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Abstract—The so-called block-term decomposition (BTD) ten-
sor model, especially in its rank-(Lr, Lr, 1) version, has been
recently receiving increasing attention due to its enhanced ability
of representing systems and signals that are composed of blocks
of rank higher than one, a scenario encountered in numerous
and diverse applications. Its uniqueness and approximation
have thus been thoroughly studied. Nevertheless, the challenging
problem of estimating the BTD model structure, namely the
number of block terms and their individual ranks, has only
recently started to attract significant attention. In this work, a
Bayesian approach is taken to addressing the problem of rank-
(Lr, Lr, 1) BTD model selection and computation, based on the
idea of imposing column sparsity jointly on the factors and in a
hierarchical manner and estimating the ranks as the numbers of
factor columns of non-negligible energy. Approximate posterior
inference for the proposed sophisticated Bayesian model is based
on variational inference giving rise to an iterative algorithm that
comprises closed-form updates. Its Bayesian nature completely
avoids the ubiquitous in regularization-based methods task of
hyper-parameter tuning. Simulation results with synthetic data
are reported, which demonstrate the effectiveness of the proposed
scheme in terms of both rank estimation and model fitting.

Index Terms—Bayesian inference, block-term decomposition
(BTD), hierarchical iterative reweighted least squares (HIRLS),
rank, tensor, variational inference (VI)

I. INTRODUCTION

Block-Term Decomposition (BTD) was introduced in [1]
as a tensor model that combines the Canonical Polyadic
Decomposition (CPD) and the Tucker decomposition (TD),
in the sense that it decomposes a tensor in a sum of tensors
(block terms) that have low multilinear rank (instead of rank
one as in CPD). Hence a BTD can be seen as a constrained TD,
with its core tensor being block diagonal (see [1, Fig. 2.3]).
It can also be seen as a constrained CPD having factors with
(some) colinear columns [1]. In a way, BTD lies between the
two extremes (in terms of core tensor structure), CPD and TD,
and it is interesting to recall the related remark made in [1],
namely that “the rank of a higher-order tensor is actually a
combination of the two aspects: one should specify the number
of blocks and their size”. Accurately and efficiently estimating
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these numbers for a given tensor is the main subject of this
paper.

Although [1] introduced BTD as a sum of R rank-
(Lr,Mr, Nr) terms (r = 1, 2, . . . , R) in general, the special
case of rank-(Lr, Lr, 1) BTD has attracted a lot more of
attention, because of both its more frequent occurrence in
applications and the existence of more concrete and easier
to check uniqueness conditions. This work will also focus
on this special yet very popular BTD model. Consider a
3rd-order tensor, X ∈ CI×J×K . Then its rank-(Lr, Lr, 1)
decomposition is written as X =

∑R
r=1 Er ◦ cr, where Er

is an I × J matrix of rank Lr, cr is a nonzero column K-
vector and ◦ denotes outer product. Clearly, Er can be written
as a matrix product ArB

T
r with the matrices Ar ∈ CI×Lr and

Br ∈ CJ×Lr being of full column rank, Lr. Eq. (1) can thus
be re-written as

X =

R∑
r=1

ArB
T
r ◦ cr. (1)

BTD has been successfully used in a wide range of ap-
plication areas and its uniqueness and computation have been
thoroughly studied (cf. [2] for an extensive review). In general,
R and Lr, r = 1, 2, . . . , R are assumed a-priori known
(and it is commonly assumed that all Lr are all equal to
L, for simplicity). However, unless external information is
given (such as in a telecommunications [3] or a hyperspectral
image unmixing application with given or estimated ground
truth [4]), there is no way to know these values beforehand.
Model selection for BTD, that is estimating the number of
block terms, R, and their ranks, Lr, r = 1, 2, . . . , R, is
clearly more challenging than in CPD and TD models and
has only recently started to be studied (cf. [2] and references
therein). The most recent contribution of this kind can be
found in our work [2], which relies on a regularization of
the squared approximation error function with the sum of
the Frobenius norms of the factors reweighted by a diagonal
weighting which jointly depends on the factors in two levels:
the reweighted norms of A ,

