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Abstract—We consider the problem of structured canonical
polyadic decomposition. If the size of the problem is very big, then
stochastic gradient approaches are viable alternatives to classical
methods, such as Alternating Optimization and All-At-Once
optimization. We extend a recent stochastic gradient approach
by employing an acceleration step (Nesterov momentum) in
each iteration. We compare our approach with state-of-the-art
alternatives, using both synthetic and real-world data, and find
it to be very competitive.

Index Terms—Tensor Factorization, Stochastic Optimization,
CPD/PARAFAC, Nesterov Acceleration.

I. INTRODUCTION

The need to understand and analyze multi-dimensional data
and their interdependencies has led to the extended use of
tensors in diverse scientific fields, ranging, for example, from
medicine to geodesy. An overview of tensor applications can
be found in [1]. [2].

Canonical Polyadic Decomposition (CPD) or Parallel Factor
Analysis (PARAFAC) is a widely used model since, in many
cases, it extracts meaningful structure from a given dataset.

Alternating Optimization (AO), All-at-Once Optimiza-
tion(AOO), and Multiplicative Updates (MUs) are the
workhorse methods towards the computation of the CPD [3],
[4]. However, the very large size of the collected tensor data
makes the implementation of these algorithms very computa-
tionally demanding.

Recently, various approaches have been introduced in order
to deal with large-scale CPD problems. An obvious approach
is the development and implementation of parallel algorithms
(distributed or shared-memory) [5], [6], [7].

From a different perspective, stochastic gradient based al-
gorithms have gained much attention, since they are relatively
easy to implement, have lower computational cost, and can
guarantee accurate solutions.

All members were supported by the European Regional Development Fund
of the European Union and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship, and Innovation, under the call
RESEARCH - CREATE - INNOVATE (project code : T1E∆K − 03360).

A. Related Work

Sub-sampling of the target tensor X using regular sampling
techniques has been introduced in [8].

In [9], entries of the target tensor are sampled in a random
manner and the respective blocks of the latent factors are
updated at each iteration.

In [10] and [11], a distributed framework is employed,
where smaller replicas of the target tensor are independently
factored. The resulting factors of each independent decom-
position are effectively merged at the end to obtain the final
latent factors.

In [12] and [13], a set of fibers is randomly selected at each
iteration and a stochastic proximal gradient step is performed.
We improve upon the work of [13] by incorporating Nesterov
acceleration at each iteration and a proximal term to deal with
ill-conditioned cases.

B. Notation

Vectors and matrices are denoted by lowercase and upper-
case bold letters, for example, x and X. Tensors are denoted by
bold calligraphic capital letters, namely, X . ‖ · ‖F denotes the
Frobenius norm of the matrix or tensor argument. A�B and
A~B denote, respectively, the Khatri-Rao and the Hadamard
product of matrices A and B. The outer product between
vectors is denoted by the operator ◦. Finally, MATLAB
notation is used when it seems appropriate.

II. CANONICAL POLYADIC DECOMPOSITION

Let tensor X o ∈ RI1×I2×···×IN admit a rank-R factoriza-
tion of the form

X o= [[Ao(1), . . . ,Ao(N)]] =

R∑
r=1

ao(1)r ◦ · · · ◦ ao(N)
r , (1)

where Ao(i) = [a
o(i)
1 · · · ao(i)R ] ∈ RIi×R, for i = 1, . . . , N .

In many cases, the latent factors have a special structure or
satisfy a specific property, which is denoted as Ao(i) ∈ Ai.

