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Abstract—In multistatic active sensing, such as active sonar,
exploiting the spatial diversity provided by the use of several
transmitting and receiving units can lead to increased resolution
and target localization performance. For multi-target scenarios,
the success of the task depends on correctly identifying the
subsets of measurements associated with each target, a problem of
combinatorial nature. In this paper, we propose to address this
problem using a convex relaxation. In particular, we propose
a method inspired by the concept of optimal mass transport
capable of jointly performing the measurement clustering and
target localization. We show that this method may be interpreted
as maximum likelihood estimation on a grid, allowing for local
post-processing achieving statistical efficiency. The behavior of
the proposed method is illustrated using simulated 2D examples.

Index Terms—multistatic active sensing, data assignment, con-
vex clustering, optimal mass transport

I. INTRODUCTION

Target localization appears in a wide variety of signal
processing applications, such as radar, sonar, and audio signal
processing, serving as a basis for tracking [1], [2], target
identification [3], and noise reduction [4]. In multistatic sce-
narios, several spatially distributed transmitting and/or receiv-
ing units are utilized, with the goal of achieving increased
estimation performance, as well as robustness, by exploiting
the extra information provided by the spatial diversity [5], [6].
Commonly, target locations are identified based on measure-
ments or estimates of time-of-arrival (ToA), time-difference-
of-arrival (TDoA), or direction-of-arrival (DoA) [7], [8]. As
exact matching is often not possible due to the presence
of measurement noise and model errors, target locations are
commonly found as the minimizers of fitting functions such
as, e.g., the negative log-likelihood if a statistical model for
the measurements is available. This problem is in general non-
convex [7], though convex relaxations have been proposed [9].
However, in multi-target scenarios, the obtained measurements
form an unordered set, i.e., there are no labels indicating
which measurements that are associated with which targets.
Specifically, in order to find, e.g., the maximum likelihood
estimates (MLEs) of the target locations, the measurements
must first be grouped together into subsets, with each subset
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corresponding to a particular target [10]. Failure to find the
correct grouping of measurements may lead to severely biased
location estimates, especially if quadratic data fit functions
are utilized [11]. Commonly, the grouping is estimated as
the one leading to the minimal total cost. However, finding
this minimizing association is a combinatorial problem, with
the data fit function having to be minimized with respect to
the target locations for each considered candidate grouping.
The data association problem has been addressed by utilizing
a generalized K-means approach [11], by considering La-
grangian relaxations [12], as well as by greedy methods [13]
and multi-stage approaches [14]. These strategies are often
non-convex, and the result thereby depends on the initialization
of the clustering algorithm.

In this work, we propose a convex method for simultaneous
measurement grouping and multi-target localization, based on
measurements of ToA. In particular, we propose to formulate
the task of clustering and localization as a problem of optimal
mass transport (OMT). The Monge-Kantorovich problem of
OMT [15] is concerned with finding the most efficient way of
moving one mass distribution to another, where efficiency is
dictated by a cost of transport on the product space of the
domains of definition of the mass distributions. OMT has
earlier been used for defining distances between stochastic
processes [16]–[19], robust tracking of dynamic systems [20],
[21], multi-microphone noise reduction [22], automatic control
[23], as well as for fundamental frequency estimation for
inharmonic signals [24], [25]. In the context of this work,
OMT is utilized for constructing an association between the
set of ToA measurements and a grid of candidate target
locations, reminiscent of the convex clustering technique in
[26]. As each triplet of transmitter, receiver, and ToA defines
an ellipsoid of consistent target locations, the proposed method
simultaneously clusters groups of ToA measurements and
estimates target locations by minimizing the total cost of
transport between the set of ellipsoids and the grid of candidate
locations. If the cost of transport is selected as the Euclidean
distance, the OMT problem models actual transport in Rd, for
d = 2 or d = 3, i.e., moving the candidate targets to the
respective ellipsoids. If a statistical model for the ToA error
is available, the cost of transport may instead be selected as
the negative log-likelihood. In this case, the proposed method
corresponds to an approximation of the MLE restricted to
the candidate grid. As we show in this work, if the targets
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are not too closely spaced, this allows for finding statistically
efficient estimates of the target locations. The behavior of the
proposed method is illustrated in simulation studies in d = 2
dimensions.

