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Abstract—Existing deep neural network (DNN) based wireless
localization approaches typically do not capture uncertainty
inherent in their estimates. In this work, we propose and
evaluate variational and scalable DNN approaches to measure
the uncertainty as a result of changing propagation conditions
and the finite number of training samples. Furthermore, we show
that data uncertainty is sufficient to capture the uncertainty due
to non-line-of-sight (NLOS) and, model uncertainty improves
the overall reliability. To assess the robustness due to channel
conditions and out-of-set regions, we evaluate the methods
on challenging massive multiple-input multiple-output (MIMO)
scenarios.

Index Terms—Localization, Deep Learning, Massive MIMO.

I. INTRODUCTION

The ever-increasing demand for location-enabled applica-
tions has sharpened the urge for enhanced accuracy and
dependability of wireless localization methods in both indoor
and outdoor environments. There exist different strategies that
exploit wireless signal information to estimate the unknown
position of the transmitter, such as received signal strength
(RSS), angle-of-arrival (AOA), and time of arrival (TOA) [1].

More recently, the deployment of massive multiple-input
multiple-output (MIMO) technology [2] in the fifth generation
(5G) networks, has encouraged active research in machine
learning (ML) for wireless positioning. Due to a high density
of antenna elements at the base station (BS), a considerable
amount of channel state information (CSI) can be collected.
Estimated high-dimensional CSI at a large antenna BS pro-
vides fine-grained user equipment (UE) prints; consequently, it
reveals spatiotemporal information about the transmitter itself,
as well as its surroundings. This information can be harnessed
by ML to train a model with CSI samples of known locations.
The CSI of the unknown transmitter is then utilized by the
model, to infer its position estimate.

Numerous approaches that make use of CSI with machine
learning and, in particular deep learning, have recently been
proposed [3]–[6]. These algorithms can learn powerful rep-
resentations that can map high-dimensional CSI into location
information. However, despite the evident improvements in
localization accuracy, these estimates are taken blindly while
failing to give any useful estimates of their predictive un-
certainty. Overconfident incorrect predictions in safety-critical
applications can have tragic consequences; hence the ability to
properly capture and reason about the uncertainty of estimated

positions is fundamental to integrate deep neural network
(DNN) based methods in wireless localization systems.

Being able to capture uncertainty in location estimates due
to changing propagation conditions or insufficient CSI training
samples is critical not only for assessing how much we can
trust those estimates but also for facilitating active learning and
improving the availability of DNN based methods. These are
highly desired features for localization approaches applied to
real-world and safety-related tasks in railroad transportation,
vehicular communications, and assets tracking, to name a few.

In this work, we address these challenges of wireless
localization by additionally providing confidence estimates in
contrast to only position estimates, which account for both
data as well as model uncertainty. However, we aim to learn
not only high-accuracy location information but also highlight
difficult situations where the model cannot reliably estimate
the location of the unknown transmitter. Recently, [7] utilizes
deep convolutional Gaussian Processes (DCGP) to allow for
uncertainty estimation in localization for millimiter Wave
communications while improving accuracy. DCGP uses no
neural network component. Thus, to the best of our knowledge,
this is the first time that DNN uncertainty estimation has been
addressed in wireless localization.

We structure the remaining of the paper as follows. In
Section II, we describe the system model considered for this
work. Then, in Section III, we provide details on the proposed
approaches for location and uncertainty estimation. In Section
IV, we evaluate the localization accuracy and demonstrate the
quality of uncertainty estimation for both indoor and outdoor
environments. Finally, in Section V, we draw our conclusions.

