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Abstract—The growing urban complexity demands an efficient
algorithm to acquire and process various sensor information from
autonomous vehicles. In this paper, we introduce an algorithm
to utilize object detection results from the image to adaptively
sample and acquire radar data using Compressed Sensing (CS).
This novel algorithm is motivated by the hypothesis that with
a limited sampling budget, allocating more sampling budget
to areas with the object as opposed to a uniform sampling
ultimately improves relevant object detection performance. We
improve detection performance by dynamically allocating a lower
sampling rate to objects such as buses than pedestrians leading
to better reconstruction than baseline across areas with objects
of interest. We automate the sampling rate allocation using linear
programming and show significant time savings while reducing
the radar block size by a factor of 2. We also analyze a Binary
Permuted Diagonal measurement matrix for radar acquisition
which is hardware-efficient and show its performance is similar
to Gaussian and Binary Permuted Block Diagonal matrix. Our
experiments on the Oxford radar dataset show an effective
reconstruction of objects of interest with 10% sampling rate.
Finally, we develop a transformer-based 2D object detection
network using the NuScenes radar and image data.

Index Terms—Compressed sensing, Object detection

I. INTRODUCTION

In an autonomous driving scenario, it is necessary to acquire
various sensor data and process them efficiently to get a
complete perspective about the surroundings. Radar [1] [2],
LIDAR [3] data in addition to images has aided in improving
the object detection performance . During onboard radar signal
acquisition, CS is a technique used for recovering the original
radar data with sampling rates much lower than the Nyquist
rate [4] [5]. The authors in [6], showed successful radar re-
construction with 40% sampling rate. In our method, we show
efficient reconstruction with 10% sampling rate. In adaptive
CS, the CS technique is extended to focus on the important
regions by allocating more sampling budget based on prior
information [7] [8]. In [9] they used adaptive compressed
sensing for a static tracker case and have shown improved
target tracking performance. However, in our algorithm, we
used adaptive compressed sensing for radar acquisition from
an autonomous vehicle where, both the vehicle and the objects
were moving.

In our work, we develop an adaptive block CS algorithm
to acquire radar data using the object detection results from
the image. The images were processed using Faster R-CNN
[10] network to obtain the bounding box and the class of an
object. The bounding boxes in the camera coordinates were
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converted to bird-eye view coordinates and the azimuth of the
object was identified. Therefore, the azimuth block with an
object was sampled at a higher sampling rate compared to
other regions which helped in the efficient reconstruction of
objects such as pedestrians, bicycles, cars, trucks and buses
while they were either missed or reconstructed poorly by the
baseline, standard CS technique. In this work, we compare
our method against the standard CS and another simpler
algorithm called Algo-1. The standard CS acquisition has a
uniform sampling rate of 10% across all the radar frames. In
Algo-1, we use the prior image information to identify the
important blocks with any object of interest but, the sampling
rate is allocated manually and is fixed for a block size of
50x100. In Algo-2, proposed as the main contribution in this
paper, compared to Algo-1, we 1) dynamically decrease the
sampling rate for car or bus compared to pedestrian and
use that budget to recover the trifling areas as well apart
from having better reconstruction in the important regions,
2) we automated the dynamic sampling rate allocation using
Linear Programming (LP), 3) we reduced the block size of
radar reconstruction by a factor of 2 to 25x100 leading to a
decrease in reconstruction time by 60% for 10% sampling rate.
Therefore with the proposed method, we could reconstruct the
trifling radar regions with the same or better reconstruction
quality in comparison to the baseline & Algo-1 technique
while preserving the reconstruction quality of the objects
of interest. Therefore, our reconstruction technique could be
reliably used for radar segmentation [11] apart from object
detection task. In CS acquisition, it is important to design
a hardware-efficient measurement matrix in order to operate
the algorithm efficiently in real-time. Therefore, we analyze
a Binary Permuted Diagonal (BPD) measurement matrix that
simplifies hardware acquisition by directly measuring the radar
data instead of acquiring a linear combination of the input
radar and show that the reconstruction quality is similar to
that of the Gaussian measurement matrix.

