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Abstract—Graph sampling strategies require the signal to be
relatively sparse in an alternative domain, e.g. bandlimitedness for
reconstructing the signal. When such a condition is violated or
its approximation demands a large bandwidth, the reconstruction
often comes with unsatisfactory results even with large samples. In
this paper, we propose an alternative sampling strategy based on
a type of overcomplete graph-based dictionary. The dictionary is
built from graph filters and has demonstrated excellent sparse
representations for graph signals. We recognize the proposed
sampling problem as a coupling between support recovery of
sparse signals and node selection. Thus, to approach the problem
we propose a sampling procedure that alternates between these
two. The former estimates the sparse support via orthogonal
matching pursuit (OMP), which in turn enables the latter to
build the sampling set selection through greedy algorithms.
Numerical results corroborate the role of key parameters and
the effectiveness of the proposed method.

Index Terms—Compressive sensing, graph signal sampling,
graph signal processing, signal reconstruction, sparse sensing

I. INTRODUCTION

Sampling strategies are ubiquitous for graph signals over e.g.
sensor, social, and biological networks [1], [2]; to name a few.
Different from the conventional temporal and spatial sampling,
graph sampling requires accounting for the coupling between
the signal and the underlying topology. This coupling is often
expressed as a prior to obtain a sparse signal representation in
an alternative domain. The typical approach in these cases is
to consider the eigenvectors of a graph representative matrix,
e.g., Laplacian, and represent the graph signal as a linear
combination of a few eigenvectors that capture most of its
energy; i.e. bandlimited graph signal representation [1]–[3].

Studies have been devoted to the sampling of bandlimited
graph signals. Earlier works, e.g. [4], [5], and [2], have
developed conditions for the exact recovery of bandlimited
data in the noiseless scenarios, laying down the theoretical
foundations. In [6], the uncertainty principle was developed for
graph signals. Compared to the noiseless case, sampling and
recovering graph signals in the noisy settings are considerably
more complex. To address this, a series of works have been
proposed based on intuitions related to optimal experiment
design [1]. For instance, convex relaxation techniques have
been used in [7], and greedy algorithms were also widely
adopted as alternatives, e.g. [2], [8]. Furthermore, efforts have
been put to facilitate sampling over large graphs. To avoid
the eigendecomposition cost when working with bandlimited
graph signals, the work in [9] considered the signal to be
smooth and used Gershgorin discs to optimize a sampling
criterion based on the smallest eigenvalue bound of the graph
Laplacian. In [10], the author proposed to use the so-called
spectral proxies as an alternative to the graph frequencies thus
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avoiding the computation of the eigenvectors. In addition, other
types of sampling sampling methods have been considered. The
aggregation sampling was proposed in [11] and built on the
fact that each node has access to shifted versions of the signal.
Probabilistic sampling has also been introduced to reduce the
associated computational burden when sampling signals on
large graphs [12], [13].

While the approximately-bandlimited assumption is often a
safe choice for sampling graph signals, it often leads to non-
sparse representations, ultimately, requiring a large number of
samples to reconstruct the signal within a prescribed accuracy
[10]. When a graph signal is not bandlimited, approximating
it as such may lead to reconstruction artifacts that are dif-
ficult to mitigate even if almost all nodes are sampled. To
still be able to sample graph signals in such situations, we
propose a novel dictionary-based graph sampling framework
that represents the graph signal as a sparse combination of
atoms of a parametric graph dictionary [14]. Since this setting
works with an underdetermined system of equations – this
is contrarily to the overdetermined case of bandlimited graph
signal sampling that the above works consider – we exploit
the sparsity of the signal and introduce a combinatorial `0-
minimization problem for jointly optimizing the sampling set
and the signal sparse representation. By identifying the two
subproblems in this task: (i) sparse recovery and (ii) subset
selection, we devise an efficient approach to find a tractable
solution for the sampling problem. Numerical experiments
corroborate the proposed method and show it outperforms
bandlimited sampling at moderate signal-to-noise ratio (SNR)
and number of samples.

