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Abstract—In this paper we present a machine learning-based
approach to solving the radio-frequency (RF) signal classification
problem in a data-driven way. To this end, we propose an efficient
and easy-to-use graphical user interface (GUI) for researchers to
collect their own data to build a customized RF classification
system. The GUI operates in the time-frequency (TF) domain,
which is achieved by applying short-time Fourier transform to
the in-phase and quadrature (IQ) time domain signals. Using the
proposed GUIL, a radio frequency (RF) dataset is collected from
the ultra high frequency industrial, scientific, and medical (ISM)
bands using commercial-off-the-shelf (COTS) transceivers, and
COTS transceiver modules. We train three different variants of
convolutional neural network models, such as VGG and ResNet,
using the collected dataset and show that they can perform
acceptable test-time classification (up to 95% accuracy) on unseen
real-world RF signal recordings. Our experimental results also
show that a carefully prepared TF domain without a loss of
information can achieve better performance than a magnitude-
only representation that loses phase information during the TF
transformation. We open-source our project to provide the public
with access to the labeled datasets, programming code, and the
GUI software that can expedite the labeling process.

Index Terms—Radio Frequency Machine Learning (RFML),
Deep Neural Network (DNN), Software Defined Radio (SDR),
electromagnetic spectrum (EMS)

I. INTRODUCTION

Wireless technology delivers data seamlessly and securely
via waveforms such as long-term evolution (LTE), and the
fifth generation (5G) cellular networks. Further growth of the
electromagnetic spectrum (EMS) is driven by new wireless
devices, e.g., Internet of Things (IoT), wireless network pro-
tocols (Wi-Fi IEEE 802.11), and autonomous unmanned aerial
vehicles (UAVs) that heavily leverage the spectrum to operate.

Worldwide growth in EMS access is leading to unprece-
dented spectrum congestion that most users are not aware of
and do not directly control. Most transceivers are not cognitive
of the spectrum in which they operate [1], [2], and co-located
waveforms can degrade data throughput.

Therefore, efficient management of the EMS is important,
and responsibility of governance varies by country. There are
also global organizations, such as the international telecom-
munication union (ITU) within the United Nations (UN),
that collectively promote international standards for spectrum
access [3]. However, the majority of spectrum management
consists of assigning spectrum users to specific bands of
frequencies within the EMS or radio frequency (RF) spectrum.

ISBN: 978-9-0827-9706-0

nhj9%940913@gmail.com,

1701

minje@indiana.edu

For example, the unlicensed U.S. 2.4GHz industrial, scien-
tific, and medical (ISM) band is only 83.5MHz wide, and it is
shared with innumerable types of waveforms and commercial
products such as Wi-Fi™ UAS controllers, Bluetooth®, and
IoT devices, garage door openers, and even microwave ovens.
This approach leads to many commercial products that decon-
flict with other signals by using methods such as frequency
hopping and orthogonal signal coding that make transmitted
data robust in the presence of interfering waveforms.

Cognitive transceivers operating in these traditional man-
aged spectrum bands could classify RF traffic and dynamically
re-tune to an optimal operating channel to deconflict. The
transceivers themselves can aid in helping to ease spectrum
conflict and promote band efficiency. The use of informatics
and machine learning to help facilitate RF spectrum manage-
ment is a relatively new field.

We propose a machine learning-based approach to enabling
cognitive transceivers that dynamically adjust to RF channel
conditions by recognizing the nature of the discovered signals
in which they operate (e.g., waveform modulation). A convo-
lutional neural network (CNN)-based RF signal classifier that
operates in the time-frequency representations of the signals is
presented. We will verify that some popular CNN architectures
can achieve sensible classification performance; furthermore,
we will also compare performance with methods that employ
a slightly different approach.

There are primarily two sources of RF signal data for
machine learning: spectrum sampling from commercial-off-
the-shelf (COTS) transceivers via software defined radios
(SDRs) [4] [5] [6] or software-generated synthetic datasets.
The synthetically generated IQ data can either be augmented
and used to train NN models or streamed to a SDR that
transmits the data into the RF spectrum—either OTA or closed-
loop—and then sampled by a receiver SDR into IQ data and
stored. The latter approach can add additional augmentation
to the 1Q data that may not be easily artificially performed.