II. SYSTEM MODEL

We consider that the base station receives uplink signal
information from {xr ∈ Rd}Rr=1 different locations, corre-
sponding to R single-antenna transmitters, where we consider
d = 2. In addition, we assume that users are either in LOS
or NLOS with the base station. For the BS, we assume M =
MyMz antenna elements with My and Mz corresponding to
the number of antennas in horizontal (y) and vertical (z)
directions. The signal from each UE that is received at M
antenna elements contains NSC subcarriers. Furthermore, due
to possible scatterers or reflectors in the reference scenarios,
we assume the signal arrives over multiple paths, L. Thus,
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the position-related parameters captured in a scenario-specific
multi-path channel for the subcarrier n are given as

ĥ[n] =

L∑
`=1

√
ρ`
NSC

e
j 2πn
NSC

τ`Ba (ϕaz,`, ϕel,`) , (1)

with ρ`, B and τ` denoting the channel gain, bandwidth and
the propagation delay, respectively. The BS steering vector
introduces the azimuth and elevation angles of arrivals, ϕaz ,
ϕel, for each path ` = 1, . . . , L, and is defined as

a (ϕaz, ϕel) = az (ϕel)⊗ ay (ϕaz, ϕel) . (2)
For a d = λc/2 equidistant antenna elements geometry, the
array steering vectors ay(·),az(·) in y and z directions are
further expressed as

ay (ϕaz, ϕel) =
[
1, ej

2π
λc
d sin(ϕel) sin(ϕaz), . . .

. . . , ej
2π
λc
d(My−1) sin(ϕel) sin(ϕaz)

]T
,

(3)

az (ϕel) =
[
1, ej

2π
λc
d cos(ϕel), . . . , ej

2π
λc
d(Mz−1) cos(ϕel)

]T
.

(4)
To input the data into the DNN, we handle the
complex-valued CSI as two independent real numbers, i.e.,
<
{
ĥ[n]

}
,=
{
ĥ[n]

}
, representing the real and imaginary

components of ĥ[n]. For this paper, we utilize only a single
subcarrier for localization and set n = 1. Thus, our channel
vector is h ∈ R2M .

III. LOCALIZATION WITH UNCERTAINTY ESTIMATION

We use a deep feedforward neural network for position esti-
mation. The network architecture is similar to the base network
we used in [6]. This model consists of a relatively simple and
low-complexity feedforward neural network architecture. We
define the localization problem as a regression task and the
DNN as a function fθ : R2M 7→ Rd parameterized by θ where,
given the input channel state vector h, we aim to directly map
into position-related information, x. Given a training dataset
of N i.i.d. sample pairs, D = {H,X} = {hn,xn}Nn=1, the
set of optimal parameter values θ is learned by minimizing a
given loss function, L (·),

arg min
θ

J(θ); J(θ) =
1

N

N∑
n=1

L(xn,hn, θ) (5)

Usually, the training is performed to minimize the sum of
squared errors, L(xn,hn, θ) = 1

2 ‖xn − fθ(hn)‖2. However,
such a DNN-based approach leads to a fully deterministic
network which outputs only point estimates of the network
x? = fθ (h?). This can be interpreted as outputting only the
mean of a probability distribution while disregarding other mo-
ments. In this paper, however, we aim to provide a probabilistic
method that provides not only accurate position estimates of
the radio transmitter but also reliable uncertainty associated
with the output estimates. To do so, we model the DNN to
explicitly learn the underlying uncertainty too. Furthermore,
we acquire data and model uncertainty separately. Finally, we
also combine both uncertainties to acquire the total uncertainty
into one end-to-end model. Next, we describe data uncertainty
and in Sec. III-B model uncertainty.

A. Data uncertainty

Since data uncertainty is a property of the data itself,
we train the network to directly output the parameters of a
probability distribution. To do so, we use a Gaussian mixture
model (GMM). In this case, the model yields mixtures of
normal distributions, conditioned on the input CSI hn:

p(xn|hn; θ) =
∑K
k=1 ωθ,kN

(
xn;µθ,k(hn),σ2

θ,k(hn)
)
,

(6)
where K is the total number of mixtures and, ωθ,k, µθ,k,
and σ2

θ,k being the mixture weight, means, and variances
of the k−th Gaussian mixture, respectively. We treat x−
and y−coordinates of x as independent and restrict to a
diagonal covariance matrix. Still, arbitrary distributions can be
approximated by using the contribution from multiple mixtures
[8], [9]. Then, we take a maximum likelihood perspective
(MLE) and aim to learn a model that infers the parameters µ
and σ2 that maximize the likelihood of observing the desired
location, x. This is achieved by minimizing the negative log-
likelihood (NLL) as