II. PRELIMINARIES

Consider an undirected graph G = (V, E ,W), where V and
E denote the set of N nodes and M edges respectively, and
W is the weighted adjacency matrix. The interconnections
between nodes are captured by the entries of a symmetric
matrix S known as the graph shift operator (GSO) [15], whose
off-diagonal entry [S]i,j > 0 if there exists an edge connecting
tuple (i, j), and [S]i,j = 0 otherwise. Throughout the paper,
we assume S is normal and has the eigenvalue decomposition
S = UΛU>. Choices for the GSO are the adjacency matrix
W, the graph Laplacian L, and the normalized Laplacian Ln

To each node i a signal xi ∈ R is associated, and the
graph signal vector x = [x1, . . . , xN ]> collects the values
of all nodes. As for temporal signals, filters are the tools to
process graph signals [16]. Graph filters are functions of the
GSO, i.e. H(S) = h(S), and the filtering is performed by
multiplying the graph filtering matrix H(S) with the graph
signal x, namely xfilt = H(S)x. Specifically, the finite impulse
response (FIR) graph filter is defined as matrix polynomials of
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the GSO, i.e. H(S) =
∑K
k=0 hkS

k, where K is the filter order
and h = [h0, ..., hK ]> are the filter coefficients. The output of
this FIR graph filter

xfilt =

K∑
k=0

hkS
kx (1)

is the weighted sum of the K-hop neighbours’ shifted signals
{Skx}k around the nodes. Thus, the FIR filter captures the
local behaviors of graph signals for up to a radius K from a
node.

A parametric graph dictionary (PGD) [14] forms a dic-
tionary comprising of S FIR graph filters, i.e., H1:S(S) =
[H1(S), . . . ,HS(S)], where to each filter Hs(S) [cf. (1)] it is
referred to as a sub-dictionary. Given the link with the FIR
graph filters, a PGD is inherently defined by the coefficients
of all S sub-dictionaries h1:S = [h>1 , . . . ,h

>
S ]> ∈ R(K+1)S×1,

where hs = [h0s, . . . , hKs]
> are the coefficients of the sth

sub-dictionary filter (1). Training the PGD dictionary H1:S(S)
reduces to estimating the filter coefficients h1:S . To identify
the latter, we start with a set of T graph signals collected
in the matrix X = [x1, ...,xT ] ∈ RN×T . Then, we aim
to find a collection of T sparse vectors zτ ∈ RNS with
τ = 1, ..., T , each having at most S0 non-zero entries, i.e.,
Z = [z1, . . . , zT ] ∈ RNS×T and the coefficients h1:S . For-
mally, this task translates into solving the optimization problem

argmin
h1:S ,Z

‖X−H1:S(S)Z‖2F + γ‖h1:S‖22

subject to ‖zτ‖0 ≤ S0, τ = 1, . . . , T,

Hs(S) =
K∑
k=0

hksS
k, s = 1, . . . , S,

0IN � Hs(S) � δIN , s = 1, . . . , S,

(δ − δ1)IN �
S∑
s=1

Hs(S) � (δ + δ2)IN .

(2)

Problem (2) minimizes the Frobenius norm distance between
the signals in X and their sparse dictionary reconstruction
H1:S(S)Z, while regularizing with a `2−norm of the coef-
ficients γ‖h1:S‖22. The `0−norm constraint ‖zτ‖0 forces each
vector zτ to be at most S0-sparse. The other constrains impose
the sub-dictionaries forming H1:S(S) to be FIR filters and
control the eigenvalues of each filter to be at most δ (third
contraint) and that the total sum of eigenvalues to be bounded
between (δ − δ1) and (δ + δ2) for some scalars δ, δ1, δ2.

Notice that while other non-graph-based dictionaries can be
used to sparsely represent graph signals, the approach in (2)
is attractive because: (i) it is built by leveraging the coupling
between the signal and the underlying graph; (ii) it forces a
local representation of radius K from a node therefore captures
local details; and (iii) it often allows sparser representations for
graph signals [14]. Therefore, in the sequel, we will focus on
sampling graph signals with sparse representations as per (2).
However, the approach here presented can be readily extended
to any general sparse signal representation by considering a
different dictionary.