[
A1 A2 · · · AR

]
and

B ,
[

B1 B2 · · · BR

]
are combined and then coupled

with the reweighted norm of C ,
[

c1 c2 · · · cR
]
. This

two-level coupling naturally matches the structure of the model
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in (1), making explicit the different roles of A,B and C.
This way, column sparsity is imposed jointly on the factors
and in a hierarchical manner, which allows to estimate the
ranks as the numbers of factor columns of non-negligible en-
ergy. Following a block coordinate descent solution approach,
an alternating hierarchical iterative reweighted least squares
(HIRLS) algorithm, called BTD-HIRLS, was developed in [2]
that manages to both reveal the ranks and compute the BTD
factors at a high convergence rate and low computational cost.

Nevertheless, BTD-HIRLS, being a regularization-based
method, faces the same challenge that all such methods have
to address, namely to appropriately tune the regularization
parameter so as to achieve the best possible performance.
Although a rough guideline for the parameter selection has
been given and utilized in [2] as a reference point for the
trial-end-error search, this is still only a rule of thumb, not
completely relieving the algorithm from the need to spend
resources on searching for the most appropriate parameter
value. To overcome this difficulty, we take in this paper
an alternative, Bayesian approach, viewing the unknowns as
random variables and tackling the problem as one of Bayesian
modeling and inference [5]. The idea is again to impose
column sparsity jointly on the factors in a hierarchical, two-
level manner. This is achieved through a Bayesian hierarchy of
priors with sparsity inducing effect, that realize the coupling of
the columns of C and the Ar,Br blocks at the outer level and
that between the columns of corresponding blocks at the inner
level. Thus, R is estimated as the number of columns of C of
non-negligible energy while the Lr’s are found similarly from
the columns of the Ar,Br blocks. Approximate inference
in the proposed probabilistic model is efficiently performed
via variational inference [6] leading to an iterative algorithm
that comprises closed-form updates and is fast converging.
Its Bayesian nature completely avoids the need for parameter
tuning. Simulation results with synthetic data are reported,
which demonstrate the effectiveness of the proposed scheme
in terms of both rank estimation and model fitting and in
comparison with BTD-HIRLS. Bayesian methods for tensor
decomposition model selection and computation have been
already reported in the literature, with [7], [8], and [9] being
recent examples concerning TD, CPD, and Tensor Train (TT)
decomposition, respectively. To the best of our knowledge,
however, the present work is the first of its kind for BTD in
multilinear rank-(Lr, Lr, 1) terms.

II. PROBLEM STATEMENT

Given the I × J ×K tensor

Y = X + σN , (2)

where X is given by (1) and N is the I × J × K noise
tensor of zero-mean unit variance i.i.d. Gaussian entries, we
aim at estimating R, Lr, r = 1, 2, . . . , R and the factor
matrices Ar =

[
ar1 ar2 · · · arLr

]
∈ CI×Lr , Br =[

br1 br2 · · · brLr

]
∈ CJ×Lr , C ∈ CK×R, subject of

course to the inherent ambiguity resulting from the fact that
only the product ArB

T
r can be uniquely identified modulo

a scaling (with a counter-scaling of cr) [1]. In terms of
its mode unfoldings X(1) ∈ CI×JK , X(2) ∈ CJ×IK and
X(3) ∈ CK×IJ , the tensor X can be written as [1]

XT
(1) = (B�C)AT , PAT, (3)

XT
(2) = (C�A)BT , QBT, (4)

XT
(3) =

[
(A1 �c B1)1L1

· · · (AR �c BR)1LR

]
CT

, TCT, (5)

where � denotes the Khatri-Rao product in its general
(partition-wise) version and �c is its column-wise version.
In this paper, we follow a Bayesian approach to address the
above problem. A fully Bayesian analysis is detailed next.