The binary measurement matrices in CS have been explored
by several studies. In [12], the authors proposed a Binary
Permuted Block Diagonal (BPBD) matrix with equal-sized
diagonal blocks permuted along the columns to create ran-
domness. Binary measurement matrices have been used for
image [13], ECG [14] [15] and ground-penetrating radar data
acquisition [16]. To the best of our knowledge, we are the first
ones to implement the BPD matrix for automotive radar ac-
quisition. Finally, we also develop an end-to-end transformer-
based 2-D object detection (DETR) [17] network using the
NuScenes [18] radar and image dataset. Numerous studies [19]
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[20] showed the advantage of using both radar and images
in an object detection network for improved object detection
performance. [1], [21], [22] showed that radar in addition to
image improved distant vehicle object detection and occluded
object detection due to adverse weather conditions. Again, to
the best of our knowledge, we are the first ones to implement
a DETR [17] based object detection network using both
radar and image data and we show that the object detection
performance of the model using both image and radar data
performed better than the object detection model trained only
on the image data.

In the next section, we explain the adaptive block CS
algorithm followed by the sampling rate allocation using LP
and the design of the measurement matrix along with the
DETR-Radar architecture. In section 3, we present our results
and finally, conclude the paper in section 4.

II. METHOD
A. Dataset

In the Oxford radar robotcar dataset [23], they provide radar,
rear camera data, front camera data among other sensors, cov-
ering 280km in Oxford, UK. The front camera was captured at
16Hz Frames per second (FPS), the rear camera at 17Hz and
radar at 4 Hz. To the best of our knowledge, the Oxford dataset
was the only raw radar dataset. Since manual annotation was
required to identify objects , we tested our algorithm on three
random scenes with 11 radar frames each. To train our DETR-
Radar object detection model, we used the NuScenes v0.1
dataset [18]. This is one of the publicly available datasets for
autonomous driving with a range of sensors such as cameras,
LiDAR and radar with 3D bounding boxes. Similar to [20], we
converted all the 3D bounding box annotations to 2D bounding
boxes and merged similar classes to 6 total classes, Car, Truck,
Motorcycle, Person, Bus and Bicycle. This dataset consists of
around 45k images split into 85% training and 15% validation.

B. Adaptive block compressed sensing

CS relies on the sparsity of the signal in some domain for
robust reconstruction of data sampled at very low sampling
rates. The signal z € R™ measured using the random mea-
surement matrix ¢ € R™*™ gives y € R™ measurements. The
original signal x is assumed to be sparse in Discrete Cosine
Transform domain and it is recovered using Basis Pursuit
(BP) algorithm as min,, ||fx||; s.t. ¢z = y with 6 as the
domain transformation matrix [24]. In the adaptive block CS,
the radar region is split into equal-sized blocks and varying
measurements m are allocated based on prior knowledge.

The Oxford radar data was captured every 0.25s with a
range resolution of 4.38cm and 0.9° azimuth resolution for
3768 range bins and 400 azimuth bins. Therefore, a total
range of 163m and 360° horizontal field-of-view (HFoV) was
captured. Also, the front camera has 66 degrees HFoV. The
rear camera has 180 degrees HFoV. From this setup, there
would be a blind spot of 57 degrees to the left and 57 degrees
to the right. In both Algo-1 and Algo-2, at t=0s, the images

from the camera are captured and given to the Faster R-
CNN object detection network. At t=0.12s, the object detection
output is processed to obtain the important azimuth blocks.
This data is processed to allocate more sampling budget to
the important azimuth blocks and the sampling budget is used
to capture the radar data at t=0.25s. This process is repeated
for all the radar frames.

