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Abstract—For the last years, a great deal of interest has
been paid to OFDM systems with index modulation (OFDM-
IM) because of its energy efficiency and flexibility in the spectral
domain. However, these systems suffer from carrier frequency
offset that degrades the system performance. In a recent paper,
an attempt was made to evaluate the performance in terms of
bit error rate (BER) when the received signal is disturbed by
an additive white Gaussian noise and a carrier frequency offset
(CFO). Nevertheless, the approximations made in the existing
analysis resulted in inaccurate simulation results. In this paper,
the approximations we consider seem to be well-suited since the
closed form expression of the BER is now consistent with the
simulations results based on a maximum-likelihood detector.

Index Terms—OFDM, index modulation, carrier frequency
offset, BER

I. INTRODUCTION

THE concept of index modulation (IM) has attracted
many researchers’ attention due to the advantages it

offers. In recent years, IM has been employed in various
fields such as mobile communication and RADAR systems
[1], [2]. Thus, in communication systems, IM consists in
transmitting information bits in addition to the constellation
bits in order to activate a subset of transmission entities. The
essential idea of introducing IM in the multicarrier OFDM
systems is to use the information bits to define the indices of
the active subcarriers in order to carry the information bits.
Compared with conventional OFDM systems [3], OFDM-IM
systems achieve energy efficiency and improve average bit
error probability (ABEP). However, OFDM-IM systems are
sensitive to carrier frequency offset (CFO), a mismatch in the
carrier frequencies generated at the transmitter and the receiver
oscillators. The CFO results in inter-carrier interference (ICI),
thereby destroying the orthogonality of the OFDM-IM data.
The estimation of the bit error rate (BER) of the OFDM-
IM system in the presence of CFO is therefore necessary to
evaluate the effect of CFO in OFDM-IM systems.
Different types of work have been recently done on OFDM-
IM systems with CFO. Thus, a procedure to estimate the CFO
in OFDM-IM systems is presented in [4]. In [5], the authors
show the effect of the CFO on OFDM-IM systems. Finally
in [6], an analytical approach is presented to investigate the
performance of the OFDM-IM system in presence of CFO.
The assumptions made by the authors in [6] are the following:

the ICI due to CFO is divided into two parts, namely the intra-
subblock ICI and the inter-subblocks ICI whose variance is
approximated as given in [7]. The channel model used for
the simulations is the extended vehicular A (EVA). Then, the
authors evaluated the BER of OFDM-IM systems in presence
of CFO along with an additive white Gaussian measurement
noise. Due to the approximations made in this analysis, the
closed form expression of the BER that is obtained is not
consistent with the results provided by the simulations.
For this reason, we propose to address this problem again in
this paper. The proposed analytical approach is an extension
of [8] where the BER for OFDM-IM systems for a Rayleigh
fading channel is calculated. This extension has the advantage
of considering all the effects of ICI in order to get the
expression of the BER. More particularly, in the proposed
approach, the ICI is approximated by a Gaussian random
variable [9]. In addition, the channel model used for the
simulations is a Rayleigh fading channel and the maximum-
likelihood detector is employed at the receiver. We are going
to study whether the closed form BER expression obtained is
consistent with the simulation results or not.
The remainder of the paper is organized as follows. Section II
presents the system model of OFDM-IM with CFO, while we
derive the BER expressions for a Rayleigh fading channel in
Section III. In Section IV, the theoretical analysis is validated
by means of simulation results. Conclusions are then given.
To end up this introduction, let us recall some notations useful
in the following. Lower (upper) bold letters denote column
vectors (matrices). Superscripts (.)∗ and (.)T represent the
complex conjugate and transpose operators respectively. b.c is
the floor operation and ||x||2 is the Euclidean norm of vector
x. E(.) is the statistical expectation, Id is the identity matrix
of size d. Re(.) is the real part and P (A) the probability of the
event A and Q(x) = P (X > x) where X is the zero-mean
Gaussian random variable with unit variance.

