nr = 3, of
transmit antennas Nt = 2, the true channel order Ltr = 5 and
the number of data samples N = 50. Experimental results are
averaged over 10 independent runs.
Fig. 1(a) and Fig. 1(b) plot the trace of GMCRB bounds
(w.r.t. the channel parameters) versus SNR = 10 log10(σ

2
x/σ

2
n)

in the presence of channel order underestimations and over-
estimations, respectively. We can see that the GMCRBStoch

bounds are much lower than the GMCRBDet in both cases,
especially at high SNRs. In the former case, the GMCRBDet

tends to converge towards an error level as SNR increases,
whereas the GMCRBStoch may be inversely proportional to
SNR. Probably because the error mean e = µ − H̃ptx̃pt is
independent of the noise and hence σ2

pt ≈ ∥e∥2
2/(NrN) ≫ σ2

n

at high SNRs, while the GMCRBDet is proportional to
σ2
pt. In the Gaussian stochastic models, we, however, do not

misspecify the mean µ, but the covariance C.
When the channel order is overestimated, the GMCRBDet

and the GMCRBStoch are both proportional to the noise
variance, as shown in Fig. 1(b). In this case, the pseudo-true
channel is estimated as h̃pt = [h⊺tr,0]

⊺ and hence the mean
and covariance are perfectly specified even if the number of
parameters of interest is ill determined. The lesser number of
unknown parameters needed to be estimated, the lower the
performance bound provided by the GMCRB.
Fig. 1(c) shows that the proposed GMCRB bounds are iden-
tical to the classical CRB bounds when L̃ = Ltr. Indeed, the
pseudo-true θpt is equal to the true parameter of interest φ
and f(y∣φ) = g(y∣θ), i.e., the model is correctly specified.
Accordingly, we obtain the error mean e = 0 and the covari-
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Fig. 1: Proposed GMCRB bounds for blind channel estimation.

ance R = C, hence Jθpt = −Aθpt in both GMCRB bounds.
As a result, the GMCRBDet becomes

Jθ =
1

σ2
n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

XHX XHH2 0 0 0
HH

2 X HH
2 H2 0 0 0

0 0 X ⊺XH X ⊺H∗
2 0

0 0 H⊺
2X ∗ H⊺

2H∗
2 0

0 0 0 0 NrN
σ2
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (38)

and GMCRBStoch turns out to be the well-known formula [6]

Jθ(i, j) = tr{C−1 ∂C

∂θ∗i
C−1 ∂C

∂θj
}. (39)

VI. CONCLUSIONS

In this paper, we addressed the problem of analyzing the the-
oretical performance limit of blind system identification tech-
niques when the channel order is misspecified. Two closed-
form expressions of the misspecified CRB were presented
for the class of unbiased blind estimators when unknown
symbols are (i) deterministic (GMCRBDet

) and (ii) stochastic
(GMCRBStoch

). Numerical experiments were provided to
illustrate the validity of the two proposed bounds. Future
works will derive the misspecified CRB bound for semi-blind
system identification.
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