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Abstract—The method presented in this paper for semantic
segmentation of multiresolution remote sensing images involves
convolutional neural networks (CNNs), in particular fully convo-
lutional networks (FCNs), and hierarchical probabilistic graphi-
cal models (PGMs). These approaches are combined to overcome
the limitations in classification accuracy of CNNs for small or
non-exhaustive ground truth (GT) datasets. Hierarchical PGMs,
e.g., hierarchical Markov random fields (MRFs), are structured
output learning models that exploit information contained at
different image scales. This perfectly matches the intrinsically
multiscale behavior of the processes of a CNN (e.g., pooling
layers). The framework consists of a hierarchical MRF on a
quadtree and a planar Markov model on each layer, modeling the
interactions among pixels and accounting for both the multiscale
and the spatial-contextual information. The marginal posterior
mode criterion is used for inference. The adopted FCN is the U-
Net and the experimental validation is conducted on the ISPRS
2D Semantic Labeling Challenge Vaihingen dataset, with some
modifications to approach the case of scarce GTs and to assess the
classification accuracy of the proposed technique. The proposed
framework attains a higher recall compared to the considered
FCNs, progressively more relevant as the training set is further
from the ideal case of exhaustive GTs.

Index Terms—Remote sensing, semantic segmentation, mul-
tiresolution, hierarchical PGM, CNN.

I. INTRODUCTION

Semantic labeling of remote sensing images aims at as-
signing each pixel in an image to a semantic class, typically
related to land cover or land use. A challenging problem in
this field is the possibility to exploit information from multi-
modal data, (e.g., multiview, multiscale, and multiresolution
information) [1]. Techniques based on deep learning reach
high performances, with very high per-pixel accuracies and
a good reproduction of the shapes of the object segmented
[2], [3]. Fully convolutional networks (FCNs) [4], for example
the U-Net [5], are currently the most popular models. Their
encoder-decoder architecture allows to perform pixelwise im-
age classification very efficiently [6]. This is because the upper
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layers of such models can capture shape statistics and inject
them in the output maps [7]. However, to correctly model those
statistics, neural networks require big datasets with exhaustive
ground truths, often available in benchmark datasets and rarely
for real-world mapping applications [7]. Furthermore, their
generation requires a lot of work and is time consuming and
expensive.

On one hand, models trained with small datasets and sparse
ground truths usually produce outputs with poor geometrical
fidelity [7]. On the other hand, structured output learning
models, such as probabilistic graphical models (PGMs) [8]
are able to exploit spatial information contained in the images.
Markov models defined on planar or multilayer graphs [9], are
examples of PGMs. For most categories of Markov random
fields (MRFs), Markovianity is formulated with respect to a
neighborhood of each node (which corresponds to a pixel) of
the related graph. This determines a difference with respect
to the well-known Markov chains for one dimensional data
analysis, for which Markovianity is expressed with respect
to the past of each pixel, which implies a causal behavior.
This causality property, when satisfied, is computationally ad-
vantageous because it makes it possible to formulate efficient
inference procedures. Markov models for two-dimensional
image analysis such as hierarchical MRFs on quadtrees [10],
[11] are proven to be causal and able to capture relations
among pixels located in images at different resolutions through
the use of a Markov chain. But this model does not capture
spatial contextual information among the pixels inside each
lattice [10], which could be interesting to characterize when
dealing with neural networks trained with sparse ground truths,
thus having problems in segmenting object shapes. In recent
approaches [12], this hierarchical model is combined with a
Markov chain on each of its layers, postulating Markovianity
with respect to the neighborhood of pixels defined by a
scanning trajectory.

The use of multiresolution information is proven to favor ac-
curacy and spatial precision for the task of image classification
thanks to the robustness to noise and outliers of the coarser
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resolutions and the spatial details of the finer ones [1]. In this
particular application, multiresolution information is brought
by the intermediate layers of an FCN [13], which involve
several multiscale processing stages, through convolutions
and pooling operations. This structure matches perfectly the
topology of a hierarchical Markov model built on quadtrees
[8], [11].

The contribution of this paper is twofold: firstly, a new
method involving hierarchical PGMs and FCNs is developed
to perform semantic segmentation of multiresolution remote
sensing images by exploiting the intrinsically hierarchical
behavior of CNNs; secondly, it is shown that structured output
learning methods, when combined with neural networks, can
guarantee improvements in regularity and shape segmentation
in the case of sparse ground truths, where spatial class bound-
aries may not be present.