In Algo-1, the radar data was split into bins of size 50x100
creating 8 equal regions in azimuth and 37 regions in range.
Therefore, from the camera image, the important azimuth
sections to focus on would be derived based on the presence
of objects in that section. Since the depth information is not
available from the camera images, we can only choose azimuth
sections and not the range. Also, since the radar data was
acquired with a 163 m range, we allocated more sampling rate
to the first 78.84m compared to the last 84.16m since there is
not much useful information in the farther range values. The
average driving speed in an urban environment is 40 miles
per hour. Since radar is captured at 4 Hz, for every frame,
the object could have moved 4.25m. Since the bin resolution
is 4.38cm and for a particular block with 100 bins, the area
spanned would be 4.38m. Since we are looking into the first
18 range blocks, that covers a total area of 78.84m. Hence,
in an urban setting, the moving vehicle can be comfortably
captured by focusing within the 78.84m range. In a freeway
case, for an average speed of 65 miles per hour, the vehicle
could have moved 7.2m per frame and again, this would be
captured by focusing on the first 78.84m. Therefore, the radar
regions are split into three ranges, R1, R2, R3 where, R1 is
the chosen azimuth until 18% range block (78.84m), R2, the
other azimuth regions until the 18" range block (78.84m) and
finally, R3, all the azimuth blocks from 19t to 37t range
block. Since across different scenes, there could have been a
variable number of important azimuth blocks, if the chosen
azimuth block was less than 50% i.e., less than 4 out of 8, we
randomly sampled more azimuth blocks. Also, if it was more
than 4, we avoided losing important information by reducing
the sampling rate in the R1 region. Hence, when there were
4 important azimuth blocks, R1 was sampled at 30.8%, R2 at
5% and R3 at 2.5% sampling rate. In the case of 5 azimuth
blocks, R1 was sampled at 25.5%, R2 and R3 at 5% and 2.5%
respectively. In the case of 6 azimuths, R1 at 20.2%, R2 at
5% and R3 at 2.5%. Therefore, these sampling rates were set
manually to determine the importance of image data as prior
information for adaptive CS.

In Algo-2, the radar data was split into bins of size 25x100,
amounting to 22.5° azimuth and 4.38m range each. There were
16 blocks in azimuth and 37 blocks in range. The block size of
25x100 instead of 50x100 from Algo-1 reduced the processing
time by 60% for a 10% sampling rate. This empirical change in
processing time was measured using MATLAB on a 3.1 GHz
Dual-Core Intel Core i7 processor. The dynamic sampling rate
for Algo-2 was determined based on the importance of a region
and was allocated using LP. Where, a; corresponds to blocks
with pedestrians or bicycles, as corresponds to blocks with
the car and a3 represents all the other regions. r; is the radar
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region within the first 18 range blocks (78.84m) and 75 is the
next 19 range blocks (83.22m). x1, x2, x3, x4 is the sampling
rate for each block, which is being optimized. .S is the total
radar data and 0.1S corresponds to the 10% sampling rate.
The objective function is the total sampling budget allocated
across various azimuth blocks for a given radar frame and it is
optimized such that, for a given frame, the sampling rate does
not exceed 10%. Since z1 is the sampling rate for the region
with small objects, the constraints are set such that, it is thrice
as big as the least important region’s sampling rate and z2
is twice as big. Also, z4 is the sampling rate for the region
starting 78.84m from the autonomous vehicle and hence it is
optimized to have the least sampling rate of less than 2.5%.
For any vector x € R*, let
f(x) = a1rizy + agriae

+ agrizs + (a1 + az + az)razy

Then, we have the following linear program
max f()
=z

st.x1 —3x3 =0, x9 —22x3 =0
f(z) <0.15, 0.02 < x4 <0.025,
0.05<x; <04 fori=1,2,3

Therefore, the bounding boxes and classes from the object
detection network are used to determine the azimuth blocks
ai,as,as, given as a constant to the LP. The LP algorithm
in one case, gave 37.39%, 24.93% 12.46% and 2.5% as
1, T2, T3, x4 sampling rates.