N∑
n=1

− log

K∑
k=1

ωθ,kN
(
xn;µθ,k(hn),σ2

θ,k(hn)
)

︸ ︷︷ ︸
=:L(xn,hn,θ)

. (7)

The parameters {ωk,µk,σ2
k}Kk=1 are the outputs of the net-

work and depend on the input CSI, hn. These parameters
must satisfy certain constraints, which have to be incorporated
accordingly in the DNN [8]. Therefore, in the case of GMM,
the last layer of the network outputs the weights, means, and
variances as follows. To satisfy

∑K
k=1 ωk = 1 and output the

probability values corresponding to the weights of the mixture
in the range of 0 ≤ ωk ≤ 1, the output for this part is modelled
with softmax activation as

ωk =
exp (zωk )∑K
k′=1 exp (zωk′)

, (8)

where zωk corresponds to the input of the activation function
of the neuron in the output layer for this part. Likewise, a
softplus activation function is adopted to satisfy the variance
constraint, i.e., σ2

k ≥ 0,

σ2
k = log

(
1 + exp

(
zσ

2

k

))
, (9)

where zσ
2

k denote the inputs of activation function of units for
the part of variance. For the means, we simply model it using
an identity function, i.e., µk = zµk . Similarly, zµk are the inputs
of activation function for each neuron in the output layer for
the means. Motivated from the models based on the mixture of
experts (MoE), where the k−th model is considered an expert
for certain input space [10], we choose the final estimate as
the mean µ̃θ, and variance σ̃2

θ, corresponding to the highest
weight mixture, maxk∈K ωk. Here, σ̃2

θ corresponds to data
uncertainty, σ2

data = σ̃2
θ.
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B. Model uncertainty
While modeling the parameters of a distribution function

can capture the data uncertainty, this does not allow us to
gauge model (epistemic) uncertainty, i.e, the uncertainty over
the parameters θ. In order to output the confidence of the
model, next we discuss two different approaches.

First, we consider a Bayesian perspective similar to [11]–
[13] to propagate the model uncertainty to the output of the
network by placing a distribution over the parameters of the
network. In this case, the goal is to utilize the posterior
distribution p(θ|D). We approximate the intractable distribu-
tion with Monte Carlo (MC) based methods [12], [14]. We
know from [12] that applying dropout during the test time is
equivalent to performing variational inference with a Bernoulli
distribution. This approximation is given as

p(θ|D) ≈ q(θ; Φ) = Bern(θ; Φ) (10)

where Φ is the dropout rate on the network weights at each
layer. Thus, we perform S stochastic forward passes with
dropout at test time on the same input. The mean, as well
as the total variance, are evaluated as:

µ̂(MCD) =
1

S

S∑
s=1

µ̃θ(s) (h) ,

σ̂
2(MCD)
t =

1

S

S∑
s=1

σ̃2
θ(s) (h)︸ ︷︷ ︸

σ̂2
data

+
1

S

S∑
s=1

(
µ̃θ(s) (h)− µ̂(MCD)

)2
︸ ︷︷ ︸

σ̂2
model

.

(11)
In (11), µ̂(MCD) refers to the mean location estimate from MC-
Dropout and σ̂

2(MCD)
t refers to the associated total variance.

For this Monte Carlo based method, the inference computa-
tion time scales linearly with the number of collected weights,
S. Therefore, we also evaluate another effective alternative to
estimate the model uncertainty by sampling from an ensemble
of S different neural networks [15] trained with S randomly
initialized sets of weights of the same network architecture.
We refer to this as a deep ensemble network (DEN). Similar
to the dropout based approach, we obtain the empirical mean
µ̂(DEN) and total variance σ̂

2(DEN)
t of the distribution of

location estimates. While for training we require S different
independent trained models and sets of parameters to be
stored, we only use a single forward pass during inference.
The methods allow for considering data, model, or jointly both
types of uncertainties. The highest weight mixture does not
vary with S in this work, and others have negligible weights.