The first step involves the implementation of the U-Net. Its
activations at different resolutions are inserted in a quadtree
with the multispectral channels of the original image, to
develop the hierarchical Markov model. Multiresolution and
spatial information is kept into account by Markov chains
formulated across the levels of the quadtree and within each
layer. This joint strategy benefits from the spatial information
within each layer, useful for semantic segmentation of remote
sensing images, and from the multiscale information carried
by the activations of the network at different resolutions. The
model is combined with decision tree ensembles, such as
random forest (RF) [14], to estimate the pixelwise posterior
probabilities necessary for the inference on the PGM, which
is accomplished through the marginal posterior mode (MPM)
criterion. The architecture is shown in Fig. 1.

II. METHODOLOGY

A. Hierarchical Markov model

The proposed PGM consists of a hierarchical MRF which
models multiresolution information across the different layers
of the quadtree through a Markov chain, combined with a
planar Markov model based on a Markov chain with respect
to a 1D scan of the pixel lattice, which models contextual
spatial information. Consider {S0, S1, . . . , SL}, S ⊂ Z2, as
a set of pixel lattices organized as a quadtree, where each
pixel s ∈ S` has a parent site s− ∈ S`−1 and four children
sites s+ ⊂ S`+1 (` = 0, 1, . . . , L), with the exception of the
leaf layer, not having any children site, and the root layer, not
having a parent site.

Each pixel s ∈ S is associated with a discrete class label
xs in a finite set Ω of M classes (xs ∈ Ω, s ∈ S), thus
X = {xs}s∈S is a hierarchical MRF if [9], [10]

P (X `|X `−1,X `−2, . . . ,X 0) = P (X `|X `−1) (1)

where X ` = {xs}s∈S` , (` = 1, 2, . . . , L), and Markovianity
holds across the scales. In this hierarchical model, the tran-
sition probabilities are also assumed to factorize [10], so the
result is

P (X `|X `−1) =
∏
s∈S`

P (xs|xs−). (2)

To model spatial information in each pixel lattice, consider a
rectangular lattice R and an order relation ≺ which defines
a neighborhood in R introducing the concept of “past”. The
pixels r ∈ R respecting the relation r ≺ s are the causal past
neighbors of pixel s ∈ R. The relation r - s indicates that r
is a past neighbor of s. Formally, {r ∈ R : r - s} ( {r ∈
R : r ≺ s}, which means that the past neighbors of s ∈ R are
included in the past of s but constitute a strict subset of its
entire past. The Markovianity constrained to the past of each
pixel holds for X if and only if [15]–[17]:

P (xs|xr, r ≺ s) = P (xs|xr, r - s). (3)

In the proposed approach, the total order relation is defined
by a pixel visiting scheme involving the combination of four
zig-zag scans and two Hilbert curve scans. More details on the
pixel scan trajectory can be found in [11], [12]. Equations (1)-
(3) are assumed to hold, thus defining a framework modeling
the inter-layer and intra-layer dependencies between pixels.
Conditional independence is another important concept as it
can be used to decompose complex probability distributions
into a product of factors, each consisting of the subset of
corresponding random variables. Consider Y = {ys}s∈S as the
random field of the observations associated with all the pixels
in the quadtree, the observation model P (Y|X ) is defined by
a pixelwise factorization

P (Y|X ) =
∏
s∈S

P (ys|xs) =

L∏
`=0

∏
s∈S`

P (ys|xs). (4)

B. Fully convolutional network

FCNs are neural networks that do not contain any dense
layer [13], thus having the possibility to obtain an output
with the same size of the input. A very popular example of
FCN is the U-Net [5], which uses a bottleneck architecture,
with pooling and un-pooling layers performing downsampling
and upsampling processes, respectively, in order to achieve a
pixelwise semantic segmentation of the original input image,
with the same resolution. The multiscale formulation of a
hierarchical MRF on a quadtree with pixel lattices with a
power-of-2 relationship between layers directly matches the
resolutions obtained in the intermediate layers of a convo-
lutional network through pooling layers of size 2 × 2. The
architecture is made up by 5 convolutional blocks, each with
a double convolutional layer with kernel of size 3 × 3 and
zero padding of dimension 1, followed by ReLU activation,
batch normalization and pooling layers. At each downsampling
step, the number of filters is doubled. A pixelwise softmax
[13] combined with the cross-entropy loss function [18] is
employed over the final feature map.

The activations of the network at three different resolutions
are inserted in the quadtree through three skip connections,
to be connected to the hierarchical Markov model in order to
exploit the multiscale information.

Any kind of FCN can be combined with the PGM, thus
guaranteeing the flexibility of the proposed model. Other
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Fig. 1. Overall architecture of the proposed method.

architectures such as SegNet [19] or DeepLabV3+ [20] were
considered, but the results obtained were comparable to the
ones of U-Net, which was therefore chosen for the experi-
mentation.