C. Measurement matrix analysis

We compare the standard Gaussian measurement matrix
and BPBD matrix with the BPD matrix. In the case of our
BPD matrix, it is designed such that all elements of a row
are 0 except for one randomly selected column. Therefore,
when each row of the measurement matrix is used to measure
the original signal, only one value of the original data is
retained, even the addition of a few measurements in the case
of BPBD is avoided and addition, multiplication of values in
the case of the Gaussian measurement matrix is eliminated.
Therefore, complex multipliers for measurement using the
Gaussian matrix which consumes higher power are avoided
and replaced with simpler elements like switches and selectors
for binary matrix making them hardware efficient [13].

D. DETR-Radar

The Faster R-CNN [10] object detection network is one of
the well-refined techniques for 2D object detection. However,
it relies heavily on two components, non-maximum suppres-
sion and anchor generation. The end-to-end transformer-based
2D object detection introduced in [17], eliminates the need for
these components. We included radar data in two ways. In the
first case, we included the radar data as an additional channel
to the image data [1]. In the second case, we rendered the
radar data on the image. We used perspective transformation
based on [20] to transform radar data points from the vehicle
coordinates system to camera-view coordinates. In all the

above cases, the models were pre-trained on the COCO dataset
and we fine-tuned them on the NuScenes data. To the best of
our knowledge, we are the first ones to implement end-to-end
transformer-based 2D object detection using both image and
radar data.

III. EXPERIMENT

TABLE I
S-CS DENOTES STANDARD CS, A-1 1S ALGORITHM 1 AND A-2 IS
ALGORITHM 2. THE PRESENCE OF AN OBJECT IS INDICATED AS ’YES’
AND IF THE OBJECT IS FAINT OR ABSENT, IT IS INDICATED AS 'NO’.

l Scene Frame Object [ S-CS [ A-1 [ A2 ‘
5,11 car (top) no yes yes
Scenel 1-4 Person (left) no yes | yes
5 Person(left) no yes no
2-5,8,10 Person (top-left) no yes | yes
6,7,9 Person (top-left) no no yes
8-11 Bicycle (top) no yes | yes
2,35 Pole (right) yes no yes
1-11 Cars (top-right) no yes yes
Scene2 2,3,6 Car (rear) no yes yes
7-9 Bicycle (rear) no yes | yes
10,11 Bicycle (rear) no no yes
1-3 Person (rear) no yes | yes
5-7,9 Person (rear-left) no yes | yes
7-11 Person(front) no yes yes
7.8 Traffic light (rear) yes no yes
1 Pole (top-right) yes no yes
Scene3 3,5,6 car (rear) no yes | yes
7,8 car (top-right) no yes | yes
4 Bicycle (right) yes no yes
1,8 Person (left) yes no yes
10 Person (rear-left) no yes no
3,5,10 Pole (right) yes no yes

The algorithms were tested on three random scenes with
11 radar frames each [23]. Since the important information
could be captured within the first 78.84m in an urban setting,
the results were analyzed in that region and are shown in
the figure 1 as well. The standard CS refers to the baseline
CS algorithm, with a uniform sampling rate of 10% on the
entire radar frame (163m, 360° azimuth). The Algo-1 is a
basic version with 50x100 block size and manual sampling rate
allocation and Algo-2 is the promoted algorithm with 25x100
block size and LP-based dynamic sampling rate allocation. All
the reconstruction algorithms have BPD as the measurement
matrix. In table I, the presence of an object is indicated as
yes’ and if it is absent or faint, it is indicated as 'no’. In
the first scene, the person in the top-left was missed by both
standard CS and poorly reconstructed by Algo-1 in frame 6,7
and 9. However, it was recovered by Algo-2 because it had
a significantly higher sampling rate allocated to regions with
pedestrians. The person to the left of the vehicle appeared in
the blind spot of the camera and it was missed by our Algo-2.
But, it was captured by Algo-1 because the block adjacent to it
was selected and it was twice as big as the second algorithm’s
block size. Therefore, by using additional camera information
in Algo-2, the person could be captured. However, Algo-2
in general has better or similar reconstruction across all the
regions of r; compared to baseline and reconstructed the pole
to the right in frames 2,3 and 5. In scene 2, the bicycle to the
rear was missed by the baseline and poorly reconstructed by
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Front camera