The actual observation is corrupted by additive noise E ,
thus, we observe tensor X = X o + E .
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Estimates of Ao(i) can be obtained by computing matrices
A(i) that solve the optimization problem

min
{A(i)∈Ai}ni=1

fX

(
A(1), . . . ,A(N)

)
, (2)

where fX is a function that measures the quality of the
factorization, with a common choice being

fX

(
A(1), . . . ,A(N)

)
=
∥∥∥X − [[A(1), . . . ,A(N)]]

∥∥∥2
F
. (3)

This optimization problem is nonconvex and, thus, difficult to
solve. The matrix unfolding (or tensor matricization) has been
very useful towards the solution of problem (3). More specif-
ically, if X̂ = [[A(1), . . . ,A(N)]], then the matrix unfolding
for an arbitrary mode i is given by [14], [2]

X̂(i) = K(i)A(i)T , (4)

where K(i) is defined as

K(i) := A(N)� · · · �A(i+1)�A(i−1)� · · · �A(1). (5)

It can be shown that, for i = 1, . . . , N ,

fX (A(1), . . . ,A(N)) =
∥∥∥X(i) − X̂(i)

∥∥∥2
F
. (6)

These expressions form the basis of the CPD AO method. If,
at iteration k, the estimated matrix factors have values A

(j)
k ,

for j = 1, . . . , N , we can update A
(i)
k by solving the matrix

least-squares problem

A
(i)
k+1 = argmin

A(i)∈Ai
‖X(i) −K

(i)
k A(i)T ‖2F , (7)

where

K
(i)
k := A

(N)
k � · · · �A

(i+1)
k �A

(i−1)
k+1 � · · · �A

(1)
k+1. (8)

The gradient of fX , with respect to A(i), is given by

∇A(i)fX (A
(1)
k ,A

(2)
k , . . . ,A

(N)
k )

= A
(i)
k K

(i)T
k K

(i)
k −X(i)TK

(i)
k .

(9)

Quantity X(i)TK
(i)
k is called Matricized Tensor Times Khatri-

Rao Product (MTTKRP) and is the most computationally
demanding part of the CPD AO algorithm. Thus, the devel-
opment of efficient algorithms which do not compute a full
MTTKRP during each iteration is of great interest.

III. STOCHASTIC GRADIENT CPD - BRASCPD

In [9], a stochastic gradient method has been developed for
the unconstrained case, where, at each iteration, only a part of
a factor is updated.

A fiber sampling technique has been developed in [12] and
[13], where, at each iteration, a whole factor is updated. The
scheme proposed in [13], named BrasCPD, can handle both
unconstrained and constrained problems.

BrasCPD combines the fiber sampling technique with the
AO algorithm. Assume, again, that, at the beginning of
iteration k, the values of the estimated factors are A

(j)
k ,

for j = 1, . . . , N . At iteration k, an index i is picked at
random. Then, Bi mode-i fibers are sampled, indexed by
F ik ⊂ {1, 2, . . . J i}, where J i denotes the number of rows
of X(i), and a smaller problem is constructed, namely,

min
A(i)∈Ai

f
(i)
k (A(i)), (10)

where

f
(i)
k (A(i)) = ‖X(i)(F ik, :)−K

(i)
k (F ik, :)A(i)T ‖2F .

BrasCPD performs a proximal gradient step and updates A
(i)
k

as
A

(i)
k+1 = proxhi

(
A

(i)
k −

αk
|F ik|
∇f (i)k (A)

)
, (11)

where hi is the indicator function of set Ai and

∇f (i)k (A) = A
(i)
k K

(i)T
k (F ik, :)K

(i)
k (F ik, :)

−X(i)T (F ik, :)K
(i)
k (F ik, :).

(12)

The other factors do not change during iteration k, that is,
for j 6= i, A(j)

k+1 = A
(j)
k . Note that the computational cost of

the partial MTTKRP appearing in (12) drops to O(|F ik|RIi)
flops.

The performance of the algorithm is mainly determined by
the step-sizes αk [15]. In BrasCPD, diminishing step-sizes
are employed, namely, αk = α

kβ
, for appropriate values of

parameters α and β.