We open-source our project, which includes all the training
and testing datasets and the source codes. Moreover, we also
provide a graphical user interface (GUI) that researchers can
easily utilize to build their own labeled datasets'.

Thttps://saige.sice.indiana.edu/research-projects/rf-classification
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II. BACKGROUND

SDRs sample and quantize the analog RF spectrum data
into in-phase and quadrature (IQ) time domain data. Similarly,
synthetically derived data is generated and saved in IQ format
or transmitted over-the-air (OTA), using SDRs, then saved at
the receiver side via SDR. The IQ format is derived from the
sinusoidal equation:

x(n) = sin(27 fn + ¢(n)), (D

where f and n represent frequency and time, respectively,
and ¢(n) describes the time-varying phase. Trigonometry
decomposes (1) into the orthogonal components:

i(n) = sin(27 fn) cos(¢p(n)) 2)
Quadrature ¢(n) = sin (2ﬂ'fn + g) sin(¢(n))  (3)

In-Phase

Before the I1Q data is used in a machine learning model,
such as a CNN, the data domain should be considered.
Classification of IQ data can be accomplished in multiple
domains, and it is useful to consider the alternatives.

Time Domain: IQ data is natively time domain during
capture, and no domain change is necessary. Time domain
IQ data does not allow expert features to be easily extracted,
which is a significant benefit when it comes to heuristic
features. However, the sampled IQ training data must be clear
of other signals, for which an end-to-end neural network can
perform feature learning and classification holistically at the
cost of learning features only from the data. Meanwhile, the
sampled bandwidth will also fix the classification bandwidth.
The center operating frequency of the SDR would be the
only insight into what frequency the classified waveforms are
occupying, without further processing. Motivating examples
of time domain classification is demonstrated in [7]-[10].

Frequency Domain: To convert the IQ data to the frequency
domain requires a discrete Fourier transform (DFT) or short-
time Fourier transform (STFT) [11] to capture the temporal
dynamics of the signal over time. The magnitude of the 1Q
spectrogram is often used in frequency domain classifiers
for training [12], [13]. This method works well with many
waveforms, but the magnitude of the STFT will forfeit any
phase information in the waveform that may be useful for
classification. We propose to use a 3D tensor representation to
encompass all the details of the IQ data in the time-frequency
space as an input to our CNN classifiers (Section IV).

Other Domains: Other domains are also used for RF
classification. For example, image processing on the 1Q data
from plotting the I vs. Q data [14]. Waveforms that have
clear constellation signatures [15] are good candidates for
this domain (e.g., quadrature phase shift keying (QPSK),
quadrature amplitude modulation (QAM)).

Additionally, The Wigner-Ville, Choi-Williams, Quadrature
Mirror Filter Bank (QMFB), and cyclostationary domains are
widely used to classify low probability of intercept (LPI), low
probability of detect (LPD) radar waveforms [16].

STFT time-frequency (TF) domain: Out of the potential
choices, we propose an STFT-based TF representation, or a

spectrogram, that fully retains real and imaginary components
of IQ signals after the transformation. Given that the TF
representation will be in the shape of an image with four
channels, it is natural for us to employ 2D CNN models for
the classification problem. However, in order to deal with the
issue of the large spectrogram size and the relative sparsity,
we additionally propose a patching mechanism that processes
smaller regions of the input data sequentially. To this end,
we also propose a data collection and labeling method that
expedites one’s effort.

ITI. DATA COLLECTION AND LABELING

Creating synthetic datasets is popular among researchers.
Open-source software like GNU’s-not-Unix (GNU) radio [17]
enables researchers the ability to generate datasets of many
types of waveforms for RF ML, and affords datasets to be
shared with others in the community that may not have the
ability to create their own datasets. Additionally, software aug-
mentation of these synthetic waveforms generates additional
datasets that simulate real-world RF environmental conditions
that may be difficult to reproduce naturally, and varying the
amount and type of augmentation can produce even more
training data. Synthetic datasets serve an invaluable service for
researchers in that the labeled datasets can help the research
community focus on purely research versus dataset collection.

