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Abstract—In order to aid survey engineers identify Partial
Discharge (PD) types during their asset diagnostics, we develop
an image-based system for PD signal classification and Out-Of-
Distribution (OOD) rejection. First, the PD signal is converted
to a Phase-Resolved PD (PRPD) image. Then, the image is
passed to the system which exploits a Capsule Network in
an auto-encoder framework, where the encoder output is used
for PD classification and the decoder output is used in the
OOD decision. The latter is the main contribution of this work
which combines the decoder part with a reconstruction metric
evaluating the difference between the original and reconstructed
image. A threshold for OOD decision is introduced based on
the distribution of reconstruction values from the training data.
Most importantly, the OOD data is not exposed to the model
during training. Results demonstrate high performance in both
PD types classification and OOD detection tasks using synthetic
and real data.

I. INTRODUCTION

Early Partial Discharge (PD) detection in High-Voltage
(HV) rotating machines is essential to maintain healthy ma-
chinery and consistent operation. On-line PD testing is one
of the tools used in condition monitoring to prevent high
costs associated with equipment failure and repair. PD is an
electrical discharge that occurs due to insulation breakdown
or deterioration of, for example, stator windings in generators.
This is generally caused by various factors including thermal
or electrical stress, improper installation and insulation aging
[1]. The collected PD measurement can be represented in two
main forms: time-resolved and Phase-Resolved PD (PRPD).
The latter is widely used in PD diagnosis as it provides in-
formation on the PD location and illustrates different patterns
for PD types [2]. Survey engineers rely on the analysis and
visualisation of PRPD patterns to identify PD presence in
generators and its type. However, this process is manual and
not practical for continuous diagnostic. Recent advances in
Machine Learning (ML) combined with big data collection
permit the move towards automated diagnosis that aids the
engineers in their survey and provide more information to
power station owners on the fault allowing precautionary
measures to be taken.

For a ML model to be successful when deployed in real-
world problems, the model is required to be able to distinguish

data that is similar to the training data from anomalous
or significantly different data. This is known as Out-Of-
Distribution (OOD) detection [3]. A successful OOD rejection
avoids classifying OOD data into the in-distribution classes
leading to false alarms.

In this work we propose a model that satisfies the following:
1) Identification and classification of PD types in rotating
machines using PRPD image as input to the Capsule Net-
work (CapsNet). 2) Rejection of OOD data to prevent false
classification of data that is not similar to the PD types used
in training the CapsNet model.

CapsNet is an alternative to traditional Convolutional Neural
Networks (CNNs) designed to mimic the biological neurons
functionality, and has been demonstrated to perform well in
classification problems [4]. The design is based on human
vision and its capability to ignore irrelevant details [5]. This
makes CapsNet a suitable choice for this work, since we
attempt to imitate the engineer’s visual analysis of PRPD
images. CapsNet provides the ability to communicate through
layers while holding information about spatial relationships
between features. This is achieved by replacing the pooling
functions by a routing algorithm [6]. We exploit the image
reconstruction part of the CapsNet model to form our proposed
OOD detection method. The reconstruction part is another
motivation to choosing CapsNet over the popular CNN based
models for image classification tasks such as VGGNet [7],
ResNet [8], MobileNet [9] etc. Data detected as OOD by
our system can be examined by an experienced engineer and
recycled in the model training if identified by the engineers as
a new PD type.

PRPD data has been utilised in two main ways with ML
classification, statistical feature extraction from the data or
image-based feature extraction from the PRPD image. The
common statistical measures include mean, variance, skew-
ness, kurtosis and cross-correlation [10] [11]. Image based
features extraction tools have been applied to PRPD image
such as texture and fractal analysis [12], wavelet image
decomposition [13]. Feature extraction is very useful as it
reduces data dimension and extracts the relevant information
at the same time [14], however this requires knowledge of the
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Fig. 1. The proposed classification approach.

relevant feature extraction method to employ. Deep Learning
Networks have the ability to extract relevant features through
the layers during the learning [15]. Various deep learning
architectures were exploited in PRPD classification including
Deep Neural Networks [16], Recurrent Neural Networks [17],
Auto-Encoders (AE), Deep Belief Networks [18], [19] and a
combination of CNN and AE [20].