A method based on Adagrad [16], called AdaCPD, has also
been proposed in [13]. The AdaCPD computes its step-sizes
using an accumulated-gradient mechanism with parameters
η > 0, β > 0, and ε > 0, namely

α
(i)
k =

η(
β +

∑k
l=1∇f

(i)
l (A)

)1/2+ε . (13)

IV. ACCELERATED STOCHASTIC GRADIENT CPD

We propose an accelerated version of BrasCPD, which we
call Accelerated Stochastic CPD (ASCPD). At iteration k, we
follow the same sampling scheme as in [13], [12], and form
the problem

min
A(i)∈Ai

F
(i)
k (A(i)) = f

(i)
k (A(i)) +

λ
(i)
k

2
‖A(i) −A

(i)
k ‖

2
F . (14)

The parameter λ(i)k determines the condition number of the
problem and is chosen such that the condition number remains
“small.” More specifically, the Hessian of f (i)k is

H
(i)
k :=∇2f

(i)
k (A(i)) = K

(i)T
k (F ik, :)K

(i)
k (F ik, :)⊗ IIiR. (15)
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Let L(i)
k and µ

(i)
k be, respectively, the largest and smallest

eigenvalues of H
(i)
k . We choose λ(i)k such that the condition

number of (14) becomes “almost constant,” that is

L̄
(i)
k

µ̄
(i)
k

:=
L
(i)
k + λ

(i)
k

µ
(i)
k + λ

(i)
k

. C, (16)

where C is a given value (in our experiments, we set C =

10, 102, 103). More specifically, we set

λ
(i)
k =

 µ
(i)
k , if L

(i)
k

µ
(i)
k

< C,
L

(i)
k

C , otherwise.
(17)

We perform a proximal step

A
(i)
k+1 = proxhi

(
Y

(i)
k −

1

L̄
(i)
k

∇F (i)
k (Y

(i)
k )

)
, (18)

followed by a momentum step

Y
(i)
k+1 = A

(i)
k+1 + β

(i)
k

(
A

(i)
k+1 −A

(i)
k

)
, (19)

where

β
(i)
k :=

√
L̄
(i)
k −

√
µ̄
(i)
k√

L̄
(i)
k +

√
µ̄
(i)
k

. (20)

The values of L̄(i)
k and β(i)

k are the steps used by the “constant
step scheme III” of the accelerated gradient algorithm [17, p.
81]. They can be considered as “locally optimal” for problem
(14).

Note that we essentially compute H
(i)
k during the compu-

tation of ∇f (i)k (see (12) and (15)). Furthermore, the compu-
tation of its largest and smallest eigenvalues does not pose
significant computational cost, especially in the cases of small
R.

The ASCPD algorithm appears in Algorithm 1. A variation
of our scheme is to use only the stochastic proximal gradient
step of (18), without the acceleration step. We will test the
effectiveness of this variation in our numerical experiments.

An important future research topic is the development of
algorithms that fully exploit the second-order information
H

(i)
k . Some initial efforts have not resulted in algorithms

superior to the one proposed in this paper, especially in the
noisy cases.

V. NUMERICAL EXPERIMENTS

In this section, we run numerical experiments and test the
performance, in terms of convergence speed and estimation ac-
curacy, of the NALS algorithm of [7], AdaCPD, ASCPD, and
BrasCPD with locally optimal step-size, using both synthetic
and real-world data.

In our experiments, AdaCPD always outperformed
BrasCPD, thus, we do not consider BrasCPD. For both

Algorithm 1: ASCPD

Result: {A(i)}Ni=1

1 Input: tensor X ,A
(i)
0 = Y

(i)
0 , i = 1, . . . , N ,

blocksizes Bi, i = 1, . . . , N .
2 k = 0;
3 while terminating condition is not satisfied do
4 Uniformly sample i from {1, 2 . . . N} ;
5 Uniformly sample Bi mode-i fibers;
6 Compute stochastic gradient ∇F (i)

k (Y
(i)
k );

7 Compute L(i)
k , µ(i)

k , and λ(i)k ;
8 Compute A

(i)
k+1 using (18) ;

9 Compute Y
(i)
k+1 using (19) ;

10 k = k + 1;
11 end
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Fig. 1: Relative tensor reconstruction error for I1 = I2 = I3 =
200, R = 100, B = 500, and SNR = 10dB (top) and 30 dB
(bottom).

synthetic and real-world data, the results are extracted after
averaging over 10 Monte-Carlo trials.