On the contrary, a dataset consisting of recordings of real-
world RF signals can provide additional features that may not
be created synthetically. However, those labeled real-world
RF signals are not trivial to acquire due to the hardware
and software requirements (e.g., attenuators, coaxial network,
a variety of transceivers, etc.). Additionally, recording radio
signals in the “wild” can introduce ethical considerations with
respect to personally identifiable information (PII)—using
personally controlled transceivers helps reduce PII concerns.

We use GNU radio in conjunction with out-of-tree (OOT)
module SigMF [18]) to collect datasets of ten common types
of waveforms in the ISM bands at 434MHz and 915MHz, as
well as the 70cm (420-450MHz) push-to-talk (PTT) amateur
radio bands. All RF transceivers used for dataset collection
were under our control.

Data collection and format: The SigMF formatted data
was collected OTA using an Ettus universal software radio
peripheral (USRP) [19]. SigMF data consists of the IQ data
file, and an accompanied JavaScript™ object notation (JSON)
formatted labeled meta data file. Each waveform was recorded
for ten seconds at 1 mega-sample-per-second (MSPS) integer
16-bit IQ and saved as a 32-bit float IQ. The OTA data col-
lection was an indoor lab with many reflections that provided
natural multi-path augmentation.

OTA Setup and SDR models: The OTA training, valida-
tion, and testing waveforms were recorded using an Ettus SDR
N210 [20] with SBX daughter board [21], and B205-mini. In-
line, and programmable attenuators were used to maintain a
consistent signal-to-noise ratio (SNR) to the SDR during data
collection. Waveforms were recorded with 30-40dB of SNR.
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Fig. 1. The proposed GUI-based patch extraction process.

GUI software: We provide open-sourced tools with which
researchers can collect and label their own real-world signals
for RF classification instead of using synthetically generated
datasets, in addition to those provided with this paper. Two
custom GUIs, written in Python, allow the user to extract
labeled feature patches from the IQ data to train machine
learning models. In Fig. 1 (a), our first GUI allows the user
to select a broad swath of spectrogram area, where a visible
amount of signal activities can be found. Then using the
second GUI, as illustrated in Fig. 1 (b), the selected area of the
spectrogram randomly extracts a number of small patches from
various locations. The user interacts with the second phase
by defining the width, height, and total number of patches to
produce. As a result, the 3D patches are stored for later use
as the input “images” of the CNNs (Fig. 1 (c)).

Note that labeling is naturally done by assuming all patches
extracted from a recording belong to the same class known to
the researcher who operates the GUI system.

IV. THE TIME-FREQUENCY REPRESENTATION

We propose to convert the RF signals into a time-frequency
domain using STFT, which is a process applying discrete
Fourier transform (DFT) to a series of windowed short frames
[11]. STFT on a time domain signal 2:(n) results in a complex-
valued matrix X, having m and f as the time index and the
center frequency,

o0
STFT(x(n)) = Xy = Y a(m)w(n—mR)e /", @)
n=—oo

where a windowing function w slides over the input signal x
with a hop size R to define ¢-th short-frame input because w is
typically defined with a bell-shaped function, zeros elsewhere.
Transforming the data to the TF domain has several benefits.
With a proper choice of the windowing function and hop
size, the data does not lose much information during the
transformation. Meanwhile, the TF domain visualizes both the
frequency and time variations contained in the data, which are
otherwise difficult to represent. Hence, the TF representation
is a suitable format as an input to the CNN models, where the
input is defined as a stacked set of images, a 3D tensor with

4 channels.
While TF domain classification is often defined with the
magnitude of the spectrogram, we propose to stack up both

real and imaginary Fourier coefficients on top of each other.
To this end, we apply STFT to each of the I and Q channels,
respectively, and this garnered four real-valued arrays (e.g.,
spectrograms), I(Real) p(Imag) ~Q(Real) " apq QImag).