C. Inference with the MPM criterion

Since the proposed framework is causal both across the
scales and within each scale, it is possible to use the MPM cri-
terion, which is recursive when formulated on quadtrees [10].
This criterion assigns each pixel s ∈ S the class label xs that
maximizes P (xs|Y) [9] through the following steps

P (xs) =
∑

xs−∈Ω

P (xs|xs−)P (xs−), (5)

P (xs|yds ) ∝ P (xs|ys)
∏
t∈s+

∑
xt∈Ω

P (xt|ydt )P (xt|xs)
P (xt)

, (6)

P (xs|xcs, yds ) ∝ P (xs|yds )P (xs|xs−)P (xs−)

P (xs)ns
·

·
∏
r-s

P (xs|xr)P (xr), (7)

P (xs|Y) =
∑
xc
s

P (xs|xcs, yds )P (xs− |Y)
∏
r-s

P (xr|Y), (8)

with yds containing the observations of all descendants of s
in the tree (including s itself), xcs the labels of all pixels
connected to s (i.e., xs− and {xr}r-s), and ns being the
number of such pixels. Details regarding the recursive steps
are shown in [11], [12]. Equation (5) is an application of the
total probability theorem, and the proof of (6) is in [10] for a

hierarchical MRF. Finally, (7) and (8) hold with the following
conditional independence assumptions:

A1 : P (xs|xcs,Y) = P (xs|xcs, yds ) (9)

A2 : P (xcs|Y) = P (xs− |Y)
∏
r-s

P (xr|Y) (10)

A3 : P (xcs|xs, yds ) = P (xcs|xs) = P (xs− |xs)
∏
r-s

P (xr|xs)

(11)

More details can be found in [11], [12]. The first assumption
(A1) implies that, given the parent and sibling labels, the label
of s only depends on the observation of its descendants. Given
the observation field, the parent and the sibling labels of s are
conditionally independent, and the parent and sibling labels of
s, when conditioned to the label of s, are independent on the
observations of the descendants of s and mutually indepen-
dent, according to assumptions A2 and A3, respectively. The
pixelwise posteriors P (xs|ys) in (6) represent the observations
in the recursion and are estimated by the RF [14] classifier.

III. EXPERIMENTAL RESULTS

All the experiments described in this section were run on a
graphics processing unit (GPU) from Google Colab.

The method was tested on the Vaihingen image set of the
ISPRS 2D Semantic Labeling Challenge1 which consists of
very high-resolution (VHR) aerial images over the city of
Vaihingen in Germany and was provided by the German Soci-
ety for Photogrammetry, Remote Sensing, and Geoinformation

1https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-
label-vaihingen/
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(DGPF). The resolution is 9 cm/pixel and the classes are six:
buildings, impervious surfaces (e.g., roads), low vegetation,
tree, car, and clutter. The last class comprehends all the
instances not belonging to the other classes, thus being highly
heterogeneous and of relatively limited interest. For this reason
it was excluded from the experimentation.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Ground truth and classification maps: (a) original training set,
(b) eroded training set, (c) detail of the original training set, (d) detail of
the eroded training set, (e) test set; classification maps: (f) RF, (g) U-Net,
and (h) the proposed method (“Ver. 3”). Classes: buildings , impervious ,

vegetation , tree , car .

Tiles consist of near-InfraRed-Red-Green (IRRG) images
and digital surface model (DSM) data extracted from a LiDAR
point cloud. Within these 16 images, 12 have been chosen
for training and 4 for testing the network. The accuracy
metrics examined in the following are: overall accuracy (OA),
precision, recall [22], Cohen’s Kappa coefficient [23], and F1
score.

The proposed method depends on three parameters: the
across-scale transition probability ϑ, the spatial transition
probability ψ (both with values in the range [0, 1], defined by
the Bouman’s model [12], [24]), and the number of resolutions
L. ϑ and ψ were fixed to 0.82, since preliminary experiments
(omitted for brevity) suggested that higher or lower values
attained worst results, and L = 4.

In order to test the pipeline of the proposed approach and
compare its results with the ones of an FCN used by itself, sev-
eral training conditions were considered. The dataset chosen
is an ideal one, with exhaustive pixelwise ground truths. Some
modifications were made to the training dataset, involving
morphological operators or a percentage of unlabeled pixels, to
approximate the ground truths available for real applications.

The posterior probabilities input to the hierarchical PGM are
estimated by an RF classifier that works on the activations of
the network. In the case of the finest resolution, i.e., the pixel
lattice at the base of the quadtree, four variants of the proposed
method have been formulated and experimented upon. In the
first option, RF is used to predict pixelwise posteriors from the
IRRG channels of the input image directly (called “Ver. 1” in
the following). However, the posterior probabilities obtained
by RF for class 5, “car”, at resolution 0, do not appear to
be defined well enough to provide an appropriate estimation
of the instances of class 5 in the resulting images. This is
consistent with the difficulty to discriminate the object class
“car” using a purely pixelwise classifier, such as RF, fed with
only three visible channels. As a variant, the posterior proba-
bilities of resolution 0, estimated by the RF, are substituted
with the ones obtained in the output layer of the network
(“Ver. 2”). The two other approaches only focused on the
posterior probabilities of class “car”, either substituting the
RF estimation with the network posteriors (“Ver. 3”), or with
a nearest neighbour resampling of the same class in the lattice
above in the quadtree (“Ver. 4”). The objective of these two
formulations is to focus on the discrimination of the minority
classes (e.g., “tree” and “car”).