III. PROPOSED BAYESIAN MODEL

Let R and the Lrs be overestimated to Rini and Lini,
respectively. Heavy-tailed multi-parameter Laplace distribu-
tions, known for their sparsity inducing effect, are placed
over the columns of the Ars, Brs, and C in a way that
implicitly implements a regularization analogous to that of
the BTD-HIRLS method [2]. Namely, the number of block
terms and the ranks of Ars and Brs are jointly penalized,
while respecting the different role that these matrices play
in the BTD model. This results in the nulling of all but R
columns of C, and the nulling of all but Lr columns of
the corresponding “surviving” Ar,Br blocks. Following the
premise of the well-known automatic relevance determination
(ARD) framework [5], [10], the priors are assigned via a 3-
level hierarchy of prior distributions outlined in the following.

The likelihood function, which encodes the underlying
causal relation between the data and the latent variables, can
be written with respect to (w.r.t.) the mode-1 unfolding of Y
(cf. (3)) as follows:

p(Y(1) | A,B,C, β) =

I∏
i=1

p(y(1)i | A,B,C, β)

=

I∏
i=1

N (y(1)i | Pai, β
−1IJK) (6)

where β is the noise precision and ai, y(1)i are the ith rows1 of
A, Y(1), respectively, in column form. In an analogous way
the likelihood function can be written in terms of the rows
bj , ck and y(2)j ,y(3)k of B,C and Y(2), Y(3), respectively,
if Y is expressed w.r.t. its mode-2 and mode-3 unfoldings.
A,B,C are considered as unobserved random variables and
are assigned 3-level hierarchical prior distributions. At the first
level of the hierarchy, Gaussian distributions are placed over
A, B, and C, namely,

p(A | s, ζ, β) =

I∏
i=1

N (ai | 0, β−1S−1(Z−1 ⊗ ILini
)), (7)

p(B | s, ζ, β) =

J∏
j=1

N (bj | 0, β−1S−1(Z−1 ⊗ ILini)), (8)

1We denote matrix rows and columns with bold italic and roman letters,
respectively.
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and

p(C | ζ, β) =

K∏
k=1

N (ck | 0, β−1Z−1), (9)

where S = diag(s) with s = [srl] ∈ RLiniRini×1 and
Z = diag(ζ), ζ ∈ RRini×1. Note that the priors of A and
B are zero-mean with the same covariance matrix, which is
formed from the diagonal matrices Z and S. This particular se-
lection is of critical importance from an implicit regularization
perspective, since it induces identical sparsity patterns over
columns/sub-blocks of A and B. A sufficiently large value
of ζr will lead the rth column of C (cf. (9)) and the entire
set of the redundant Lini columns of sub-matrices Ar,Br

(cf. (7), (8)) to zero. At the same time, the superfluous lth
columns of the “surviving” Ar,Br are jointly forced to be
zero when the value of srl becomes sufficiently large (cf. (7),
(8)). Thus, the Rini diagonal values of Z act as weights that
determine the number of nonzero block terms, R, while the
LiniRini diagonal values of S determine the number of nonzero
columns of A and B. The sophisticated selection of (7),
(8) leads to joint sparsity imposition on the columns of the
factors, in two levels. This way, ideas of ARD and sparse
Bayesian leaning (SBL) [10] are put into effect to address the
challenging problem of BTD model selection.