A. Synthetic Data

We generate a 3-rd order nonnegative tensor X o ∈
RI1×I2×I3+ as X o = [[Ao(1), . . . ,Ao(N)]], where the elements
of each factor are independent and identically distributed
(i.i.d.), uniformly distributed in [0, 1]. The noisy tensor is given
by X = X o+σεE , where the elements of E are i.i.d. N (0, 1).
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Fig. 2: Relative tensor reconstruction error for I1 = I2 = I3 =
200, R = 100, B = 100, and SNR = 10 dB (top) and 30 dB
(bottom).

We define the Signal-to-Noise Ratio (SNR)

SNR :=
‖X o‖2F
σ2
ε ‖E‖2F

.

We adopt as performance metric the relative tensor reconstruc-
tion error at iteration k

mk :=
‖X − X̂k‖F
‖X‖F

.

All stochastic gradient based algorithms use the same block-
size, that is, B1 = B2 = B3 = B. Furthermore, we note
that one full iteration of the NALS algorithm of [7] requires
the computation of four full MTTKRPs (three for the factor
updates and one for the acceleration step). Thus, in order to be
fair, in our plots, we depict the performance metric mk attained
by each algorithm after the same number of full iterations, that
is, we compute the performance metric for each stochastic
algorithm after the required number of stochastic iterations
that correspond to one full iteration of the NALS algorithm.

In Fig. 1, we plot the metric mk versus the number of full
iterations for the case where I1 = I2 = I3 = 200, R = 100,
B = 500, and SNR = 10 dB (top) and 30 dB (bottom).

In Fig. 2, we set B = 100 and present the corresponding
plot. In all cases, we set the Adagrad parameter η = 1 (in our
experiments, this was the best value), while we set the ASCPD
parameter C = 10 in the low SNR cases and C = 102, 103 in
the high SNR cases.

We observe that

0 2 4 6 8 10

10
-1

10
0

0 5 10 15 20

10
-1

10
0

Fig. 3: Indian Pines dataset: relative tensor reconstruction error
for B = 500, and R = 10 (top), R = 100 (bottom).

1) in the low SNR cases, the NALS algorithm outperforms
all stochastic gradient based approaches. The relative
performance of AdaCPD and ASCPD depends on the
block size. For “small” block sizes, AdaCPD outper-
forms the ASCPD, while, for “large” block sizes, the
opposite happens.

2) in the high SNR cases, the ASCPD outperforms all other
methods. We note that the BrasCPD with locally optimal
step-size in some cases outperforms AdaCPD.

B. Real-world Data

Similarly to [13], we use the Indian Pine and PaviaU
datasets which are Hyperspectral Images (HSIs). HSI sensors
collect data in a group of images, for different wavelength
ranges. The resulting data-cube is a third order tensor. The
Indian Pine dataset is of size 145× 145× 220 and consists of
data acquired via the AVIRIS sensor, on Indian Pines site in
Indiana (USA). The PaviaU dataset has size 610× 340× 103

and consists of a scene of Pavia University in Italy.1

In Fig. 3, we plot the quantity mk versus the number of full
iterations for the Indian Pine dataset for B = 500 and R = 10

(top) and R = 100 (bottom).
In Fig. 4, we plot the corresponding results for the PaviaU

dataset for B = 500 and R = 50 (top) and R = 200 (bottom).
In all cases, we set η = 2 and C = 103.

We observe that, in all cases, the ASCPD outperforms all
other methods in terms of mk.
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Fig. 4: PaviaU dataset: relative tensor reconstruction error for
B = 500 and R = 50 (top), R = 200 (bottom).

VI. CONCLUSION

We adopted a stochastic gradient based framework for the
solution of the structured CPD problem. We improved upon
known stochastic proximal gradient schemes by incorporating
Nesterov-type acceleration using parameters that are “locally
optimal.” In numerical experiments, with both synthetic and
real-world data, our algorithm has been proven efficient. Con-
vergence analysis of the proposed algorithm is an interesting
future topic.
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