Original radar

Algorithm 1 reconstruction

Rear Camera

Fig. 1. In scene 2, frame 11, the front camera, rear camera, original radar and reconstructions are shown. The green box highlights the cars to the front and
the pedestrian. The pedestrian was missed by the baseline reconstruction but, it is captured by Algorithm 1 and it is more clear in Algorithm 2. The orange
box highlights the cars and bicycle to the rear. The bicycle was captured by Algorithm 2 but, it is hardly reconstructed by Algorithm 1 and baseline. Best

viewed as a digital copy by zooming in.

Algo-1. However, it was reconstructed by Algo-2 in frames
10 and 11. The traffic light to the rear in frames 7, 8 and pole
in frames 1 to the top-right was missed by Algo-1 but, it was
captured by Algo-2. In scene 3 frame 4, the bicycle to the
right was poorly reconstructed by Algo-1 but it was captured
by Algo-2. The person to the left in frame 1 and 8 was missed
by Algo-1 but it was captured by Algo-2. In Algo-1, apart
from the important regions, the sampling rate was drastically
reduced in other regions. The right and left of the vehicle
is in the blind spot of the camera and would be classified as
non-important regions. However, in Algo-2, the sampling rates
saved from regions with bus or car were used to redistribute it
across other regions and this helped in capturing the objects to
the left and right. The person to the rear-left in frame 10 was
missed by Algo-2 but it was captured by Algo-1. Although
the person was captured by the object detection network, it
was missed by our algorithm. Similar to the previous scenes,
the pole to the right was captured by Algo-2 in frames 3,5
and 10 while it was missed by Algo-1. Also, from table I,
considering yes as detected and no as not detected, Algo-1
detected 52 out of 60 objects across frames and scenes.The
improved Algo-2, detected 58 out of 60 objects, improving
from 86% detection using Algo-1 to 96% detection rate
using our proposed Algo-2. Therefore, the Algo-2 has led
to significant improvement in better reconstruction/detection.

In table II, the average peak signal-to-noise ratio (PSNR) is
reported across three measurement matrices. In general, the
BPD matrix has slightly lower PSNR compared to Gaussian
measurement matrices. However, BPD is hardware efficient
since it has binary elements as the measurement matrix.

TABLE II
THE THREE SCENES WERE RECONSTRUCTED USING THE STANDARD CS
ALGORITHM AND AVERAGE PSNR IS REPORTED.

Sampling rate | Scene | Gaussian [ BPBD [ BPD ‘
scenel 29.88 29.91 29.87
10% scene2 30.18 30.22 30.17
scene3 29.89 29.93 29.88
scenel 32.00 32.00 | 32.00
20% scene2 32.26 32.26 32.26
scene3 32.08 32.09 32.07
30% scenel 34.30 3430 | 34.27
scene2 34.53 34.52 34.49
scene3 34.43 3442 | 34.38

Finally, we trained a separate object detection network using
the NuScenes image and radar data. In this case, we limited our
analysis to NuScenes image and original radar data because
the Nuscenes radar that was available to us were processed
pointclouds with annotations. Whereas, the Oxford data was
the only available raw data on which we could apply CS but,
without object annotations. Hence, we could not use Oxford
data to train the object detection model. As shown in the table
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TABLE III
I DENOTE MODEL TRAINED ON IMAGES, I+R INDICATED MODEL TRAINED
WITH RADAR AS AN ADDITIONAL CHANNEL AND RONI IS FOR A MODEL
TRAINED WITH THE RADAR RENDERED ON THE IMAGE. F-R IS THE FAST
R-CNN NETWORK AND FA-R IS THE FASTER R-CNN NETWORK.

