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Abstract—In state-of-art radar classification tasks the raw
time domain ADC data is transformed to frequency domain
wherein the target is detected. Feature data, such as the micro-
Doppler signature, is extracted for classification of e.g. a per-
formed gesture or a person based on its gait. However, the
transformation into frequency domain using short-time Fourier
transform resulting in erroneous target detection due to super-
position of target components thus leading to sub-optimal feature
for subsequent classification task. Thus, in this paper we propose
a target feature extraction approach that operates directly on
2D time domain radar data by using a complex-valued adaptive
2D sinc filter. The proposed approach tracks the target’s slow-
time and fast-time frequencies by a regulation loop, which
progressively adjusts the filter’s center frequency to the target
location. We demonstrate that the proposed approach extracts
better features in both single- and multi-target scenarios, leading
to improved classification accuracy in gait classification problems
using radars. Furthermore, the proposed time domain feature
extraction approach facilitates the use of a parametric neural
network that works directly on time domain data.

Index Terms—adaptive sinc filter, feature extraction, radar
classification, time domain processing

I. INTRODUCTION

In the last few years, technical progress in radar technology
has led to miniaturized and highly accurate radar sensors.
This development leads to a number of new possibilities
especially for short-range consumer and industrial applications
[1]. Automatic light and air conditioning based on the presence
and position of people help to save energy. Moreover, activity
detection and elderly people supervision are emerging smart
home technologies. The usage of camera based solutions
lead to major invasions in the personal privacy and thus
are unsuitable for such applications. Recent advancements in
silicon—antenna in-package together with deep learning—has
made radars a promising technology for such applications.

The vast majority of papers dealing with various radar based
classification tasks, e.g. human activity recognition, gesture
sensing or elderly fall detection, use pre-processed data such as
range, Doppler or angle spectrograms [2], [3], range-Doppler
map (RDM) [4] or points clouds [5], [6] typically along
with a deep learning classifier. When using spectrograms or
RDMs, the radar signal can be interpreted as images and
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advanced deep learning methods from computer vision can
be applied. Nonetheless, treating the radar signals as images,
instead of as time domain signals as they are by nature, is not
efficient. Moreover, the pre-processing itself can be computa-
tionally intensive and is a static and manually designed feature
extraction chain that can not be optimized during training.
Therefore, there has been an increasing interest in training
neural networks with time domain data in recent years [7]-
[9].

Furthermore, feature extraction on time domain radar data
leads to superior features for classification compared to feature
extraction on frequency domain data where erroneous features
caused by a super-position of target components can occur.
Moreover, the large body of radar classification works dealing
with gesture or activity recognition do not address the issue of
interference, although it is essential for real world systems. In
[10] the impact of interference was discussed, but no solution
provided. Other papers aim to mitigate interference in the
deep learning model itself. In [11] the model was trained
using interfered data, which in turn makes it not robust against
unseen disturbances. In [12] a self-attention mechanism using
unguided spatio-temporal learning was used to focus only on
the target of interest for classification. However, extracting the
information of the right target and removing the surrounding
before feeding the signal into a deep neural network would
further reduce the chance of miss-classification.

To address the aforementioned challenges, complex-valued
2D adaptive sinc filtering on radar time domain data by
regulation loop for target detection and feature extraction is
proposed. The proposed approach while comparing it to the
state-of-art approach for target detection and feature extraction
is outlined in Fig. 1. We demonstrate the superior target
detection and feature extraction performance of the proposed
solution by reporting the classification accuracy using a radar
gait classification task.

II. RADAR SYSTEM AND SIGNAL
A. Radar System

The proposed approach is evaluated using Infineon’s
BGT60TRI3C chipset. It is a miniaturized and power opti-
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(a) Conventional target extraction algorithm.
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(b) Proposed target tracking algorithm using adaptive Sinc-filters.

Fig. 1: Block diagram of (a) the conventional and (b) the
proposed target feature extraction algorithm.

mized frequency modulated continuous wave (FMCW) radar
including on-chip antennas resulting in a small size. In Fig. 2
the radar chipset is depicted in comparison to an one euro
coin.

The radar is configured to send chirps within a frequency
range starting from fu;, = 59.5 GHz to fi.x = 61.5GHz.
Thus, a frequency bandwidth B = 2 GHz is covered, which
results in a range resolution of ér = 7.5 cm. Moreover, the
radar sends bursts of chirps, which are referred as data frames.
A data frame consists of N, = 64 chirps with a chirp repetition
time 7cgy or 400 ms. This allows to unambiguously observe a
maximum absolute frequency vy of 3.125 ms~!. The back-
scattered signal is down converted to baseband by mixing with
an replica of the transmit signal. The anti-aliasing filter has a
bandwidth of 600kHz. A sampling rate of f; = 2MHz is
applied for the analog-to-digital converter (ADC).

