
Robust Deep Residual Shrinkage Networks for
Online Fault Classification

Alireza Salimy∗, Imene Mitiche∗, Philip Boreham†
Alan Nesbitt∗ and Gordon Morison∗∗ School of Computing, Engineering and Built Environment

Glasgow Caledonian University
Glasgow, United Kingdom

† Innovation Centre for Online Systems
Doble Engineering

Bere Regis, United Kingdom

Abstract—In this paper, a novel approach to improve signal
classification in the presence of noise is presented. Using Stock-
well transforms for feature extraction on time-series electromag-
netic interference data and deep residual neural networks, con-
taining thresholding functions (shrinkage functions) as non-linear
transformation layers for classification. Thresholding functions
are commonly used for signal de-noising. Setting thresholds for
optimal functionality is often complex and requires expertise,
this paper will investigate learned methods of threshold selection
along with alternate thresholding functions. Using deep learning
methods to select thresholds reduces the dependency on experts
for the use of thresholding functions for de-noising and allows for
adaptation to alternate noise environments. This paper proposed
the novel application of two different threshold functions and
introduces an architecture update for learning the threshold
parameters for classification in the presence of noise. Several
experiments are carried out to compare the performance of the
systems with varying signal-to-noise ratio data sets taken from
real-world operational high-voltage assets. Experimental results
show that the proposed approaches using both Garrote and
Firm thresholding achieved improved performance increases over
utilizing soft thresholding within deep shrinkage networks in low
signal-to-noise ratios.

I. INTRODUCTION

High-voltage (HV) and mechanical equipment used in
power generation are prone to faults, if incurred these faults
can lead to major losses such as; health and safety hazards,
fines, legal issues, and possibly large-scale power outages
[1]. To avoid such losses, condition monitoring is carried
out on crucial HV assets. Condition monitoring allows early
detection of arising faults and quick correction, currently
condition monitoring is carried out manually by experts [2].
They observe electromagnetic interference (EMI) data in many
forms to classify the faults present. The EMI method is
commonly used to detect partial-discharge (PD) in HV systems
[3]. The dependency on experts to carry out this essential
condition monitoring has many downfalls. If experts are not
available condition monitoring cannot be carried out and faults
could go unnoticed, allowing them to become malfunctions.
If the condition monitoring of HV assets is automated it can
be used in a continuous nature preventing faults from going
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unnoticed, it also provides the ability for condition monitoring
to be carried out by concerned parties without the need for
expertise, reducing the dependency on experts. This research
will observe several proposed autonomous fault classification
systems, focusing on thresholding functions used within the
systems and their performance in the presence of various levels
of noise. Thresholding or Shrinkage functions are implemented
in the field of Signal Processing to alter values in ranges
corresponding to noise, thresholds are often selected by signal
processing experts with respect to the signal data they observe.
Previous work in the condition monitoring of mechanical
power generation assets using vibration signals implemented
Soft thresholding with learned thresholds [4], this study will
build upon this work using the Soft thresholding method along
with several others to observe which thresholding method is
beneficial in the case of EMI fault classification. Learned
thresholds implemented in this research allow for thresholding
functions to be used without the expert insight into the data at
hand. This research will produce systems to ingest data in the
form of time-frequency decomposition matrices and produce
a fault classification of the input data. The time-frequency
decomposition used in this study is the Stockwell (S) transform
proposed in [5]. The machine learning (ML) system used in the
study to produce fault classifications from the time-frequency
decomposition’s of signals is based upon the residual neural
network (ResNet) an architecture built for image recognition
[6], with residual shrinkage blocks, proposed in [4], imple-
mented to carry out thresholding with learned threshold values.
The data-set used in this study consisted of EMI fault signals
of 7 various classes, collected from real-world operational HV
assets and 4 shrinkage functions were observed in the study
with 3 containing a single learned thresholding parameter and
1 containing two learned thresholding parameters.

This paper will outline the methods used in this research in
the following structure: Section II- Introduces the S transform
and explores its derivation, Section III- Explores the various
thresholding functions used in the experiments throughout
this research and outlines their learned parameters, Section
IV- This section will introduce the various models used
to implement the thresholding functions and their learned
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parameters, Section V- Explaining the experimental procedure
followed through the research, outlining the data used and
the results obtained, Section VI- Discusses and concludes the
research, providing some insight into future work.