l Network ‘ AP ‘ AP50 ‘ AP75 ‘ AR ‘ ARs ‘ ARm ‘ ARI ‘
F-R [20] 355 59.0 37.0 42.1 | 21.1 39.1 514
FA-R() 39.5 67.8 41.7 47.0 | 25.6 44 .4 56.8
FA-R(I+R) 46.2 73.8 50.3 53.0 | 32.8 51.5 59.9

FA-R(Ronl) 38.0 65.4 40.0 44.9 17.6 42.1 56.3
DETR(I) 47.1 80.2 50.4 61.6 | 384 57.2 72.5
DETR(Ronl) | 48.6 80.4 52.7 63.6 | 40.1 60.2 73.1
DETR(I+R) 44.8 76.3 46.8 582 | 29.7 549 68.8

III, our baseline comparison is with the [20] paper, where,
they trained the model on Nuscenes v0.l image dataset and
used the radar data for anchor generation. The Faster R-CNN
Img and Faster R-CNN Ronlmg models had ResNet-101 [25]
as the backbone structure. The models with [+R were trained
with radar as an additional channel. Therefore, the first layer of
the backbone structure was changed to process the additional
radar channel. The DETR network [17] had ResNet-50 [25] as
the backbone structure. The I and Ronl models were trained
for the same number of epochs for a fair comparison. The I+R
models were trained for additional epochs since the backbone
structure’s first layer was modified. In the Faster R-CNN case,
I+R has better performance than I. While, in DETR, Ronl
has better performance. The Faster R-CNN I and Ronl were
trained for 25k iterations. The Faster R-CNN I+R was trained
for 125k iterations. DETR I and DETR Ronl models were
trained for 160 epochs. While DETR I+R was trained for
166 epochs. The DETR Ronl model performed better across
various metrics compared to the baseline, Faster R-CNN and
DETR I+R model. We believe that the attention heads in the
transformer architecture helped in focusing object detection
predictions around the radar points. However, the Faster R-
CNN I+R was better than the Faster R-CNN Ronl model. We
used the standard evaluation metrics, mean average precision
(AP), mean average recall (AR), average precision at 0.5, 0.75
10U, small, medium and large AR [26].

IV. CONCLUSION

In this paper, we propose an adaptive block CS for radar
data acquisition using an object detection result as prior
information. Therefore, the main contribution of our work is
to determine the areas with the object in the radar frame using
prior image information while processing the data in a real-
time scenario. The algorithm dynamically saves on sampling
rate from big objects and redistributes to other regions to
efficiently capture poles and other objects. This algorithm uses
LP for dynamic sampling rate allocation and the reduction of
block size helps in reducing the processing time significantly.
Also, a hardware-efficient BPD measurement matrix is com-
pared with a standard measurement matrix. Finally, our end-to-
end transformer-based model trained on image and radar has
better object detection performance than Faster R-CNN and
transformer-based model trained on just images, validating the
necessity for radar in addition to images.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]
(11]
[12]

[13]

[14]

[15]

[16]

(171
[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

1774

REFERENCES

M. Meyer and G. Kuschk, “Deep learning based 3d object detection for
automotive radar and camera,” in 2019 16th European Radar Conference
(EuRAD), 2019, pp. 133-136.

Shuo Chang et al., “Spatial attention fusion for obstacle detection using
mmwave radar and vision sensor,” Sensors (Basel, Switzerland), vol.
20, no. 4, February 2020.

Gledson Melotti et al., “Multimodal deep-learning for object recognition
combining camera and lidar data,” in IEEE International Conference on
Autonomous Robot Systems and Competitions, 2020.