II. SYSTEM MODEL OF OFDM-IM

Let us consider an OFDM-IM transmission system with N
subcarriers. The latter are divided into nb subblocks with
Nb subcarriers in each subblock, i.e. N = nbNb, where the
subscript (.)b refers to the subblock.
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Fig. 1. Transceiver chain for OFDM-IM system

At the OFDM-IM transmitter, only one subcarrier is ac-
tivated in one subblock. For choosing one active subcarrier
out of Nb subcarriers, m0 = b(log2Nb)c information bits
are required. In addition, the data symbols that are trans-
mitted over the subcarriers belong to a M-ary constellation
i.e. M-QAM. Therefore, m1 = log2M information bits are
required to transmit a symbol belonging to the M-ary con-
stellation, denoted as S, on each active subcarrier. A total
of m0 + m1 information bits are hence transmitted per each
subblock per OFDM symbol. Therefore, the total number of
bits transmitted per OFDM symbol is mt = nb(m0 +m1), as
shown in figure 1.
The symbols carried over the subcarrier in each subblock form
a column vector of size Nb. The βth subblock vector is given
by:

sβ,α = [s((β − 1)Nb), . . . , s(βNb − 1)]
T (1)

where s(k) ∈ {0,S} for k = (β − 1)Nb, ..., βNb − 1 with
β = 1, 2, . . . , nb.
The column vector sβ,α can be rewritten from the data symbol
carried over one subcarrier as follows:

sβ,α =
[
01×α, s ((β − 1)Nb + α) , 01×(Nb−α−1)

]T
(2)

=
[
01×α, s(γ) ,01×(Nb−α−1)

]T
where we have introduced for the sake of simplicity:

γ = (β − 1)Nb + α (3)

γ ∈ 0, 1, . . . , N − 1 indicates the active subcarrier index
whereas α ∈ 0, 1, . . . , Nb − 1 indicates the location of the
active subcarrier in the βth subblock.
The vectors defining all the subblocks are then concatenated
to form the N × 1 OFDM symbol as follows:

s = [sT1,α, . . . , snb,α
T ]T (4)

Given (2), s comprises N −nb zero elements in the proposed
system unlike the classical OFDM.
After modulating the signal s by performing an Inverse
Discrete Fourier Transform (IDFT), the cyclic prefix (CP) is
added. Then, the signal is assumed to propagate through a
Rayleigh fading channel.
At the OFDM-IM receiver, after removing the CP, the
signal is demodulated by using the Fast Fourier Transform
(FFT). Unlike OFDM, the detector used in OFDM-IM system
needs to detect both the index bits and the constellation bits.
Therefore, the decoding in OFDM-IM is performed on the

subblock basis. To this end, one needs to look at the received
βth subblock signal, subject to CFO. It is expressed as:

yβ = p0Hβsβ,α + gβ + wβ (5)

where:
• yβ is a column vector of size Nb given by:

yβ = [Y ((β − 1)Nb), . . . , Y (βNb − 1)]
T (6)

where Y (γ) is the received data symbol on the γth subcarrier.
• The channel is assumed to remain constant over a subblock.
The channel matrix for the βth subblock is hence given by:

Hβ = H((β − 1)Nb)× INb
= HβINb

(7)

with Hβ = H((β − 1)Nb)) the Rayleigh flat fading channel
coefficient for the βth subblock. As there are nb subblocks, the
corresponding nb coefficients are assumed to be independent
and identically distributed (i.i.d.) complex Gaussian with zero
mean and unit variance.
• The ICI vector is defined by:

gβ = [G((β − 1)Nb), . . . , G(βNb − 1)]
T (8)

where G(γ) is the intercarrier interference (ICI) for the γth

subcarrier defined as follows:

G(γ) =

N−1∑
l=0,l 6=γ

pl−γs(l)H(l) (9)

where pl−γ is the ICI coefficient in the frequency domain
given by [10]:

pl−γ =
sin(π(l − γ + ε))

N sin
(
π
N (l − γ + ε)

)e(jπ(N−1
N )(l−γ+ε)) (10)

with ε the normalized CFO. It should be noted that p0 is a
specific case of pl−γ when l = γ.
From equation (9), G(γ) can be approximated as a Gaussian
random variable according to the central limit theorem.
• wβ = [W ((β − 1)Nb), . . . ,W ((βNb − 1)]

T denotes the in-
dependent, additive zero-mean white Gaussian noise (AWGN)
vector with variance N0. The signal-to-noise ratio (SNR) is
then defined by ρ = Es/N0 where Es denotes the average
power of the M-QAM symbol.
Describing the received signal on the γth subcarrier results in:

Y (γ) =


p0s(γ)H(γ) +

∑N−1
l=0,l 6=γ pl−γs(l)H(l) +W (γ)

if γ is active∑N−1
l=0,l 6=γ pl−γs(l)H(l) +W (γ) otherwise

(11)
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With the received signal, the maximum-likelihood (ML) de-
tector estimates the information bits in this paper. More par-
ticularly, for each subblock, the ML detector firstly estimates
the index of the active subcarrier and the constellation symbol
carried over it [11]. This is done by jointly searching over
all possible combinations of the active subcarrier and the
constellation symbol. To this end, the channel and the noise
variance are assumed to be known at the receiver.
In the next section, we propose to obtain a closed form
expression of the BER and compare it with the simulation
results we obtain with the above detector.

III. BER ANALYSIS

The BER is defined as the ratio between the number be of
error bits across all the nb subblocks, i.e. be =

∑nb

β=1 be,β and
the total number mt of transmitted bits:

Pb =
be
mt

=

∑nb

β=1 be,β

mt
=

∑nb

β=1 be,β

nb(log2Nb + log2M)
(12)

The following events contribute to the erroneous estimation of
the transmitted bits at the receiver:
• Event 1: incorrect detection of an active subcarrier index
and incorrect detection of a M-ary symbol,
• Event 2: incorrect detection of an active subcarrier index
and correct detection of a M-ary symbol,
• Event 3: correct detection of an active subcarrier index and
incorrect detection of a M-ary symbol.
To compute Pb, let us focus our attention on be,β . To this
end, the next subsections deal with the number of bit errors
occurred in βth subblock due to event i mentioned above,
denoted as b(i)e,β , with i = 1, 2, 3.

A. Upper bound of the number of bit errors in both index and
constellation domain, b(1)e,β:

Given the transmitted βth subblock sβ,α, let us define s̃β,α̃
as the incorrectly-detected βth subblock for the incorrectly-
detected active subcarrier index α̃. In addition, s̃ (γ̃) denotes
the incorrectly-detected constellation symbol for the subcarrier
γ̃ = (β − 1)Nb + α̃.
Then, let us denote (sα → sα̃) the pairwise error event (PEE)
where the active index of the subcarrier is incorrectly detected.
Moreover, (s(γ) → s̃(γ̃)/α 6= α̃) corresponds to the PEE
when the constellation symbol is incorrectly detected provided
that the active subcarrier index is detected incorrectly.
Given the PEEs and Hβ , the upper bound of the number of bit
errors in both the index domain and the constellation domain
in the βthsubblock is given by the following union bound:

b
(1)
e,β ≤

1

Nb

Nb∑
α=1

Nb∑
α 6=α̃=1

b
(1)
e1,β

(α, α̃, s(γ), s(γ̃))×

P (sα → sα̃)P (s (γ)→ s̃ (γ̃) /α 6= α̃) (13)

where b
(1)
e1,β

(α, α̃, s(γ), s(γ̃)) is the summation of the error
bits in both the index domain and the constellation domain
given that PEEs occur. The number of error bits in the index

domain corresponds to the hamming distance between α and
α̃, denoted by dh(α, α̃), whereas the number of error bits in
the constellation domain is log2M . Therefore,

b
(1)
e1,β

(α, α̃, s(γ), s(γ̃)) = dh(α, α̃) + log2M (14)

In addition, PEE (sα → sα̃) occurs when the euclidean dis-
tance between the received βth subblock and the incorrectly-
detected subblock s̃β,α̃, is less than the euclidean distance be-
tween the received βth subblock and the transmitted subblock
sβ,α. The probability of the PEE can be hence expressed as
follows:

P (sα → sα̃) = P (||yβ−p0Hβ s̃β,α̃||22 < ||yβ−p0Hβsβ,α||22)
(15)

Substituting the expressions of yβ , Hβ , sβ,α and s̃β,α̃ in the
above equation, developing and simplifying lead to:

P (sα → sα̃) = P ( Re {(G(γ̃) +W (γ̃))∗p0Hβ s̃(γ̃) (16)

− (G(γ) +W (γ))∗p0Hβs(γ)} > |p0|2|Hβ |2Es)

Using the Q function defined at the end of the introduction,
the above result can be rewritten this way:

P (sα → sα̃) = Q (R) (17)

where:

R =

√
2|p0|2|Hβ |2Es

σ2
α + σ2

α̃ + σαα̃ + σα̃α + 2N0
(18)

where σ2
α and σ2

α̃ are the ICI variances for subcarriers α and
α̃ respectively. σαα̃ is the covariance between the ICI for
subcarriers α and α̃ whereas σα̃α is the covariance between
the ICI for subcarriers α̃ and α.
Given (17) and (18), the probability that an index is detected
incorrectly increases with the ICI variance and the ICI co-
variance, but decreases with the energy of the M-ary symbol.
It should be noted that if there is no CFO, then there will be
no terms related to the covariance and the variance of the ICI.
Let us now express these variance and covariance so that R
can be fully defined:
As s(α) is zero or a M-ary symbol, E[|s(α)|2] = Es

Nb
. Com-

bining this result and (9), the ICI variance of αth subcarrier
in βth subblock σ2

α, can be calculated as follows:

σ2
α = E

[
|G(γ)|2

]
=

N−1∑
l=0,l 6=γ

|pl−γ |2
Es
Nb

(19)

Since the ICI of the subcarriers α and α̃ are not independent,
the covariance between them is given by:

σαα̃ = E[G(γ)G(γ̃)∗] =
Es
Nb

N−1∑
l=0,l 6=γ 6=γ̃

pl−γp
∗
l−γ̃ (20)

Finally, the probability of the PEE (s(γ)→ s̃(γ̃)/α 6= α̃)
depends on the detected active subcarrier index because the
transmitted symbol s(γ) is estimated from the data symbol
carried over the detected active subcarrier index α̃, which is a
non information-carrying subcarrier. Therefore, the probability
of the above PEE is 1

2 .
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Combining this result with (14), (17) (18) and (13) leads to
the following inequality:

b
(1)
e,β ≤

1

2Nb

Nb∑
α=1

Nb∑
α 6=α̃=1

Q (R) (dh(α, α̃) + log2M) (21)

B. Upper bound of the number of bit errors only in the index
domain b(2)e,β:

From the above analysis, the probability that there is no
error in the constellation domain provided the active subcarrier
index is detected incorrectly is 1

2 . The number of bit errors
only in the index domain in the βth subblock hence satisfies:

b
(2)
e,β ≤

1

Nb

Nb∑
α=1

Nb∑
α6=α̃=1

1

2
Q (R) dh(α, α̃) (22)

C. Upper bound of the number of bit errors only in the
constellation domain b(3)e,β:

Given the transmitted βth subblock sβ,α, let us define s̃β,α
as the incorrectly-detected βth subblock for the incorrectly-
detected constellation symbol s̃(γ).
Let (s(γ)→ s̃(γ)/α = α̃) be a PEE that s(γ) is incorrectly
detected as s̃(γ) provided the active subcarrier index α is
detected correctly.
The probability of the PEE (s(γ)→ s̃(γ)/α = α̃) is the same
as the bit error probability of the M-QAM symbol over AWGN
channel if there is no ICI component. The presence of ICI
leads to the probability of PEE as follows:

P (s(γ)→ s̃(γ)/α = α̃)

=
∑
i

AiQ

(√
ai|p0|2|H(γ)|2Es

σ2
α +N0

)
log2M (23)

where the values of i, Ai and ai can be found in [12]. For ex-
ample, when BPSK constellation is used, (i, Ai, ai) =(1,1,2).
The probability that the active subcarrier index is detected
correctly is upper bounded by considering the joint probability
of all the PEEs of the incorrect detection of the active
subcarrier index.
With the help of Union bound, the upper bound of the number
of bit errors only in the constellation domain in βth subblock,
is given as

b
(3)
e,β ≤

Nb∑
α=1

1−
Nb∑

α6=α̃=1

Q (R)


· 1

NbM

∑
s(γ)∈S

∑
s̃(γ)∈S

P (s(γ)→ s̃(γ)/α = α̃) log2M (24)