Fig. 2: Infineon’s BGT60TRI13C radar chipset in comparison
to an one euro coin

B. Radar Signal Description

As derived in [13] the two dimensional time domain signal
for a single receiving antenna is described as
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where A is the voltage amplitude, B is the chirp bandwidth,
dy, is the radial distance of target n to the radar, fj is the center

frequency, c is the speed of light, T, is the chirp time and #y
and tg are the slow- and fast-time, respectively.

The actually received signal is a superposition of the back-
scattered signal of multiple targets. Thus, the final signal
representation is defined as

S=>" Suldn tr ta) )
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where N is a set of targets. Since the processing is performed
on the ADC signal, the discretized signal is defined as

S=>" Suldn, k,1] 3)

neN

where k and [ are swiping from 0 to Ny and N, respectively.

C. Conventional Signal Processing

For indoor applications an important processing step is to
apply a moving target indication, which means that the back-
scattered signal of static targets is removed. Moreover, there
is a leakage between transmit and receive antenna which adds
low frequency perturbations within the chirps. A simple but
effective approach to mitigate both issues is to remove first
the mean within each chirp and then subtract the mean in
slow-time direction, which means across the chirps.

The most interesting information within a radar signal when
it comes to activity classification, as which also the gait
classification can be seen in a wide sense, is the velocity
profile. As derived in sec. II-B the velocity information is
encoded in the frequency of the signal. Thus, a very common
processing step is to apply a 2D short-time Fourier transform
(STFT). The 2D STFT is defined as

vrom[d, 7] =
SN SN wlm, nls[m, nje TR
4)

where w[m,n] is a 2D window function, s[m,n] is the mean
removed ADC data of a data frame. The indices n, m sweep
along the fast-time and slow-time axis, while r, d sweep along
the range and Doppler axes. N. and Ny are number of chirps
and samples respectively.

For classifying different activities or gaits it is irrelevant at
which range the person walks. Thus, in case there is only a
single target in the field of view, the range information can
be removed by integrating the RDM along range direction
without losing any information, but significantly reducing the
data size. The integration is defined as

Ny
DS[d] = vromld, r]. (5)
r=1

III. PROPOSED SOLUTION

The classification accuracy can highly be impacted by
distortions like a person walking by or a curtain waving in the
background. By following the conventional processing steps
the entire range-Doppler space is equally present in the RDM.
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Consequently, also undesired distortions are clearly visible in
the signal. Furthermore, target detection via peak detection or
constant false alarm rate (CFAR) on RDM lead to spurious
peaks and erroneous peaks due to transformation of super-
posed target components leading to sub-optimal feature extrac-
tions. To address the above issues of multi-target interference
and sub-optimal feature extractions, we propose in this paper a
regulation mechanism to track the target’s fast-time and slow-
time frequencies directly on time domain data using a 2D sinc
filter.

A. Initial Target Detection

To detect a target initially a simple thresholding on the mean
removed signal is applied. If the signal power surpasses the
threshold a STFT is applied and the bin with the highest
amplitude is selected as target bin. The center frequencies
(fast-time and slow-time or range and Doppler) of this range-
Doppler bin is then chosen as initial center frequency of the
2D sinc filter. The 2D sinc filter is the outer product of two
complex valued 1D sinc filters. A complex valued 1D sinc
filter is defined as

h[n7 fes b] =
2b sinc(2bt) (cos(fenT') + jsin(fenT)) (6)
with n € [ 5], [§]]. where NV is the filter length, T the
sampling interval, f, the center frequency and b the bandwidth.
Thus the complex valued 2D sinc filter is defined as

SinCZD [na m, fC,St7 fc,flv bsta bft] -
h[m fc,sta bst]h[m7 fC,fta bft} (7

whith n € [—[Z:],[%]] and m € [~|%:],|%]]. The
bandwidths are constantly set to a normalized frequency
bandwidth of 0.4 for Doppler frequency and 0.2 for range
frequency, which is an empirically found value that is large
enough to cover the range and Doppler variation of a human
while walking.