C. Performance Metrics
We measure the location estimation performance in terms

of the root mean squared error (RMSE) defined as

RMSE =

√√√√∑Ntest

n=1

∥∥∥x?n − µ̂(·)
n

∥∥∥2
Ntest

, (12)

where x?n is the actual position of the test location n and,
µ̂(·)
n is the estimated location given the evaluated method, i.e.,

dropout- or ensemble-based one. For example, µ̂(·) = µ̂(MCD)

for dropout and µ̂(·) = µ̂(DEN) for ensemble.
To evaluate the quality of uncertainty estimation, we assess

the ordering defined by uncertainty estimates (confidence)
[16] compared to the ground-truth error (oracle). Intuitively,
removing locations with high uncertainty should lead to lower
RMSE. Therefore, we evaluate their difference, i.e., the error
between the ordering of locations defined by RMSE (oracle)
and the ordering defined by the uncertainty estimates (confi-
dence),

αi = RMSEorac(bi)− RMSEconf(bi), (13)

where bi represents the fraction of removed locations. Fur-
thermore, to compare the two methods for different numbers
of ensembles and MC-dropout forward passes with a single
value, we evaluate the area under the confidence-oracle error
curve, denoted as AUCO. The smaller AUCO value, the better
acquired uncertainty explains the variations in locations with
respect to RMSE.

IV. EXPERIMENTS AND RESULTS

In this section we describe the parameter details for inves-
tigated scenarios, training details, and the results for perfor-
mance investigation for both indoor and outdoor environments.

A. Simulation parameters

We evaluate the proposed approaches on two ray-tracing
based outdoor and indoor scenarios [17]:

1) The indoor scenario considered is denoted as I3 2p4.
This is a scenario with mixed user locations in LOS and
others in NLOS.

2) The outdoor scenario of our interest is O1 3p5B. Sim-
ilarly, this scenario has LOS as well as NLOS user
locations blocked by a metal screen which is placed in
front of the BS. In addition, two reflecting surfaces for
the NLOS users to the BS are also present.

We consider L = 5 paths and a uniform planar array at the
BS with M = My ×Mz = 16 × 8. The region considered
for O1 3p5B is R800−R1200, i.e., the rows in a grid layout.
Each row has R′ = 181 user locations and all users in this
region are served by BS−3. Table I summarizes the simulation
parameters.

TABLE I: Parameters for the investigated scenarios.

Scenario I3 2p4 Scenario O1 3p5B
Frequency, fc 2.4 GHz 3.5 GHz
Bandwidth, B 20 MHz 20 MHz
BS Number BS−2 BS−3

Numer of paths, L 5 5
Subcarriers, NSC 1024 1024

User locations R1−R1159 R800−R1200

B. Training Details

The network architecture is composed of V = 4 hidden
layers, as illustrated in Fig. 1. We adopt ReLU for the layers
v = {1, 2, 3, 4}. We model the output layer of the network
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Fig. 1: Model architecture overview. Given the CSI, the network
learns a full parametric Gaussian mixture model (GMM) over lo-
cations. During localization phase, the optimal location estimate is
considered from highest weight mixture with the associated variance.
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Fig. 2: Localization error for indoors (a) and outdoors (b) (S = 32).
Accuracy improves for S > 1 for both indoors (c) and outdoors (d)
scenarios. DEN performs better than MCD in terms of RMSE.