II. STOCKWELL TRANSFORM

The S transform is proposed to build upon the continuous
wavelet transform (CWT) proposed in [7], the S transform
is implemented to produce a time-frequency decomposition
retaining frequency dependant resolution from the original
time-series data. These characteristics of the S transform prove
to be desirable in regards to EMI data taken from various real-
world assets, due to the non-stationary characteristics of the
data.

A. Derivation

The S transform used in this paper is derived by finding the
”phase correction” of the CWT as recommended by [5]. First,
the CWT of a signal h(t) is found using (1).

W (τ, d) =

∫ ∞
−∞

h(t)u(t− τ, d)dt (1)

Where W (τ, d) the CWT of h(t), is a two-dimensional func-
tion in the time-frequency plane (τ, d) with d representing
the dilation term controlling the resolution by determining
the width of the wavelet and τ representing the height of the
wavelet and u(t, d) representing a scaled replica of the mother
wavelet. A constraint is placed on u(t, d) requiring it to have
zero mean to produce a CWT. The mother wavelet is defined
in (2).

u(t, f) =
|f |√
2π
e−

t2f2

2 e−j2πft (2)

W (τ, d) with specific mother wavelet is then used to find the S
transform of the function h(t) by multiplication with the phase
factor ej2πfτ , with f representing frequency, this relationship
is outlined in (3).

S(τ, f) = ej2πfτW (τ, d) (3)

Written explicitly the S transform of h(t) is:

S(τ, f) =

∫ ∞
−∞

h(t)
|f |√
2π
e−

t2f2

2 e−j2πftdt (4)

If the S transform is shown to be a representation of the local
spectrum, averaging the local spectra over time produces the
Fourier spectrum. This is shown in (5), where H(f) represents
the Fourier spectrum of h(t).∫ ∞

−∞
S(τ, f)dτ = H(f) (5)

Thus showing that the S transform can be written as operations
on the Fourier spectrum, when f 6= 0:

S(τ, f) =

∫ ∞
−∞

H(η + f)e
− 2π2η2

f2 ej2πητdη (6)

B. Discrete Stockwell Transform
The discrete S transform is found by taking the discrete

analog of (6). Letting h[n] denote a discrete time-series and
H[k] the discrete Fourier transform of this signal, found by
(7).

H[k] =

N−1∑
n=0

h[n]e−
j2πnk
N (7)

Using (6) and (7), the S transform of a discrete time-series
signal can be found, outlined in (8), when n 6= 0.

S[ρ, n] =

N−1∑
m=0

H[m+ n]e−
2π2m2

n2 e
j2πmρ
N (8)

Where ρ = m = n = 0, 1, ..., N − 1, (8) is the premise of
the S transforms used in the research however, in the case of
n = 0 the S transform is found by (9). Further processing
is carried out on the produced transformations to convert the
imaginary product of (8) to a modulus representation by taking
the absolute value of the imaginary product.

S[ρ, 0] =
1

N

N−1∑
m=0

h[m] (9)

III. THRESHOLDING METHODS

Thresholding functions are used for signal de-noising, as
observed in [8] [9]. Thresholding is a process that observes
values within given ranges and alters them to determined
values, for example in Soft thresholding proposed by [10],
values close to zero i.e. within the given thresholds are deemed
unimportant and assigned zero, values deemed not close
enough to zero i.e. outwith the thresholds given are given non-
zero values. The thresholds determining values to be altered
or negated are often chosen by Signal Processing experts,
creating artificial filters to denoise signals. Deep learning
allows thresholds to be chosen through gradient descent, this
allows for filters to be produced relevant to the data being
observed. Providing an optimised filter intuitively should lead
to systems with greater confidence in classification and give
systems the upper hand in classifying data from high noise
environments.

The experiments carried out in this research will observe
various methods of thresholding; Soft thresholding and Hard
thresholding proposed by [10], Firm thresholding introduced
by [11] and Garrote thresholding from [12]. All of the
thresholds required for the alternative forms of thresholding
functions will be learned using deep learning. Graphical repre-
sentations of all thresholding methods implemented are found
in Fig. 1.

A. Soft Thresholding
The Soft thresholding function is outlined in (10), values

within given thresholds are set to zero, and values outwith
this range are converted to their original and the threshold
value γ is subtracted from them.

δ(w) =

{
(|w| − γ) · sgn(w), |w| ≥ γ
0, |w| < γ

(10)
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Fig. 1. Graphical representation of thresholding methods (a) - Soft threshold-
ing, (b) - Hard thresholding, (c) - Firm thresholding, (d) - Garrote thresholding.