B. Adaptive 2D Sinc Filters

By walking the person is changing its range position relative
to the radar. Moreover, the walking speed might change
when stopping, turning around and moving into the opposite
direction. Hence, the 2D sinc filter has to follow the target’s
movements. To do so, the fast-time center frequency as well
as the slow-time center frequency is adapted according to
the current observed signal. This is done for each dimension
independently, but in the same manner.

First, a complex valued 2D sinc filter is defined with an
filter length of 128 in range direction, which is equal to
the number of samples per chirp, and a filter length of 32
in Doppler direction, which is smaller than the number of
chirps within a data frame. The raw signal of a data frame
is convolved with this filter without using zero padding in
range direction. Thus, only a single value in range direction
is obtained. However, along slow-time zero padding is used
and thus multiple points are obtained in slow-time dimension.

Consequently, the 2D convolution results in a one dimensional
slow-time signal within the range frequency region defined by
the 2D sinc filter. The same procedure is done by using a
2D sinc filter with filter length of 32 in range direction and
64 in Doppler direction. Now zero padding is only applied in
range direction to obtain a 1D range signal within the Doppler
frequency region defined by the fast-time center frequency and
bandwidth of the 2D sinc filter.

The average angular velocity for each complex 1D signal s
is determined using

1 N-1
e = 7 2 sl — oGl =1 ®

where ¢(.) denotes the phase. Based on the average angular
velocity the center frequency for the new time step can be
updated by

wav
fc, HAt — 27Tg (9)

for slow and fast-time independently in the same manner. By
this the 2D sinc filter is basically hunting the target in range-
Doppler domain by completely operating on the raw time
domain data. In Fig. 3 the adaptive sinc filtering approach
is visualized. The RDMs at three different time steps from a
recording of a single person approaching the radar and walking
away from it along with the frequency response of the adaptive
tracking sinc filter is shown.

(a) RDM 1 (b) RDM 2 (c) RDM 3

Fig. 3: Target tracking visualized. A person is approaching
the radar and moves away again. The figures shows the RDM
together with the frequency response of the tracking sinc filter
at three different time steps.

The 1D Doppler signal after filtering contains rich features
about the targets movements. By applying a STFT on each 1D
Doppler signal and stacking the signals of multiple time steps
together the Doppler spectrogram (DS) can be generated.

IV. RESULTS AND DISCUSSION

To evaluate the proposed solution, two different experiments
were performed. First, a gait classification with 8 different
persons was done and second the advantage of the proposed
method compared to a conventional state-of-art processing
using peak detection for two-person scenarios was evaluated.

A. Experimental Setup

The sensor was placed on a tripod at a height of about
1m and configured with the settings shown in sec. II-A. The
recorded persons were walking up and down in front of the
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sensor in a range from 1 m to 5m. For the gait classification
in total 8 different volunteers were recorded. It was ensured
that there are no distortions in the background during the
recordings. If the signal power exceeds a certain threshold,
then a target is detected and the recording starts. If the signal
power drops below the threshold or if a maximum number of
200 data frames is reached, then the recording stops.

B. Signal Quality

By first filtering the signal in time domain and then
extracting the features, the signal quality can be improved
compared to transforming the signal first to frequency domain
and then extracting the features. This is shown by evaluating
the peak signal to noise ratio (PSNR) on the target extracted
DSs for the conventional peak detection and the proposed
adaptive sinc filter approach. To evaluate the PSNR, the 10%
highest amplitude values are chosen as signal values, and
the 80% lowest amplitude values are used for estimating the
noise level. Therefore, a gap of 10% of the samples is used
as safety margin between signal or noise signal parts. The
average PSNR of the conventional algorithm on the entire gait
classification data set is 36.1 dB. With pre-filtering the time
domain signal and then transforming it to frequency domain
a PSNR increase of 2.6 dB up to 38.7dB was achieved.

C. Tracking Evaluation

A comparison of a conventional peak detection on the pre-
processed RDM with the proposed 2D adaptive sinc filter
tracking is performed. For this the center frequencies of the
peak target detected in the RDM are plotted along with the
center frequencies followed by the proposed adaptive sinc
filter approach in Fig. 4. In Fig. 4 (a) the tracks are shown
for a single target in the field of view. For this setting both
approaches can track the target well. However, in Fig. 4 (b)
the tracks are shown for a two target scenario, where the two
persons were walking inversely up and down. The proposed
adaptive sinc filter is able to follow the intended target,
whereas the simple peak detection switches back and forth
between the two targets depending on which one back-scatters
the most energy, which is usually the closer target. The lower
variation of the detected target peaks along the 2D frequency
represents an improved target detection by the proposed sinc
filter approach.