At the second level of the hierarchy of priors, inverse
Gamma priors are assigned over s and ζ,

p(s) =

Rini∏
r=1

Lini∏
l=1

IG
(
srl

∣∣∣∣I + J + 1

2
,
δrl
2

)
, (10)

p(ζ) =

Rini∏
r=1

IG
(
ζr

∣∣∣∣ (I + J)Lini +K + 1

2
,
ρr
2

)
, (11)

where δrl and ρr are the scale parameters of the distributions
over srl and ζr, respectively. The third level involves Gamma
prior distributions over these variables, namely,

p(δrl) = G(δrl | ψ, τ), (12)
p(ρr) = G(ρr | µ, ν), (13)

where ψ, τ, µ, ν take very small positive values rendering
the respective priors non-informative. Note that these priors
are conjugate w.r.t. the likelihood functions and w.r.t. each
other, which guarantees that the posterior distributions will
belong to the same class of distributions with the priors [5].
Moreover, one can show that heavy-tailed multi-parameter
Laplace marginal distributions show up over the columns of
A,B and C after integrating out the variables s and ζ. Finally,
a non-informative Gamma prior is also placed on the noise
precision variable β, namely,

p(β) = G(β | κ, θ). (14)

The above Bayesian model is depicted in the form of a
graphical model in Fig. 1.

Fig. 1. The proposed Bayesian model.

IV. APPROXIMATE POSTERIOR INFERENCE

Let Θ be the cell array which includes all unobserved
variables, that is, Θ , {A,B,C, s, ζ, β,ρ, δ}. The exact joint
posterior of the variables of the adopted Bayesian model is
given by

p(Θ | Y) =
p(Y ,Θ)∫
p(Y ,Θ)dΘ

. (15)

Due to the complexity of the model, the marginal distribu-
tion of Y in the denominator is computationally intractable.
Therefore, we follow a variational inference (VI) approach for
approximating (15). The idea is to approximate the posterior
by a distribution which is as close as possible to the exact
posterior in terms of the Kullback-Leibler divergence [6]. VI
allows for an efficient approximate inference process even
in vastly complicated Bayesian models that involve high-
dimensional variables. It is usually coupled with mean-field
approximation, namely, the assumption that the posterior
distribution can be factorized w.r.t. the involved variables,
implying statistical independence among them. In our case,
the approximate posterior q(Θ) of p(Θ | Y) is written in the
form

q(Θ) = q(β)

I∏
i=1

q(ai)

J∏
j=1

q(bj)

K∏
k=1

q(ck)×

Rini∏
r=1

Lini∏
l=1

q(srl)q(δrl)

Rini∏
r=1

q(ζr)q(ρr) (16)

Denoting the individual variables above by θi, the correspond-
ing VI-based posteriors are known to satisfy [6]

q(θi) =
exp(〈ln(p(Y ,Θ))〉i 6=j)∫
exp(〈ln(p(Y ,Θ))〉i 6=jdθi

, (17)

where 〈·〉i6=j denotes expectation w.r.t. all q(θj)s but q(θi).
To solve (17) a block coordinate ascent approach is taken,
employing the cyclic update rule, namely solving for q(θi)
given q(θj), j 6= i. It follows that the posterior distribution of
ai is given by

q(ai) = N (〈ai〉,Σa), (18)

with2

〈ai〉 = 〈β〉Σa〈P〉Ty(1)i, (19)

Σa = 〈β〉−1(〈PTP〉+ 〈S〉(〈Z〉 ⊗ ILini))
−1, (20)

2All ais turn out to have the same covariance matrix, Σa, and similarly
for the bjs and the cks.
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where 〈·〉 denotes expectation w.r.t the posterior of the involved
variable. The posterior of bj results in an analogous manner:

q(bj) = N (〈bj〉,Σb), (21)

with

〈bj〉 = 〈β〉Σb〈Q〉Ty(2)j (22)

Σb = 〈β〉−1(〈QTQ〉+ 〈S〉(〈Z〉 ⊗ ILini
))−1. (23)

The posterior of ck is

q(ck) = N (〈ck〉,Σc) (24)

with

〈ck〉 = 〈β〉Σc〈T〉Ty(3)k (25)

Σc = 〈β〉−1(〈TTT〉+ 〈Z〉)−1. (26)