The quantitative results shown in Table I confirm that the
proposed approach obtains higher accuracies for the afore-
mentioned minority classes, and these improvements are more
remarkable the more the input data approach the sparsely an-
notated datasets available for land-cover mapping applications.
For example, with a 70% of unlabeled pixels there is an overall
improvement in accuracy for the classification, especially
noticeable for the class “vegetation”, with an increase of 50%
with respect to the results obtained with the simple U-Net.
In all the considered situations, the recall of the proposed
framework is higher than the one of the standard FCNs. In
Fig. 2, the comparison between the images obtained with the
network (Fig. 2(g)) and with the proposed method (Fig. 2(h))
clearly shows that the full proposed pipeline does a better job
in the semantic segmentation of the edges between classes.
Furthermore, the representation of small classes, such as “car”,
appears to have improved as well.

The proposed method was compared to the recently pro-
posed “FESTA” method, where a network is trained with
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TABLE I
RESULTS OF THE PROPOSED METHOD APPLIED ON THE TEST SET WITH THE FOUR DIFFERENT CONFIGURATIONS AND COMPARED TO OTHER FCNS.

Full dataset building impervious vegetation tree car overall acc. recall precision Cohen’s κ F1 score
Standard U-Net 0.92 0.83 0.71 0.92 0.74 0.85 0.83 0.84 0.79 0.83
Standard SegNet 0.90 0.73 0.73 0.92 0.67 0.83 0.79 0.81 0.76 0.80

DeepLabV3+ [20] 0.91 0.87 0.66 0.90 0.80 0.84 0.83 0.82 0.78 0.82
Proposed method, “Ver. 1” (U-Net) 0.85 0.82 0.69 0.92 0.38 0.81 0.73 0.78 0.74 0.75
Proposed method, “Ver. 2” (U-Net) 0.87 0.84 0.71 0.92 0.89 0.82 0.81 0.78 0.75 0.80
Proposed method, “Ver. 3” (U-Net) 0.84 0.81 0.68 0.92 0.86 0.81 0.82 0.72 0.75 0.77
Proposed method, “Ver. 4” (U-Net) 0.84 0.82 0.69 0.92 0.88 0.81 0.83 0.77 0.75 0.80

70% of unlabeled pixels building impervious vegetation tree car overall acc. recall precision Cohen’s κ F1 score
Standard U-Net 0.83 0.92 0.55 0.87 0.80 0.80 0.79 0.74 0.72 0.76

Proposed method, “Ver. 1” (U-Net) 0.80 0.83 0.68 0.89 0.36 0.79 0.71 0.70 0.72 0.70
Proposed method, “Ver. 2” (U-Net) 0.82 0.85 0.76 0.86 0.96 0.82 0.85 0.72 0.76 0.78
Proposed method, “Ver. 3” (U-Net) 0.72 0.82 0.67 0.88 0.99 0.76 0.82 0.68 0.69 0.74
Proposed method, “Ver. 4” (U-Net) 0.78 0.83 0.68 0.89 0.90 0.79 0.81 0.71 0.71 0.76

FESTA [21] 0.80 0.91 0.67 0.91 0.63 0.82 0.77 0.82 0.73 0.79

a “scribbled” GT and a loss term that favors regularization
in the spatial and feature domains [21]. The results show
that both approaches mitigated the effects of sparse GT,
although the proposed method obtained higher or the same
per-class accuracy (especially for “cars”) and required shorter
computation times.

IV. CONCLUSION

In this paper, a new framework to tackle semantic segmen-
tation of remote sensing images based on FCNs, hierarchical
Markov models, and random forest has been proposed. The
results are interesting: our approach surpasses in recall U-
Net, thus suggesting the capability of this approach to exploit
spatial information through the hierarchical Markov model and
mitigating the limitations of the neural networks trained with
a small dataset. The proposed pipeline outperforms the state-
of-the-art especially in the classification of minority classes.

Perspectives for future work involve the substitution of the
random forest classifier with feed-forward neural networks to
compute the pixelwise posterior probabilities. Moreover, the
proposed method could be tested with various datasets related
to real-world applications, such as disaster management, with
different complexity and features, so to further investigate its
generalization capabilities.
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