The target switching problem is additionally visualized
using RDMs in Fig. 5. The top row shows the raw RDMs.
In the first time step target 1 is close to the radar and
moving away from it. In the second time step a second target
approaching the radar can be seen in the RDM. Finally, in the
third time step target two is closer to the radar than target two.
The second row shows the target detected by a peak detection
mechanism on the RDM. The bottom row shows the RDM
on the basis of the pre-filtered signal using the adaptive sinc
filter. While the area of interest determined by peak detection
jumps to the second target as soon as it is closer to the radar
and therefore back-scattering more signal power, the adaptive
sinc filter successfully continues to track target 1.
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Fig. 4: Tracked center frequencies in range-Doppler domain
for a single (a) and two (b) person scenario. The Blue line
shows the track of the peak detection approach and orange
the proposed approach.
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Fig. 5: Target tracking with a second person approaching the
sensor. Target 1 is the intended target to track. Correct target
detection is visualized in green and the miss-detection of target
2 is visualized with red color.

Additionally, in Fig. 6 the same scene is visualized with
DSs. In Fig. 6 (a) the DS generated from the unfiltered signal
is given. The two persons walking up and down in opposite
directions can clearly be seen. In Fig. 6 (b) the DS generated
from the extracted signal of the target found by peak detection
is shown. Obviously, the target region switches to the closer
target, which can be seen in the DS. In comparison, in
Fig. 6 (c), the DS generated from the adaptive sinc filtered sig-
nal is depicted. Only the signal of the intended target is within
the DS and the signal of the second target was successfully
filtered out. Moreover, the update step is a continuous function,
the center frequencies are continuous. Due to this and the fact
that the filter edge is also continuous, the resulting DS is much
smoother than the one obtained from peak detection where the
center frequencies are limited to the discrete range-Doppler
bins.

1748



(a) Unfiltered Doppler spectrogram

WA,

(b) Doppler spectrogram generated
from peak extracted RDM signal

(c) Doppler spectrogram generated
from sinc-filered signal

Fig. 6: Doppler spectrograms comparison of the different
processing approaches.

D. Gait classification

A gait classification task it used to show the advantage of
keeping the data in time domain during target extraction. This
gives the possibility of integrating the pre-processing into the
neural network.

There are 200 recordings of each person with unequal
length. However, since the neural network requires a fixed
input size, all samples were zero padded to a equal number of
200 time steps. The final input shape is therefore (200, 64, 1),
where 200 is the number of data frames or time steps, 64 is
either the number of complex valued Doppler signal points or
the number of Doppler bins depending on whether raw time
domain data or pre-processed DS are used as network input.
For training 80 % or 1280 samples are randomly chosen and
for validation the remaining 20 % of the samples are used.

The network consists of four Inception vl modules [14]
followed by 2 fully connected layers of size 128 and 64.
After each fully connected layer, a dropout with a rate of
0.4 is applied and after each inception module the data is
compressed using max pooling of size (2,2). Per path in
the four inception modules 4, 8, 16 and 32 filter kernels
are applied respectively. When the time domain data is fed
into the network, additionally a complex frequency extraction
layer (CFEL) as proposed in [13] is used at the beginning
of the neural network. The network was initialized with the
’glorot’ inizialization scheme and focal loss in combination
with rectified adam as optimizer was used for training. A 5-
fold cross validation was performed to get more stable or
meaningful results. The evaluated approaches are using the
unfiltered DS, the DS computed from the previous sinc-filtered
signal and the sinc-filtered signal directly in combination
with a CFEL at the beginning of the network. In tab. I the
accuracy and standard deviation obtained from the 5 runs of
the different approaches is shown. The approach integrating
the pre-processing into the neural network itself shows the
best results and thus proves the advantage of using raw data
directly as input.

V. CONCLUSION

The paper presents a complex-valued adaptive 2D sinc
filter applied directly on the radar time domain data, which
leads to better target detection and feature extraction. We

TABLE I: Gait classification results

Unfiltered Unfiltered sinc-filtered sinc-filtered
DS raw DS raw
Accuracy 89.8% 90.4 91.1% 92.4%
(= std dev) (£1.6%) (£1.2) (£0.5%) (£2.4%)

demonstrate that the adaptive sinc filter via the regulation
loop can progressively track the target’s fast-time and slow-
time frequencies even in the presence of multiple targets. The
superior performance of the proposed solution compared to
state-of-art processing using peak detection is shown with
respect to a radar gait classification task.
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