B. Hard Thresholding

Hard thresholding shown in (11), assigns values within a
given threshold to zero and original values are retained if the
value is outwith the threshold γ range.

δ(w) =

{
w, |w| ≥ γ
0, |w| < γ

(11)

C. Firm Thresholding

Firm thresholding is the only thresholding method in this
study to contain two thresholding parameters, shown in (12), as
γ and λ. Values within a given threshold are set to zero much
like the previously mentioned thresholding methods, although
values are altered depending on their location in respect to the
thresholds.

δ(w) =


0, |w| ≤ γ
λ(|w|−γ)
λ−γ · sgn(w), γ ≤ |w| ≤ λ

w, |w| ≥ λ
(12)

D. Garrote Thresholding

Garrote thresholding was originally introduced to overcome
the downfalls of Soft and Hard thresholding, similar to these
methods, Garrote assigns values below a given threshold to
zero. However, the major difference in Garrote thresholding
arises from the non-linear assignment of values outwith the
thresholds as observed in (13).

δ(w) =

{
0, |w| < γ

w − γ2

w , |w| ≥ γ
(13)

Fig. 2. Overall deep residual shrinkage network.

IV. MODEL ARCHITECTURE

The models used in the experiments throughout this paper
are based on the channel-wise deep residual shrinkage net-
work (DRSN) proposed in [4], implementing a deep ResNet
architecture with residual shrinkage building units (RSBU).
ResNets, developed in [6], are a variation of the standard
convolutional neural network (CNN) and have become very
popular in tackling image classification problems and have
been found to produce state-of-the-art results in this field. The
main variation of ResNets from standard CNN’s are identity
skip connections, they are implemented to avoid the exploding
or vanishing gradient problem, in turn reducing training error
and loss.

The contributions in this paper build upon the DRSN archi-
tecture recommended by [4], by introducing further learned
thresholding functions and increasing the size of the architec-
ture, by adding to the RSBU, to learn these additional thresh-
olds and implementing alternative methods of thresholding to
observe the results they obtain. The overall DRSN architecture
used in this study can be found in Fig. 2.

The work in this research deploys the use of two alternate
RSBUs; RSBU-1 representing the architecture for learning
a single threshold parameter and RSBU-2 representing the
architecture for learning two threshold parameters. RSBUs are
stacked in the overall architecture to gradually reduce noise-
related features.

A. RSBU-1

The RSBU-1 architecture, shown in Fig. 3 is designed to
apply an individual threshold to each channel in the feature
map, this architecture is based on finding a single threshold-
ing parameter. It can be seen that the threshold value γ is
calculated by following several steps; first, the feature map is
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Fig. 3. Residual shrinkage building unit-1 architecture.

reduced to a 1-D vector using global-average-pooling (GAP)
and then taking the absolute value of this result. This 1-D
vector is then propagated to a two-layer fully connected (FC)
network, the output of this FC network αc is scaled to the
range (0, 1) using (14) portrayed as the Sigmoid layer in Fig.
3. Where z(c) represents the feature of the cth neuron and
α(c) represents the cth scaling parameter.

α(c) =
1

1 + e−z(c)
(14)

α(c) is then used to calculate the threshold of the cth channel
of the feature map γ(c), using (15), with h, w and c corre-
sponding to the indexes of height, width and channels of the
feature map w.

γ(c) = α(c) · E
(h,w)

[w(h,w, c)] (15)

The calculated threshold value for all channels γ is then used
in the relevant thresholding method to produce a feature map
that has underwent thresholding, δ(w). RSBU-1 was used for
Soft, Hard and Garrote thresholding.

B. RSBU-2

The requirement for a second thresholding parameter λ led
to the use of RSBU-2, much like RSBU-1 this architecture
applies a threshold value to each channel in the feature map.
However, RSBU-2 is used to find two threshold parameters γ
as before and a second parameter λ, the RSBU-2 architecture
is shown in Fig. 4. RSBU-2 follows the same procedure
as RSBU-1 to find the thresholding parameter γ from (15),
although a second thresholding parameter λ is also found in
RSBU-2. This is done by reducing the feature map into a
1-D vector using GAP and taking the absolute value of the
result. The produced 1-D vector is propagated to a two-layer
FC network, the output of this layer is also scaled using (16),
where β(c) represents the cth scaling parameter of the fully

Fig. 4. Residual shrinkage building unit-2 architecture.

connected network after scaling and q(c) represents the feature
of the cth neuron.