II. SIGNAL MODEL

Consider a signal transmitter, located at y(t) ∈ Rd, for
d = 2 or 3, transmitting a signal that reflects on K targets
and which is then recorded at R receivers. Let the targets
be located at xk ∈ Rd, k = 1, . . . ,K, and the receivers be
located at y

(r)
m ∈ Rd, m = 1, . . . , R. Letting the speed of

signal propagation be ρ ∈ R+, the nominal delay time from
the transmitter to receiver m via target k is

τ̃m,k =

∥∥y(t) − xk
∥∥
2

+
∥∥∥y(r)

m − xk

∥∥∥
2

ρ

Thus, the task of target localization is finding {xk}k that are
consistent with the ToA measurements {τ̃m,k}m,k. Consider
the ToA corresponding to an arbitrary target location x,

fm(x) =

∥∥y(t) − x
∥∥
2

+
∥∥∥y(r)

m − x
∥∥∥
2

ρ
, (1)

for m = 1, . . . , R. Then, the set Em,k = {x | fm(x) = τ̃m,k}
constitutes the uncertainty ellipsoid associated with a partic-
ular sensor m and a ToA τ̃m,k, i.e., all points in space that
are consistent with τ̃m,k. Localizing a source at xk associated
with ToAs τ̃1,k, . . . , τ̃R,k, corresponds to identifying the set

Ωk = ∩Rm=1Em,k, (2)

where the target is identifiable if Ωk is a single point. However,
in practice and in multi-target scenarios, two difficulties arise.
Firstly, some of the sets Ωk may be empty, i.e., there exists
no points in space consistent with the measurements. This
may be caused by, e.g., inexact knowledge of the transmitter
and sensor locations, in which the functions fm are only
approximately known, due to synchronization errors, or due to
inaccurate estimates of the ToAs. Secondly, if several targets
are present, it is a non-trivial task to even construct the sets
Ωk, since each sensor m registers a set of unlabeled ToAs
τ̃m,k, for k = 1, . . . ,K. Thus, in order to construct Ωk one
has to identify which set of ToAs that corresponds to each
target, which is a combinatorial problem. As to reflect this,
and to simplify notation, we relabel the ellipsoids according
to Eq , for q = 1, . . . , Q, where Q = KR. Correspondingly, let
the ToAs be τ̃q , q = 1, . . . , Q. Furthermore, in order to take
into account errors in the ToAs or, equivalently, the ellipsoids,
we model τq as random variables according to

τq ∼ p(· ; τ̃q), (3)

where p is a probability density function (pdf) parametrized by
the nominal τ̃q , i.e., the ToA without error.1 Accordingly, each

1As τq is commonly estimated by matched filtering [27], subject to
Gaussian measurement noise, p may for example be selected as corresponding
to a Gaussian distribution.

ellipsoid Eq is a stochastic set in Rd. Thus, the localization
problem corresponds to identifying {xk}Kk=1 from the set
{Eq}Qq=1. It may be noted that Q = KR can be relaxed to
Q ≤ KR as to cover scenarios in which some sensors may
fail to detect some of the targets, e.g., if targets do not reflect
the signal in all directions. Herein, we propose to view this as
a clustering problem and to address it via a convex relaxation
inspired by the concept of OMT.

III. CLUSTERING VIA OPTIMAL MASS TRANSPORT

Consider two non-negative vectors ν ∈ RN1
+ , µ ∈ RN2

+ such
that νT1N1

= µT1N2
, where 1N denotes a column vector of

ones of length N . Then, for a cost matrix C ∈ RN1×N2 the
discrete Monge-Kantorovich problem of OMT [15], [28] is
stated as

minimize
M∈RN1×N2

+

N1∑
n1=1

N2∑
n2=1

Cn1,n2Mn1,n2 = tr
(
CTM

)
subject to MT1N1

= µ , M1N2
= ν,

where tr (·) denotes the trace operation. Here, Cn1,n2 ∈ R
is the cost of transporting a unit mass from index n1 of
ν to index n2 of µ. The mass transported between these
two indices is Mn1,n2

∈ R+, where M is referred to as
the transport plan. The constraints ensure that ν and µ are
marginals of M, i.e., the solution models actual transport
between ν and µ. The objective tr