STFT (i(n)) = (Rea) 4 ;p(imag) )
STFT (¢(n)) = Q) + j Q™) (©6)

Finally, the STFT IQ arrays were stacked to form a rank-3 (3D)
tensor with 4 input channels. Similarly, we computed the I and
Q channel magnitudes to produce a stacked 3D tensor with 2
channels to compare with each 4 channel network model. The
GUI process described in Section III follows to extract small
patches for model training.

V. THE PROPOSED RF CLASSIFICATION PIPELINE

A. Experimental Setup

Computing Environment: Model training was imple-
mented via Pytorch [22] using GPU computing. RTX8000
(4608 NVIDIA® CUDA® cores) with 45GB of GPU memory.

Training Data and Patching: A total of six waveforms
per class were recorded for each phase of the supervised
learning, i.e., training, validation, and testing. 1,700 patches
were collected per training waveform, totaling 10,200 patches
per class, while we use 2,000 per class for validation from
validation recordings. Each patch is saved as a 3D tensor of
(time) X (frequency) x (channels), where the third one holds real
and imaginary channels of both I and Q signals. Width and
height dimensions of 224 x 224 were chosen for the GUI-
based patching. This matched the VGG and ResNet native
architectures designed for visual object classification [23], as
well as provided enough spectral diversity for training the
network on the selected waveforms.

Signal Classes: Ten waveforms were collected for classifi-
cation. These classes were comprised of various analog PTT
transceivers (NFM), three types of digital PTT transceivers
(GD55, TYT, and YSF), two ISM RF doorbells (Vodeson and
Sado), one RF light switch controller (light), two types of
long-range (LoRa™) waveforms (loral25, and lora250), and
a misc. key fob (click). The GD55, TYT and YSF use a 4FSK
based modulation and are spectrally similar to one another.
Two additional classes were used to account for spectrogram
areas that contained noise and the DC artifact present at the
center bin of the DFT (direct conversion receiver).

Data Augmentation: RF transmissions often have a variety
of channel impairments. Multi-path wave propagation, noise
(e.g., environmental, transceiver, etc.), oscillator frequency
drift, IQ imbalance, and phase noise are common. For this
work, the only augmentation was to SNR. We inject additive
white Gaussian noise (AWGN) with a “loudness” randomly
chosen from a range between 0.1 to 10.0dB for each patch.

CNN Models: Three primary network models were used to
classify the waveforms: VGG16 [24] with 16 hidden layers,
and ResNet [25] with 18 and 50 hidden layers, respectively.
Each optimized model was run for 100 epochs.
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‘ ® Correct classification O Dummy classes

Wrong classes

Fig. 2. Illustration of the proposed majority voting-based classification scheme
on a LoRa™ 125kHz recording.

B. Test-Time Inference

While the models are trained on the patches, our goal during
the test time is to identify which class the signal belongs to,
regardless how many patches we can extract from it. Hence,
during the test time, we scan the entire spectrogram and
sequentially extract non-overlapping patches. All patches are
fed to the model, whose classification results are consolidated
to make the final decision via a majority voting scheme.
For example, we choose 1,024 as the frame size for the 1
MSPS signals, which also defines the frequency resolution,
1M HZz/1024 = 976.56 H z as well as the number of frequency
bins per spectrum, i.e., F' = 1024. Note that we discard about
a half of the frequency bins due to the complex conjugacy.
With this setup and with a hop size of R = F/2 = 512, a
10 sec-long test signal turns into 19,532 spectra, each is with
1024/2 + 1 = 513 frequency subbands. Eventually, given our
patch size of 224 x 224, each spectrogram breaks down into
about 174 patches. The test-time signal classification is based
on the assumption that for a given time period there is only one
dominant signal class. Indeed, we recorded the real-world test
signals in a controlled environment to meet this constraint.
However, a naive approach that simply selects the majority
class out of the patch-by-patch classification results is not a
solution because signal sparsity in the time-frequency space
will classify most of the patches as the noise class.