To the best of our knowledge, CapsNets have not been
applied to PRPD images for PD types classification in ro-
tating machines. Furthermore, the proposed OOD detection
algorithm combined with CapsNet AE framework has not been
utilised in the literature.

The remainder of this paper is organised as follows. Section
II defines PRPD patterns along with the proposed frame-
work and the algorithms involved in the analysis. Section
III describes the synthetic and real-world data used in train-
ing/testing the model. Results of the proposed method are also
presented in this section. Section IV concludes this work along
with future work.

II. PRPD PATTERN RECOGNITION

The proposed approach for the classification of PD types
in HV rotating machines is summarised in Fig. 1. First, the
PRPD data is represented in a density scatter plot, which is
considered as an image. The latter is converted to grey-scale
and down-sampled at a lower resolution (28×28) for memory
and computation purposes. The prepared image is passed to
the CapsNet model for classification and image reconstruction
by taking the class capsules output to a decoder network
consisting of three fully connected (Dense) layers with ReLU
activation. The Structural Similarity Index Measure (SSIM)
is calculated between the original and reconstructed images
and thresholded for OOD decision. In this section we denote

scalars by lower or upper case, vectors by bold lower case and
matrices by bold upper case.

A. Phase-Resolved Partial Discharge (PRPD) Pattern

A PRPD plot is a visual representation of PD activity
with respect to the AC power cycle where the magnitude is
distributed across the 360◦ phase. The PD pulses are acquired
based on the AC signal’s phase angle (φ), charge magnitude
(q) and the number of PD pulses (n) over a predetermined
time duration [21]. Fig. 3 illustrates two examples of PD types
occurring in rotating machines.

B. Capsule Network (CapsNet)

The main building blocks of CapsNet in [5] are convolution,
primary capsules, routing process, class capsules and the
decoder. These are described in detail as follows.

1) Convolution: Convolutional layers are used to extract
feature maps from the input. Equation (1) represents the
convolutional operation, where X is the input, the PRPD
image in this work. K is the kernel filter with size k × k,
n = 0, 1, ....., N − 1 and m = 0, 1, ....., L − 1 with L and
N being the length and width of the image respectively. C
represents the number of channels in the input. A bias B
is then added and passed to an activation function f

(
·
)

to
produce the layer’s final output.

(X ∗K)m,n = f
( k−1∑

i=0

k−1∑
j=0

C∑
h=1

X(i+m, j + n, h)K(i, j, h) +B
)

(1)

The CapsNet architecture uses convolution in the first
convolutional layer and in convolution capsules.
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2) Primary Caps: we refer to sa as the capsule in the
present layer and sb as the capsule in the next layer. The latter
is obtained using (2) by calculating the weighted sum of all
prediction vectors ûb|a and a coupling co-efficient cab between
a and b. The prediction vectors are calculated using the capsule
output in the previous layer ua and a transformation matrix
Wab, as shown in (3).

sb =
∑
a

cabûb|a (2)

ûb|a = Wabua (3)

The coupling coefficients sum to 1 and are refined by the
routing algorithm which is ‘dynamic routing’ [5] in this paper.
They are obtained by a Softmax of the logits gab, equivalent
to the log prior probabilities that capsule a should be coupled
to capsule b, this relationship is illustrated in (4) where d is
the class capsule. The number of coefficients is equal to the
number of the current layer Capsules.

cab =
exp (gab)∑
d exp (gad)

(4)

The original coupling coefficients are updated in every itera-
tion by measuring the agreement between the current capsule
b output vb and the prediction vector ûb|a from capsule a.
This agreement is the scalar product of vb and ûb|a, which is
added to the logits gab, outlined in (5).

gab ←− gab + ûb|a · vb (5)