D. Closed form expression of the upper bound of the BER

Inserting equations (21), (22) and (24) into (12), the general-
ized expression for the unconditional BER of the OFDM-IM
with CFO can be finally obtained in the closed-form as in
equation (25). The upper bound of equation (25) is the sum
of the upper bounds of b(1)e,β , b(2)e,β and b(3)e,β . To understand the

contribution of each upper bound value in equation (25), each
term is numerically evaluated. Based on the evaluation, the
value of the upper bound for b(3)e,β is less than the upper bounds
for b(1)e,β and b(2)e,β . In few simulation scenarios, the upper bound
for b(3)e,β is negligible than the other two upper bound values,
whereas in other scenarios, this term contributes a significant
value towards the upper bound of equation (25). However, this
term can be ignored for approximate results.
Equation (25) can give a few insights about how the system
performance is dependent on the system parameters:
•When the normalized CFO value increases, the attenuation in
the desired signal and the ICI increases, resulting in degrading
the system performance.
• When keeping the total number of subcarriers constant
while increasing the number of subcarriers in a subblock,
the number of pairwise error events increases, degrading the
system performance.
• When keeping the number of active subcarriers constant
while increasing the number of subcarriers in a subblock, ICI
decreases. Hence, as the number of subcarriers in a subblock
increases, the degradation in the system performance due to
CFO decreases.
In the next section, we verify the consistency of the closed-
form BER expression with the simulation results.

IV. NUMERICAL EVALUATIONS AND
SIMULATIONS

In this section, a simulation study was carried out to evaluate
the accuracy of the proposed theoretical analysis for differ-
ent CFO values. We also compare the proposed theoretical
analysis with the one presented in [6] i.e., the theoretical
analysis for OFDM-IM with CFO. The simulated BER plots
are generated using 105 bits. The theoretical plots are gener-
ated by averaging the conditioned BER expressions using the
Monte-Carlo method, i.e. the conditioned BER expressions
are averaged over a certain number of channel realizations.
500 independent Rayleigh fading channel realizations are used
to generate the theoretical BER plot. All the simulations
are carried out using the following parameters. N = 1024,
(Nb, nb) = (2, 512), (4, 256), the modulation scheme used
is BPSK, the subcarrier separation, ∆f = 15kHz and the
normalized CFO, ε = 0.01 and 0.05.
Figures 2 and 3 depict the average BER of the OFDM-
IM system with the normalized CFO of 0.01 and 0.05 for
(Nb, nb) = (2, 512) and (Nb, nb) = (4, 256) respectively. In
both figures, when ε increases from 0.01 to 0.05, the BER also
increases due to increase in ICI. For ε = 0.05, an error floor
occurs at higher SNRs because BER is mainly due to ICI at
higher SNRs.
In figure 2, when the SNR increases, the proposed theoretical
analysis for ε = 0.01 predicts the simulated BER results.
For all the CFO values, the performance of the proposed
theoretical analysis is better than the one proposed in [6]
because in [6], the covariance of ICI terms is not used. Also
weaker approximations are used in the calculation of the BER
expressions.
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Pb ≤
1

mtNb

nb∑
β=1

Nb∑
α=1

Nb∑
α6=α̃=1

1

2
Q (R) (dh(α, α̃) + log2M) +

1

mtNb

nb∑
β=1

Nb∑
α=1

Nb∑
α 6=α̃=1

1

2
Q (R) dh(α, α̃)

+
(M − 1)

mtNb

nb∑
β=1

Nb∑
α=1

1−
Nb∑

α 6=α̃=1

Q (R)

∑
i

AiQ

(√
ai|p0|2|H(γ)|2Es

σ2
α +N0

)
log2M (25)
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Fig. 2. BER performance of the OFDM-IM system for (Nb, nb) = (2, 512)
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Fig. 3. BER performance of the OFDM-IM system for (Nb, nb) = (4, 256)

In figure 3, the proposed theoretical analysis for ε = 0.01
predicts the simulated BER results for all the SNR values.
For ε = 0.05, at lower SNR, both theoretical analyses predict
the simulated BER results. However, at higher SNRs, both
theoretical analyses deviate from the simulated BER results.
The proposed theoretical analysis performs better for all CFO
values than the one presented in [6] due to the approximations
used in calculating the BER expression in [6]. Figures 2 and

3 show a deviation in the proposed theoretical results for ε =
0.05 from the simulated results at higher SNRs because of the
Gaussian approximation of ICI.

V. CONCLUSIONS AND PERSPECTIVES

We propose an approach to derive the BER expression for
the OFDM-IM system impaired by CFO. Numerical evalua-
tions of the BER expression match the simulation results better
than the existing BER expressions. As a perspective, we plan
to take into account other system impairments like sampling
frequency offset. ACKNOWLEDGMENT
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