Fig. 2 depicts our winner-take-all majority vote scheme. We
first count all the meaningful predictions that belong to the
ten critical classes (red or grey filled circles in the figure)
rather than the two dummy classes, noise and center
frequency (hollow green circles). In the figure, it will
correspond to the sum of red and grey dots, 13 + 3 = 16.
Out of 16 we see 13 patches belong to a single class (which
is actually correct classification to LoRa™ 125kHz), while
the the grey dots mean that those patches are misclassified
into some other non-dummy classes. Consequently, the whole
region of these 6x 16 patches is classified into the red dot class,
i.e., LoRa™ 125kHz. The failure mode of this scheme will be
twofold. First, if the dominant signal patches are misclassified
into the dummy classes, e.g., the (3,4) patch in the figure, the
system will predict that no activity is happening. Second, if
there are any confusing class pairs, the misclassification will
result in a wrong prediction to the confusing class.

‘ory

7, %oy,
12569500055 7)7@50,7‘7‘70 C//C,(,/IIFA,/@/]( J«S, °.

-
1?569500055 7)7@3017:6‘7 C/’C/r% 47/'9% J'Sf

lora125 -ﬂ 0 00 0 0 0 0 1 0 loral2s ‘H o 0000 03 0 0
lora250 - 0 0 0 0 0 0 0 0 0 fora250-0 o 0o 0o 0o 0o 0o o0 o
Goss-0 ol o o o 0o o 0o 0o Goss-0 oo 0o 0o 0 0 0 o
T™T-0 0 0 00 0 0 0 0 ™T-0 0 0 n 00 0 2 0 0
Vodeson- 0 0 0 0 0 0 0 0 0 vVodeson-0 0 0 04 o oo o
sado-0 0 0 0 O 0 0 0 0 sado-0 0 0 0 0 n 0 2 0 o0
click-0 0 0 0 0 0 00 o0 click-0 0 0 0 0 0 )
nem-0 0 40 o o oo o nem-0 0 0o o o o offfo o
light-0 0 0 0 0O 0 0 O 0 light-0 0 o o o o o 1o
ysf-0 0 0 0 0 0 0 0 0 ys;-0 0 0 0 0o o o 1 o |H

(a) ResNet50 4 channel (95%) (b) ResNet50 2 channel (85%)

/
‘or., /or. o7, /or,
"Ig 92, 9055 7)7,@&0,736% (7’(‘4 /I/,%,//gb[ ysf 9254925, 6055 7)79:0/]33% (‘//q_ /VﬁA//g/,{ J’s,r

loral25 n 0 0 0 0 0 0 6 l 0 loral25 -| 7 0 0 0 l; 0 0 3 0
lora250 - 00 0 0 0 0 0 0 lora250-0 00 0 0 0 0 0 0
Gpss-0 0 0 0o o o offflo o coss-0 oo o 0o 0o 0 0 0
™T-0 0 0 00 0 0 0 0 ™T-0 0 0 H 00 0 2 0 0
Vodeson- 0 0 0 O 0 0 0 O O Vodeson-0 0 0 0 n 0 0 2 0 O
sado- 0 0 0 0 0 00 0 0 sado- 0 0 0 0 0 00 0 0
click-0 0 03 0 0 0 0 o click-0 1 0 0 0 0 0 n 0 o0
nem-0 0 0o o o o oo o nem-0 0 0o o o o oo o
light- 0 0 0 0 0 0 0 1 n 0 light- 0 0 0O 0 0 0 0 0O 0
yst-0 0 0 0 0o o o 2 o[ yst-0 0 2 0 o o o Bl o '3