Capsules attempt to represent the probability of an entity’s
presence in the input through the magnitude of an output
vector in the range 0 → 1. A vector with a magnitude close
to 1 correspond to high probability of an entity’s presence
in the input, and therefore sb agrees with sa. In contrast,
those capsules disagree when a vector with a value close to 0
correspond to an entity’s absence in the input. This criterion
is satisfied by a ‘Squash’ operation on sb, to obtain the output
vector vb of capsule b as illustrated in (6). This is performed
for all capsules in CapsNet.

vb =
‖sb‖2

1 + ‖sb‖2
sb
‖sb‖

(6)

3) Dynamic Routing: Tying this section to II-B2, dynamic
routing is the algorithm during which the transformation
matrix weights Wab, coupling coefficients Cab, logits are
trained/updated and the agreement between capsules occurs.
The overall algorithm for dynamic routing is presented in
procedure 1 consisting of an inner iteration (3-7) in the main
iteration (2-end).

4) CapsNet loss and Reconstruction: two loss functions are
implemented in this paper. The first one is the margin loss used
in classification. The second one is the Mean Squared Error

Procedure 1 Dynamic routing
1: procedure ROUTING(ûb|a, r, l)
2: for all capsules a in layer l and capsule b in layer
l + 1 : gab ← 0

3: for r iterations do
4: for all capsule a in layer l: ca ← softmax(ga)
5: for all capsule b in layer (l+1): sb ←

∑
a cabûb|a

6: for all capsule b in layer (l+1): vb ← squash(sb)
7: for all capsule a in layer l and capsule b in layer

(l + 1): gab ← gab + ûb|a.vb
return vb

(MSE) loss used in the image reconstruction part. The margin
loss is computed as:

L =

D∑
d=1

td max(0, p+ − ‖vd‖)2

+ λ(1− td)max(0, ‖vd‖ − p−)2 (7)

where D is the total number of classes, λ is a constant used
for numerical stability and is set to λ = 0.5 along with the
parameters p+ = 0.9 and p− = 0.1 set as recommended in [5]
in order to prevent the vector length from reaching the max or
collapsing. The λ value is used as a down-weighting in order
to avoid the initial learning from shrinking the lengths of the
class capsules vectors. The true label td is equal to 1 when
an entity of class d is present and it is equal to 0 otherwise.

The MSE reconstruction loss [22] is implemented to fine
tune the encoding of the input class originating from the
correct class capsule. The output of the latter is passed to
the decoder part. The MSE is calculated between the original
input image X to the CapsNet and its reconstructed image I
by the network as:

MSE =
1

NL

N∑
i=0

L∑
j=0

[
X(i, j)− I(i, j)

]2
(8)

The total CapsNet loss is obtained by (9), with the recon-
struction loss being scaled down by α = 0.0005 in order to
reduce its influence over the margin loss.

Lt = L+ αMSE (9)

C. Out-of-Distribution (OOD) Detection

The OOD decision algorithm is created after successfully
training the model and is deployed for the testing stage. The
trained model is used to produce reconstructed images of the
training data. Then, reconstruction metric values are calculated
between the original and reconstructed images. This value is
used to classify the data as in or out of distribution based on a
threshold learned from the training stage. Example histograms
of the metrics are shown in Fig. 2. If the test instance’s metric
is outside the threshold, the instance is considered as OOD
and Unknown class is returned, otherwise the predicted class
from the CapsNet’s classifier is returned. It is observed in
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(a) (b)

(c)

Fig. 2. Histogram of the reconstruction metrics (a) MAE (b) MSE (c) SSIM.

Fig. 3 that the reconstruction for in-distribution PRPD data is
similar to the original input image, however the reconstructed
OOD data images are closer to the in-distribution images than
the original OOD images. This occurs because the CapsNet
maps the learned features from the training data to the unseen
test data. We investigate three reconstruction metrics employed
in image processing including MSE, Mean Absolute Error
(MAE) and SSIM. It is observed from Fig. 2 that SSIM
provides the best separation between the in-distribution and
OOD values. We introduce a threshold for the OOD decision
which is the 5th percentile of the in-distribution SSIM values
and the 95th percentile of the in-distribution MAE and MSE
values. MSE was previously defined in (8), the MAE [23] is
obtained by:

MAE =
1

NL

N∑
i=0

L∑
j=0

∣∣∣X(i, j)− I(i, j)
∣∣∣ (10)

Since MAE and MSE attempt to identify the error, a low
value is achieved for high similarity between two images and a
higher value is obtained otherwise. SSIM identifies the change
in the structural information of the image, and quantifies the
quality of the second image with respect to the original one
[24]. The SSIM is defined as:

SSIM =
(2µXµI + z1)(2σXI+z2)

(µ2
X + µ2

I + z1)(σ2
X + σ2

I + z2)
(11)

where z1 = (0.01S)2 and z2 = (0.03S)2 are two default
stability variables for the division with weak denominator,
with S being the dynamic range of the 255 pixel values
for 8-bit grayscale images (2#bits per pixel − 1). µX and µI

represent the mean intensity of the original and reconstructed
image respectively, σX and σI are their standard deviation
respectively. The SSIM score lies between 0 and 1, where
1 is obtained for a perfect match between the original and
reconstructed images.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Reconstructed PRPD images by CapsNet (a) Surface PD in slot
original (b) Surface PD in slot reconstructed (c) PD adjacent to copper
original (d) PD adjacent to copper reconstructed (e) OOD original (f) OOD
reconstructed.

III. EXPERIMENT

The CapsNet network was trained on synthetic data to clas-
sify seven PD types over 100 epochs with Adam optimization
algorithm implemented using a scheduler starting at learning
rate of 0.001 which is reduced when a plateau is reached after
a patience of 15 epochs without improvement in the loss. The
minimum learning rate that can be used is bound to 1e−6.

A. Synthetic Data-set

The artificial PRPD data was measured in a laboratory
set-up of 13.8KV stator bar with stressed line to ground
insulation at 8KV. The set-up produced void discharge type
of PD which was modified to create the remaining PD types
as follows: The pattern’s magnitude is varied to narrow and
widen the distribution, the phase is shifted, and the probability
of pulses is modified which controls the number of pulses.
These modifications can be made to each half power cycle and
result in the seven PD types. Each PD type is then modified by
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TABLE I
CLASSIFICATION RESULTS OF CAPSNET WITH DIFFERENT

RECONSTRUCTION MEASURES FOR OOD DETECTION.

Method Overall acc. % In-dist acc. % OOD acc. %
CapsNet-MAE 96.61 93.23 100
CapsNet-MSE 96.67 93.34 100
CapsNet-SSIM 97 94 100

a random 1dB magnitude variance with a Gaussian distribution
and a random phase variance of ±2◦ with uniform distribution.
300 samples per PD type were created providing a total of
2100 samples which were shuffled and split into a ratio of
70/30 to train/test the CapsNet. The 7 PD types include: void,
surface, end-winding discharge, PD adjacent to copper, surface
PD in slot and Phase to phase A and Phase to phase B.
The training set is used in a 10-fold cross validation and the
classification test results are presented for in-distribution, OOD
and overall average accuracy.

B. Real-world Data-set

PD measurement was performed on 660MW, 24kV, hydro-
gen and water cooled generator made by Parsons in 1974. The
obtained 1349 PRPD patterns were analysed by test engineers
and none of the seven PD types were identified. Instead,
background noise, floating potential, slot discharges and their
combinations were observed in the PD data. This is an ideal
scenario to evaluate the OOD performance of the proposed
method as all the aforementioned observations are different
from the classes used to train the model. Note that this data
was not used in training the model.

C. Results

Classification results are presented in Table I with a com-
parison of the different reconstruction metrics. This problem
can be seen as a binary classification between in-distribution
and OOD data. It is observed that SSIM metric achieved better
performance in each category and in the overall performance.
The multi-classification results of the 7 PD types achieved
100% accuracy.

IV. CONCLUSION

This work achieved a successful OOD detection and PD
types classification in rotating machines using CapsNet where
OOD detection method is proposed by using the SSIM metric
of the original and the reconstructed PRPD images without
relying on OOD data during training. The real-world data in
this work was limited to OOD data, however further data
containing both in-ditribution and OOD instances will be
collected and used to test the OODCN model in the future.
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