as described in Section III-A, which outputs µ̂
(·)
k , σ̂

(·)
k and

ω̂
(·)
k . The size of the output layer is 5K = 15 units, i.e.,

neurons. For MC-Dropout, we place the dropout layer after
v = {1, 2, 3} of the network and search over a grid for
Φ ∈ {0.05, 0.1, 0.2}. For the presented experiments, a dropout
rate of 0.1 was selected. We train the model for 600 epochs
with Adam [18], batch size of 512 at a fixed learning rate of
10−3, and early stopping if validation loss is not reduced for 80
consecutive epochs. Weights are initialized from N (0, 10−2).
For the ensemble approach, we train all individual networks
for 300 epochs without dropout, thus faster converge time.
However, to regularize the training process, in addition to
early-stopping after 30 epochs, we also clip the gradients at a
value of 1.0. Other parameters are kept the same as for MC-
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Fig. 3: Variance based ordering evaluation for uncertainty estimation.
Example of confidence and oracle curves (a) and error between the
confidence and oracle curve (b) for S = 32. DEN outperforms MCD
in terms of AUCO for both indoors (c) and outdoors (d) scenarios.

dropout. The models are trained in Tensorflow [19].
Finally, to facilitate the training convergence time for

these scenarios, we scale the dataset by dividing the inputs
with the maximum absolute value in the dataset, ∆norm =
max({|hn,1|, . . . , |hn,2M |}Nn=1) [20]. Similarly, the position
coordinate values are scaled in the range of [0, 1]. However,
during the testing phase, the estimates are reverted to the
original scale to evaluate the performance in terms of RMSE.

C. Localization accuracy

Localization accuracy in terms of RMSE for the two
approaches and all reference scenarios are depicted in Fig. 2.
We observe in Fig. 2c), 2d) that accuracy improves with
S. Averaging over S different weight configurations has a
pronounced positive impact on the overall RMSE. For the
sake of comparison, we also provide results for S = 1. This
is equivalent to only estimating σ2

data. Finally, we can observe
that DEN outperforms MCD.

D. Uncertainty accuracy

Fig. 3a and Fig. 3b show that a deep ensemble can better
capture the variations in the RMSE. The evaluation in terms
of AUCO is depicted in Fig. 3c and Fig. 3d for indoor and
outdoor scenario respectively. We can easily notice that the
ensemble performs better than MC-dropout and the gap is
more evident as S > 2. We can also observe in Fig. 3a that
removing 20% of locations with the highest error, the overall
accuracy improves by 80% for an ensemble-based approach
in this outdoor scenario.

E. Impact of data and model uncertainty estimation

In Fig. 4, we provide qualitative results for uncertainty
estimation for the two cases: NLOS and out-of-set region. To
do so, we consider the outdoor scenario O1 3p5, described
in Sec. IV-A, where locations for users behind the blockage
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(a) MC-dropout (MCD)

Out-of-setBehind blockage

(b) Ensemble (DEN)

Fig. 4: The impact of data and model uncertainty estimation in NLOS
and out-of-set case. Lighter colored regions indicate higher error and
uncertainty. DEN (b) better represents the error in out-of-set region.

have the highest RMSE; consequently, both approaches should
provide high uncertainty too. Moreover, our goal is also to un-
derstand if model uncertainty can improve our awareness about
out-of-set regions. Therefore, we remove all training samples
from a region marked in a green rectangle box as out-of-set
region in Fig. 4. Likewise, we expect the methods to estimate
high uncertainty for users in the out-of-set region during the
testing phase. We show that data uncertainty is sufficient to
capture the error due to NLOS. However, out-of-set cases are
more challenging and acquiring model uncertainty enhances
the overall dependability.

V. CONCLUSION
In this work, we addressed and investigated a fundamental

issue in current DNN-based wireless localization methods,
i.e., uncertainty unawareness due to propagation conditions
and insufficient training samples. We proposed and evaluated
scalable DNN based approaches that can implicitly learn
and output the uncertainty in addition to accurate position
estimates for wireless localization. We also evaluated the
quality and showed that data uncertainty is sufficient to capture
uncertainty due to NLOS. Finally, we showed that model
uncertainty improves the reliability when the DNN operates in
an out-of-set region, especially for the deep ensemble network.
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