(c) ResNet18 4 channel (83%) (d) ResNetl8 2 channel (76%)

ory o 20025505, ;‘Z‘;@s%ss% iy Ve "ons. Ysr /‘”e 0055 %830,,‘?% (‘/,q_/l/p/’l /9,7[ ,,:f
\oraus—ﬂ 0 00000 0 2 0 |ora125-- o 0000 00 off
lora250 - 0 © 0 0 00 0 0 0 toraso-0 o o 0 0 0 0 00
GD55- 0 0 00 0 0 0 0 0 GDS5-0 O 00 00 0 0 0
T™T-0 0 o 0000 0 0 0 -0 o oo o 0 0 01
Vodeson- 0 0 0 0 0 0 0 0 0 Vodeson-0 0 0 0 00 0 0 0
sado-0 0 0 0 0 00 0 0 sado-0 0 0 0 0 00 0 0
cick-0 0 0 0 0 0 0 0 o click-0 0 0 1 0 0 n 00 0
nem-o ol o o 0 03 0 0 nFm-0 0 0 o o o o o4
light-0 0 0 0 0 O 0 0 0 light-0 0 o o o o o o g1
ysf-0 0 0 0 0 0 0 0 0 ysf-0 0 0 0 0 0 0 0 0

(e) VGG16 4 channel (91%) () VGG16 2 channel (90%)

Fig. 3. The confusion matrices of different systems in comparison. The total
classification accuracy is presented in the parenthesis.

Since there is no efficient way to label each patch, we record
a 10 sec-long signal containing only one dominant class’s
activity and performed inference on its patches. Likewise, the
classification results are for the entire 10 sec-long recording.

C. Discussion

We used three popular 2D CNN network architectures:
VGG16, ResNet50, and ResNet18, where the number indicates
the number of hidden layers. Each network model was further
distinguished by 2 and 4 channel 3D tensor input, where the
former uses magnitudes of the DFT coefficients from I and Q
channels, while the latter uses both real and imaginary coeffi-
cients of the IQ data. These network combinations produced
six different test configurations. The models were trained using
the Adam optimizer [26], and initial learning rates were found
using validation: 1 x 10~ for the ResNet models and 1 x 106
for the VGG models. With an early stopping strategy, we
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stored the models that gave the best validation performance
and used them for testing. All models achieved more than 99%
validation accuracy, although the test-time performance varied
due to the discrepancy between validation and testing, as well
as the models’ different characteristics. Each class consists of
10 signals, whose length is fixed to 10 seconds. Hence, the
classification accuracy is defined by the number of correctly
classified divided by 100. In Fig. 3 we present the confusion
matrices for more analysis, where y-axis is the ground-truth
class labels and x-axis is the prediction.

The first observation we make is the overall acceptable
performance of all systems. Except for the ResNet18 2 channel
input case, all the systems were able to achieve more than 80%
accuracy, showcasing the robustness of the proposed classifi-
cation scheme. We also point out that the data augmentation
process that injects Gaussian random noise to the input patches
helped stabilize the test-time performance. The comparison
between the ResNet models leads us to the conclusion that
the deeper ResNet50 models (~23.5M trainable parameters)
outperform the shallower ResNetl8 models (~11M), and
imply that deeper models are more favorable.

On the other hand, VGG16 models showed an interesting
behavior: their overall performance is good (91% with 4
channel input and 90% with 2 channels), but given that they
have many more parameters (134M), the performance is not
impressive. This behavior was expected because ResNet’s
more advanced features, such as skip connections, are known
to outperform VGG. For example, considering the test-time
inference complexity of these models, as well as the per-
formance, ResNet50 on the 4 channels should be the choice
rather than VGG16. In an extreme environment where minimal
resource usage is required, ResNet18 should be the choice.

It is also noticeable that the proposed 4 channel input tensors
greatly outperform the 2 channel inputs. It is because the 4
channels retain all the details about the phase information,
which the 2 channel data are missing. The difference is more
salient in the smaller ResNet models than the VGG16 models.

VI. CONCLUSION

This paper explored RF classification by defining it as
an image classification problem on multi-channel input. We
were able to show that popular 2D CNN models, such
as ResNet and VGG, can classify waveforms in the time-
frequency representation. We observed higher accuracy when
using all the magnitude and phase information of the TF
representation of the 1Q signals than the magnitude-only cases
that are more popular in the literature. We open-sourced our
project not only to improve the reproducibility, but to help the
researchers create their own dataset via our proposed GUI-
based annotation system.