(
CTM

)
is the total cost

of transport between ν and µ. Herein, we propose to solve
the localization problem by modeling transport between a set
X = {x1, . . . ,xN} of candidate target locations xn ∈ Rd,
n = 1, . . . , N , for some N ∈ N, and the set of uncertainty
ellipsoids Eq , q = 1, . . . , Q. More specifically, we consider
transport between mass distributions ν ∈ RN+ and µ ∈ RQ+
corresponding to the sets of candidate targets and ellipsoids,
respectively. As we know that we have exactly Q ellipsoids,
and all measurements have to be accounted for, µ = 1Q. In
contrast to the standard OMT problem, the distribution ν is not
known; in fact, this is the quantity to be estimated. However,
some partial information of ν is available; as K targets are
sought, νT1N = K, and ν ≤ 1N , where the inequality is to
be interpreted elementwise, as each position can correspond
to at most one target. Letting c be a transport cost function
such that c(xn, Eq) is the cost of associating xn with Eq , and
setting Cn,q = c(xn, Eq), an OMT problem for localization
may be formulated as

minimize
M∈RN×Q

+ , ν∈RN+
tr
(
CTM

)
subject to MT1N = µ , M1Q ≤ Rν

M ≤ ν1TQ , νT1N = K , ν ≤ 1N ,

(4)

where it may be noted that both the transport plan M and
the mass distribution ν for the candidate grid are problem
variables. Strictly speaking, M models transport between µ
and Rν, as each target is expected to be associated with
R ellipsoids, corresponding to the number of receivers. This
is enforced through the constraint M1Q ≤ Rν, where the
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Fig. 1. Localization scenario with K = 2 targets and R = 3 receivers,
together with estimates provided by (4).

inequality allows for potentially missed detections or sensor
failures; if Q = RK, the inequality can be replaced by equal-
ity. Furthermore, the constraint M ≤ ν1TQ, i.e., Mn,q ≤ νn,
for all n and q, ensures that mass is only transported to
candidate targets xn that are assigned mass by ν. It may be
noted that (4) is a convex, in fact linear, program for any
choice of cost function c. Furthermore, it can be seen as a
convex relaxation of a corresponding combinatorial problem
in which integer constraints are imposed on the elements of
the mass distribution ν, i.e.,

minimize
M∈RN×Q

+ , ν∈RN+
tr
(
CTM

)
subject to MT1N = µ , M1Q ≤ Rν

M≤ν1TQ , ν
T1N =K , ν∈ {0, 1}N.

(5)

That is, the M solving (5) gives the optimal assignment of
K candidate target locations to the uncertainty ellipsoids,
where Mn,q = 1 if target n is assigned to ellipsoid q, and
0 otherwise. It is then clear that if exactly K elements of ν
solving (4) are non-zero, then this is also a solution to (5).
With this, it remains to select the cost function c defining the
cost matrix C. A natural choice would be

cEuclid(x, E) = min
x̃∈E
‖x− x̃‖22 ,

i.e., the squared distance to the closest, in the Euclidean sense,
point on the ellipsoid from x. With this choice, (5) finds the set
of points that are spatially closest to being consistent with the
measurements E1, . . . , EQ. However, if a statistical description
of the measurements, in the form of the pdf p, is available one
could let the cost be the negative log-likelihood

cp(x, E) = − ln p(τ ; f(x)), (6)

where τ and f is the ToA and delay function, as given in (1),
defining the ellipsoid E . Using cp, and for M? solving (5),
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Fig. 2. Zoomed-in portion of Figure 1.

the objective tr
(
CTM?

)
in (5) is then equal to the negative

of the maximum log-likelihood achievable for a collection of
K targets on the grid X . Furthermore,

tr
(
CTM?

)
≤ min

x1,...,xK∈X
−

K∑
k=1

R∑
m=1

ln p(τm,k; fm(xk)),

where the right hand side is the negative of the maximum
log-likelihood achievable on X when each target is associated
with the correct set of uncertainty ellipsoids, i.e., when the Ωk
in (2) are known. For spatially well-separated targets, we have
observed that the association determined by (5) corresponds to
the ground truth with high probability, i.e., (5) yields the MLE
restricted to X . Here, the notion of target separation is related
to the concentration of mass of the pdf p, i.e., to which extent
p is flat. We summarize the connection between the convex
program in (4) and the MLE as follows:
• Let the cost function c be as in (6), and assume that the

targets are well-separated with respect to the density p.
Let (M?,ν?) be the solution to (4). Then, if card (ν?) =
K, where card (ν?) is the number of non-zero elements
of ν?, the corresponding set of estimated target positions
is with high probability the MLE restricted to X .

Remark 1: In some applications, the distribution for the ToA
errors may come from a mix of distributions, and, in particular,
with heavy-tailed components. In this case, the negative log-
likelihood in (6) may be replaced by more robust alternatives
such as, e.g., Huber’s loss. It may be noted that this does not
affect the convexity of (4).