Next, the approximate posteriors of the variables belonging to
the second level of hierarchy are given. The posterior of srl
turns out [11] to be a GIG pdf,

q(srl) = GIG
(
srl

∣∣∣∣−1

2
, 〈β〉〈ζr〉(〈aT

rlarl〉+ 〈bT
rlbrl〉), 〈δrl〉

)
(27)

with mean

〈srl〉 =

√
〈δrl〉

〈β〉〈ζr〉(〈aT
rlarl〉+ 〈bT

rlbrl〉)
, (28)

where 〈aT
rlarl〉 and 〈bT

rlbrl〉 are the ((r − 1)Lini + l, (r −
1)Lini + l) entries of

〈ATA〉 = 〈A〉T〈A〉+ IΣa (29)

and
〈BTB〉 = 〈B〉T〈B〉+ JΣb, (30)

respectively. Similarly, the approximate posterior of ζr is also
GIG, with 〈ζr〉 given by

〈ζr〉 =

√
〈ρr〉

〈β〉(
∑Lini

l=1 〈srl〉(〈aT
rlarl〉+ 〈bT

rlbrl〉) + 〈cTr cr〉)
(31)

and 〈cTr cr〉 denoting the (r, r) entry of

〈CTC〉 = 〈C〉T〈C〉+KΣc. (32)

It can be shown (as in [11]) that, at the third level of hierar-
chy, the approximate posteriors of δrl, ρr and β are Gamma
distributions with 〈δrl〉, 〈ρr〉 and 〈β〉 given in Table I, where
the resulting Bayesian-BTD (BBTD) algorithm is summarized
(cf. [12] for a more detailed presentation). The rest of the first-
and second-order statistics that are required in the algorithm
implementation are computed as in Table II, based on the
assumption of statistically independent A,B,C (cf. (16)) and
making use of the identities for the Grammians of Khatri-Rao
products proved in [2, Appendix C]. ∗ stands for the Hadamard
product.

TABLE I
THE BBTD ALGORITHM

Input: Y, Rini, Lini

Output: R̂, L̂r, r = 1, 2, . . . , R̂, Â, B̂, Ĉ
Initialize 〈B〉, 〈C〉, 〈β〉, 〈S〉, 〈Z〉, 〈δ〉, 〈ρ〉,Σb,Σc

repeat
Σa = 〈β〉−1(〈PTP〉+ 〈S〉(〈Z〉 ⊗ ILini

))−1

〈A〉 = 〈β〉Y(1)〈P〉Σa

Σb = 〈β〉−1(〈QTQ〉+ 〈S〉(〈Z〉 ⊗ ILini
))−1

〈B〉 = 〈β〉Y(2)〈Q〉Σb

Σc = 〈β〉−1(〈TTT〉+ 〈Z〉)−1

〈C〉 = 〈β〉Y(3)〈T〉Σc

r = 1, 2, . . . , Rini, l = 1, 2, . . . , Lini

〈srl〉 =

√
〈δrl〉

〈β〉〈ζr〉(〈aT
rl

arl〉+〈bT
rl

brl〉)〈
1
srl

〉
= 1
〈δrl〉

+ 1
〈srl〉

〈δrl〉 = 2ψ+I+J+1

2τ+〈 1
srl
〉

r = 1, 2, . . . , Rini

〈ζr〉 =
√

〈ρr〉
〈β〉(

∑Lini
l=1
〈srl〉(〈aT

rl
arl〉+〈bT

rl
brl〉))+〈cTr cr〉〈

1
ζr

〉
= 1
〈ρr〉

+ 1
〈ζr〉

〈ρr〉 =
2µ+(I+J)Lini+K+1

2ν+〈 1
ζr
〉

〈β〉 = (2κ+ (I + J)LiniRini +KRini + IJK + 1)/(2θ+〈∥∥∥YT
(1)
−PAT

∥∥∥2
F

〉
+
∑Rini
r=1 〈ζr〉[

∑Lini
l=1 〈srl〉(〈a

T
rlarl〉+

〈bT
rlbrl〉) + 〈cTr cr〉])