REFERENCES

[1] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios
more personal,” I[EEE Personal Communications, vol. 6, no. 4, pp. 13—
18, 1999.

[2] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 2, pp. 201-220, 2005.

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

(22]

(23]

[24]

[25]

[26]

1705

ITU-R. International Telecommunication Union. [Online]. Available:
https://www.itu.int/en/ITU-R/Pages/default.aspx

J. Mitola, “The software radio architecture,” IEEE Communications
Magazine, vol. 33, no. 5, pp. 26-38, 1995.

C. Moy and J. Palicot, “Software radio: a catalyst for wireless inno-
vation,” IEEE Communications Magazine, vol. 53, no. 9, pp. 24-30,
2015.

C. Belisle, V. Kovarik, L. Pucker, and M. Turner, “The software
communications architecture: two decades of software radio technology
innovation,” IEEE Communications Magazine, vol. 53, no. 9, pp. 31-37,
2015.

T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air Deep Learning
Based Radio Signal Classification,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 168-179, 2018.

T. O’Shea, T. Roy, and T. C. Clancy, “Learning robust general radio
signal detection using computer vision methods,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers, 2017, pp. 829-832.
C. Gravelle and R. Zhou, “SDR Demonstration of Signal Classification
in Real-Time Using Deep Learning,” in 2019 IEEE Globecom Work-
shops (GC Wkshps), 2019, pp. 1-5.

T. Erpek, T. J. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C. Clancy, “Deep
Learning for Wireless Communications,” 2020.

J. B. Allen and L. R. Rabiner, “A unified approach to short-time fourier
analysis and synthesis,” Proceedings of the IEEE, vol. 65, no. 11, pp.
1558-1564, Nov 1977.

W. M. Lees, A. Wunderlich, P. J. Jeavons, P. D. Hale, and M. R. Souryal,
“Deep Learning Classification of 3.5-GHz Band Spectrograms With
Applications to Spectrum Sensing,” IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 2, pp. 224-236, 2019.

S. Behura, S. Kedia, S. M. Hiremath, and S. K. Patra, “WiST ID—Deep
Learning-Based Large Scale Wireless Standard Technology Identifica-
tion,” IEEE Transactions on Cognitive Communications and Networking,
vol. 6, no. 4, pp. 1365-1377, 2020.

H. Tamura, K. Yanagisawa, A. Shirane, and K. Okada, “Wireless Devices
Identification with Light-Weight Convolutional Neural Network Operat-
ing on Quadrant IQ Transition Image,” in 2020 18th IEEE International
New Circuits and Systems Conference (NEWCAS), 2020, pp. 106-109.
G. Jajoo, Y. Kumar, A. Kumar, and S. Yadav, “Blind Signal Modula-
tion Recognition through Density Spread of Constellation Signature,”
Wireless Personal Communications, vol. 114, 10 2020.

P. Pace, Detecting and Classifying Low Probability of Intercept Radar,
Second Edition. Artech House, 2008.

A. M. Wyzglinski, D. P. Orofino, M. N. Ettus, and T. W. Rondeau,
“Revolutionizing software defined radio: case studies in hardware,
software, and education,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 68-75, 2016.

B. Hilburn, N. West, T. O’Shea, and T. Roy, “SigMF: The Signal
Metadata Format,” Proceedings of the GNU Radio Conference, vol. 3,
no. 1, 2018. [Online]. Available: https://pubs.gnuradio.org/index.php/
greon/article/view/52

A. M. Wyzglinski, D. P. Orofino, M. N. Ettus, and T. W. Rondeau,
“Revolutionizing software defined radio: case studies in hardware,
software, and education,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 68-75, 2016.

Ettus N210 SDR. Ettus Research. [Online]. Available: https://files.ettus.
com/manual/page_usrp2.html

SBX daughterboard. Ettus. [Online]. Available: https:/files.ettus.com/
manual/page_dboards.html\ protect\ @normalcr\relax#dboards_sbx

A. Paszke et. al, “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, 2019, pp. 8024-8035.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR). leee, 2009, pp. 248-255.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.
D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2015.