Z. Slavik et al., “Compressive sensing-based noise radar for automotive
applications,” in 2016 12th IEEE International Symposium on Electron-
ics and Telecommunications (ISETC), 2016, pp. 17-20.

A. Correas-Serrano, “Experimental evaluation of compressive sensing
for doa estimation in automotive radar,” in 2018 19th International
Radar Symposium (IRS), 2018, pp. 1-10.

F. Roos et al., “Data rate reduction for chirp-sequence based automotive
radars using compressed sensing,” in 2018 11th German Microwave
Conference (GeMiC), 2018, pp. 347-350.

A. M. Assem, “Adaptive sub-nyquist sampling based on haar wavelet
and compressive sensing in pulsed radar,” in 2016 4th International
Workshop on Compressed Sensing Theory and its Applications to Radar,
Sonar and Remote Sensing (CoSeRa), 2016, pp. 173-177.

J. Zhang, “Adaptive compressed sensing radar oriented toward cognitive
detection in dynamic sparse target scene,” IEEE Transactions on Signal
Processing, vol. 60, no. 4, 2012.

I. Kyriakides, “Adaptive compressive sensing and processing for radar
tracking,” in 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2011, pp. 3888-3891.

Kaiming He et al., “Faster r-cnn: Towards real-time object detection
with region proposal networks,” arXiv, 2015.

Prannay Kaul et al., “Rss-net: Weakly-supervised multi-class semantic
segmentation with fmcw radar,” arXiv, 2020.

Z. He, “The simplest measurement matrix for compressed sensing of
natural images,” in 2010 IEEE International Conference on Image
Processing, 2010, pp. 4301-4304.

A. Akbari, “Robust image reconstruction for block-based compressed
sensing using a binary measurement matrix,” in 2018 25th IEEE
International Conference on Image Processing (ICIP), 2018.
Xianxiang et al. Chen, “Compressed sensing based method for electro-
cardiogram monitoring on wireless body sensor using binary matrix,”
International Journal of Wireless and Mobile Computing, vol. 8, no. 2,
pp. 114-121, 2015.

A. Ravelomanantsoa, ‘“Compressed sensing: A simple deterministic
measurement matrix and a fast recovery algorithm,” IEEE Transactions
on Instrumentation and Measurement, vol. 64, no. 12, 2015.

L. Miccinesi et al., “Compressive sensing for no-contact 3d ground
penetrating radar,” in 2018 41st International Conference on Telecom-
munications and Signal Processing (TSP), 2018, pp. 1-5.

Nicolas Carion et al., “End-to-end object detection with transformers,”
arXiv, 2020.

Holger Caesar et al., “nuscenes: A multimodal dataset for autonomous
driving,” arXiv, 2020.

Shuo Chang et al., “Spatial attention fusion for obstacle detection using
mmwave radar and vision sensor,” Sensors (Basel, Switzerland), vol.
20, no. 4, February 2020.

R. Nabati and H. Qi, “Rrpn: Radar region proposal network for
object detection in autonomous vehicles,” in 2019 IEEE International
Conference on Image Processing (ICIP), 2019, pp. 3093-3097.

S. Chadwick, W. Maddern, and P. Newman, ‘“Distant vehicle detection
using radar and vision,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 8311-8317.

Felix Nobis et al., “A deep learning-based radar and camera sensor
fusion architecture for object detection,” in 2019 Sensor Data Fusion:
Trends, Solutions, Applications (SDF), 2019, pp. 1-7.

Dan Barnes et al., “The oxford radar robotcar dataset: A radar extension
to the oxford robotcar dataset,” arXiv, 2019.

Irfan Mehmood et al., “Adaptive compressive sensing of images using
spatial entropy,” Computational Intelligence and Neuroscience), 2017.
Kaiming He et al., “Deep residual learning for image recognition,”
arXiv, 2015.
Tsung-Yi Lin et al.,
arXiv, 2015.

“Microsoft coco: Common objects in context,”