β(c) =
1

1 + e−q(c)
(16)

The second threshold value of the cth channel λ(c) is then
calculated by finding the dot product of the scaling parameter
and the global average, of the cth channel, shown in (17).

λ(c) = β(c) · E
(h,w)

[w(h,w, c)] (17)

Both calculated threshold values γ and λ are then used in the
relevant thresholding method to produce a thresholded feature
map δ(w). RSBU-2 was used for Firm thresholding.

V. EXPERIMENTAL SET-UP

A. Data-set

The EMI data used in the experiments in this study were
collected following the Committee International Special des
Perturbations Radioelectriques (CISPR) 16 standard [13] using
the EMI technique from [14]. Data was collected in the form
of time-resolved signals from operational real-world assets
sampled at 24000 samples per second, collected signals were
then analysed by EMI experts and labelled accordingly, with
the present faults, using their experience and knowledge gained
from previous fault diagnosis. The fault classes observed in
the span of the data were; Arcing, Data-Modulation, Partial
Discharge, Processing Noise, Random Noise, Exciter, and
Micro-sparking. The data sets used in the experiments were
balanced and contained 261 samples per class, with each signal
example containing 4000 sample points. The signals in the
data-set underwent further pre-processing to produce various
signal data sets with known noise levels by de-noising the
raw signals using a symlet4 wavelet with a posterior median
threshold rule from [15], carried out using the wavelet de-
noising (wdenoise) function from Matlab, noise variance was
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TABLE I
PERFORMANCE COMPARISON OF THRESHOLDING MODELS WITH

ALTERNATE NOISE LEVEL DATA. BEST PERFORMANCE IS PRESENTED IN
BOLD FONT.

Data-set
dB SNR

Soft Hard Garrote Firm

-5 59.31 % 54.67 % 57.45 % 59.23 %
-4 56.75 % 55.99 % 56.20 % 57.41 %
-3 57.81 % 57.99 % 59.01 % 58.94 %
-2 64.34 % 64.49 % 66.64 % 65.22 %
-1 66.17 % 67.92 % 67.52 % 69.23 %
0 72.30 % 71.82 % 73.98 % 74.60 %
1 76.16 % 72.96 % 71.06 % 73.10 %
2 75.55 % 73.58 % 75.62 % 76.20 %
3 83.39 % 80.77 % 84.27 % 82.77 %
4 83.36 % 81.82 % 83.32 % 82.52 %
5 86.06 % 84.89 % 87.77 % 83.94 %

estimated based on the highest-resolution wavelet coefficients.
Random noise was then added at desired levels, 11 data
sets were obtained; −5, −4, −3, −2, −1, 0, 1, 2, 3, 4
and 5 dB signal-to-noise ratio’s (SNR’s). The data underwent
further splitting to produce 3 sub-sets per data-set for training,
validation, and testing, these subsets contained 70%, 15% and
15% of entities of the overall data-set.

B. Fault classification using DRSN

The modulus of the Stockwell transform of each signal
was calculated, producing 261 2-D time-frequency mappings
for every fault class in the data-set. The produced Stockwell
entities along with their relevant labels were used to train,
validate and test the various models observed in the research.
The 4 thresholding methods, outlined in Section III, were all
trained, validated, and tested for 10 runs, using the various
noise level data sets created producing results for 4 different
thresholding models with 7 data sets. Thresholding methods
were compared based on their mean test accuracy over these
10 runs. Models were implemented using Tensorflow [16]
as multi-class classifiers, categorical cross-entropy loss was
used for training all thresholding models with the momentum
optimiser being used over 250 epochs.

C. Results

The mean test accuracies produced by each thresholding
model concerning the data-set used are outlined in Table I,
accuracies are produced using binary accuracy, this being
the division of the total number of correct predictions by
the number of test samples. It can be seen from the results
that the Garrote and Firm thresholding methods provide high
accuracies and confident results close to the highest accuracies
in low SNR data sets.

VI. CONCLUSION

Our developed systems demonstrated the benefits of imple-
menting alternate thresholding methods on various noise level
data sets, it was shown that the implementation of Garrote and
Firm thresholding methods produced improved results in low

SNR cases in comparison to both Soft and Hard thresholding
based approaches. Outlining the benefits learned thresholding
parameters can have when observing noisy data and showing
that thresholding methods with two learned parameters, found
in the RSBU-2 architecture can also improve classification
performance. Further work will be carried out to implement
further thresholding methods and observing how these will
affect the classification of noisy data.
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