Remark 2: As to not be restricted to the grid X , the target
locations from the solution of (4) may be refined by a local
non-linear search. If M? yields the correct grouping of the
uncertainty ellipsoids, this corresponds to the MLE of the
target locations. The grid-based initial location estimates then
serves as a good initial point for the optimization routine. It
may be noted that the negative log-likelihood is (in general)
non-convex in the locations.
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Fig. 3. Localization performance of (4), as well as refined estimates obtained
using a local non-linear search, as a function of the standard deviation σ of the
Gaussian timing errors. Top panel: first target. Bottom panel: second target.

A localization scenario in d = 2 dimensions is shown in
Figure 1, displaying K = 2 reflecting targets, R = 3 receivers,
and the corresponding six uncertainty ellipses. As may be
noted, there are no points where any set of three ellipses
intersect, due to stochastic timing errors. Also shown are
the localization estimates obtained using (4), as well as the
corresponding grid X utilized, with Figure 2 providing a
zoomed-in view. As can be seen, the grid points closest to
the actual targets are selected by (4). For solving (4), CVX
[29] was used.

IV. NUMERICAL ILLUSTRATIONS

As to illustrate the proposed clustering and localization
method (4), consider two Monte Carlo simulations studies
based on the scenario in Figure 1. Letting the ToA errors be
Gaussian, we firstly consider varying the standard deviation,
σ, of the error. Secondly, for a fixed σ = 2× 10−2, we study
the performance of (4) as a function of the target separation,
moving the targets in Figure 1 closer and closer together. In
the first scenario, the target separation is fixed to 0.78. For
both scenarios, the square [2, 8]× [2, 8] is gridded as to yield
a grid X with resolution 6×10−2 in each dimension. For each
setting, i.e., for each σ and target separation, respectively, we
perform 1000 Monte Carlo simulations. In each simulation, the
nominal target positions are perturbed with a random vector
uniform on a square corresponding to the grid resolution as to
avoid biasing artefacts. Thus, the nominal target separations
correspond to the expected values of the actual target separa-
tion in each simulation. The root mean squared error (RMSE)
for the locations of the two targets are shown in Figures 3
and 4 for the scenarios varying σ and the target separation,
respectively. In both figures, the top and bottom panels display
the results for the first and second target, respectively. For
reference, the corresponding (square root) Cramér-Rao lower
bound (CRLB) is provided. The CRLB for the localization
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Fig. 4. Localization performance of (4), as well as refined estimates obtained
using a local non-linear search, as a function of the target separation. Top
panel: first target. Bottom panel: second target.
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Fig. 5. Ability of (4) to identify the correct number of targets and two
correctly cluster the uncertainty ellipses into two sets. Top panel: probability
of identifying exactly two targets. Bottom panel: probability of correctly
identifying the two sets of uncertainty ellipses.

error for the two respective targets is here given by tr
(
F−11

)
and tr

(
F−12

)
, respectively, where

Fk=

R∑
m=1

E
[
∇xln p(τm,k;fm(x))∇xln p(τm,k;fm(x))T

∣∣
x=xk

]
,

for k = 1, 2, is the Fisher information matrix,

p(τ ; fm(x)) =
1√

2πσ2
e−

1
2σ2

(τ−fm(x))2 ,

and where E denotes the expectation operator. Also, as to
illustrate the connection between (4) and the MLE of the target
locations, the RMSE obtained by refining the estimates from
(4) using a local non-linear search implemented by Matlab’s
fminsearch is also shown. As may be noted from Figure 3, as
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the standard deviation of the ToA errors decreases, the grid-
based estimates from (4) come close enough to the maximum
of the log-likelihood for the refinement to correspond to the
MLE. In this scenario, the uncertainty ellipses are, except in a
few cases, associated to the correct targets. In contrast, when
decreasing the distance between the targets, the probability of
erroneous clustering of the ellipses increases. This is shown in
Figure 5, displaying the probability of identifying exactly two
targets and the probability of correctly clustering the ellipses
to their corresponding targets, in the top and bottom panels,
respectively. As may be noted from Figures 4 and 5, as the
probability of correct association approaches 1, the RMSE also
approaches the CRLB.

V. CONCLUSIONS

In this work, we have presented a convex method for
simultaneous ToA measurement clustering and target local-
ization in multi-target settings. By utilizing the concept of
optimal mass transport, ToAs are clustered together as to
minimize the total cost of transport to a set of candidate
target locations. When the cost of transport is selected as
the negative log-likelihood corresponding to the ToA error,
the proposed method approximates the maximum likelihood
estimator restricted to a discrete grid. We have seen that
for not too closely spaced targets, this allows for finding
statistically efficient estimates of the target locations, without
prior knowledge of the ToA labels.
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