until convergence

TABLE II
FIRST- AND SECOND-ORDER STATISTICS REQUIRED IN BBTD

〈P〉 = 〈B〉 � 〈C〉
〈Q〉 = 〈C〉 � 〈A〉
〈T〉 =

[
(〈A1〉 �c 〈B1〉)1Lini

· · · (〈ARini
〉 �c 〈BRini

〉)1Lini

]
〈PTP〉 = 〈BTB〉 ∗ (〈CTC〉 ⊗ 1Lini×Lini

)
〈QTQ〉 = 〈ATA〉 ∗ (〈CTC〉 ⊗ 1Lini×Lini

)
〈TTT〉 = (IRini

⊗ 1T
Lini

)(〈ATA〉 ∗ 〈BTB〉)(IRini
⊗ 1Lini

)

〈‖Y(1) −PAT‖2F〉 = ‖Y(1)‖2F − 2tr{〈A〉TYT
(1)
〈P〉}+

tr{〈ATA〉〈PTP〉}

R is estimated as the number of columns of 〈C〉 of non-
negligible energy and similarly for the Lrs and the corre-
sponding blocks of 〈A〉, 〈B〉. The iterations stop when a
convergence criterion is met (e.g., the relative difference of
the tensor reconstruction errors in two consecutive iterations
becomes less than a user-defined threshold) or the maximum
number of iterations is reached.

V. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the BBTD
algorithm in revealing the ranks and computing the model
parameters, in comparison with the regularization-based BTD-
HIRLS scheme with its regularization parameter being se-
lected so as to achieve the minimum approximation error.
A 55 × 55 × 20 tensor Y is generated as in (2), with
R = 5 and the Lrs being set as L1 = 8, L2 = 6, L3 =
4, L4 = 5 and L5 = 3. The entries of Ar,Br and C are
i.i.d., sampled from the standard Gaussian distribution. The
noise power is set so as to result in a signal-to-noise ratio
SNR = 10 log10 ‖X‖2F/(σ2‖N ‖2F) of only 5 dB. Both R
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Fig. 2. NMSE vs. iterations.

and all Lrs are overestimated as 10. The evolution of the
median of the NMSE =

∑R
r=1

‖ArB
T
r ◦cr−ÂrB̂

T
r ◦ĉr‖

2
F

‖ArBT
r ◦cr‖2F

values3

obtained for 100 independent realizations of Y is plotted
in Fig. 2. It should be stressed that both BTD-HIRLS (as
demonstrated in [2]) and BBTD appear to be insensitive to
different initializations, hence a single random initialization is
used here. Observe that both algorithns converge in less than
100 iterations.

Fig. 3 depicts the success rates in the recovery of the true R
and Lrs. The Bayesian algorithm is seen to recover the correct
number of block terms in this scenario with a slightly lower
probability than the state-of-the-art BTD-HIRLS algorithm. It
should be noted however that in the rare cases that BBTD fails,
this happens only with a small deviation from the true R = 5,
namely 6. As it can be observed from Figs. 2(b)–(f), where
the success rates in recovering the individual ranks given a
correctly estimated R are shown, BBTD performs similarly
with or better than BTD-HIRLS, achieving almost 100%
accuracy in all terms. Instead BTD-HIRLS exhibits lower
accuracy in estimating L1 = 8. That BBTD performs overall
(in estimating both R and the Lrs) better than BTD-HIRLS
can be attributed to the probabilistic model that is adopted,
which allows BBTD to better capture the structure of BTD
when it comes to the low-rankness of the Ar,Br. Namely,
BBTD implicitly weighs differently each pair Ar,Br, as
opposed to BTD-HIRLS, which uniformly weighs all block
terms through a single regularization parameter. This also
explains the fact that the BTD-HIRLS estimation for R is
relatively more accurate.
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