III. PROBLEM FORMULATION

We consider the scenario that a graph signal x follows a
sparse representation w.r.t. the PGD Ψ ∈ RN×L

x = Ψs0 (3)

where s0 is an L × 1 vector with sparsity S0 � L. Suppose
the signal x is corrupted by an additive Gaussian noise, i.e.,
y = x + n = Ψs0 + n where n ∼ N (0,Σn) with the
covariance matrix Σn = diag(σ2

1 , ..., σ
2
N ). Our goal is to design

a sampling strategy that subsamples y from a subset of nodes
S ⊆ V and to recover the original signal x using (3) with
minimum distortion.

To formalize sampling, let us consider a binary selection
matrix CS drawn from the combinatorial set

CS,N = {CS ∈ {0, 1}|S|×N : CS1N = 1|S|,C
>
S 1|S| � 1|S|}.

(4)
By construction, matrix CS satisfies CSC

>
S = I|S|, C>SCS =

diag(c) and c ∈ {0, 1}N such that ci = 1 if vi ∈ S .1 Thus,
the sampled noisy signal over the set S can be expressed as

yS = CS(x + n),

= CSΨs0 + nS ,
(5)

where nS represents the noise at the nodes in S. Sampling and
reconstruction now depend on designing CS and estimating
s0 from observations yS . However, differently from graph
signal sampling with bandlimited representation, model (5)
is underdetermined because the system matrix CSΨ is wide
instead of tall. Hence, conventional sampling techniques cannot
be applied anymore.

For such an ill-posed problem, a unique solution for s0 can
be obtained through regularization. To exploit the sparsity of
s0, it is a natural choice to adopt the sparse recovery paradigm
[17], which regularizes the ill-posed problem by seeking the
sparsest estimate of s0 that fits the observations. Then, our
goal for jointly designing CS and estimating s0 can be framed
as solving the optimization problem

argmin
CS ,s

‖s‖0

subject to ‖yS −CSΨs‖2 ≤ ε,
CS ∈ CS,N .

(PεJ,0)

which seeks for a vector s with the minimum number of non-
zero entries, while tolerating the reconstructed signal CSΨs
on the sampled nodes to deviate from yS by at most ε, and
constraining CS to be a proper sampling matrix drawn from
(4). If it were not for the sampling matrix CS , problem (PεJ,0)
could be solved with conventional pursuit algorithms for s [17].
However, matrix CS adds a major difficulty to the problem
because of its combinatorial nature, making problem (PεJ,0)
NP-hard. Our goal next is to circumvent this challenge via
an alternating minimization to efficiently estimate the sparse
vector s and optimize the sampling matrix CS .

1Notice that S, CS and c are equivalent representations of a certain node
selection – knowing one of them, the other two are uniquely defined.
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Algorithm 1 ADS algorithm for problem (PεJ,0)

1: Objective: Minimize (PεJ,0) via alternate minimization.
2: Initialize S0 randomly, set iteration count i = 0
3: while |Si| ≤ |S| do
4: Build Ψ̃Si by removing the all-zero columns of CSiΨ

and normalizing the columns.
5: Update s by solving (PεSi,0) through the OMP algo-

rithm.
6: Build Ψ(i)

nnz with columns of Ψ corresponding to the
non-zero elements in ŝ(i).

7: Update CSi+1
via the greedy algorithm.

8: i← i+ 1
9: end while

10: Use yS to estimate the original signal x through (8).

IV. ALTERNATING DICTIONARY-BASED SAMPLING

We approach problem (PεJ,0) through alternating optimiza-
tions between s and CS . To be precise, we start with a sampling
set S0 ⊂ S of cardinality |S0| � |S|. The initial set S0 is
defined either randomly or by a prior. After the noisy data
yS0 are sampled over the nodes in S0, we set CS = CS0
and solve (PεJ,0) only w.r.t. s via pursuit algorithms [17]. Then,
with the obtained solution ŝ(0), we update the sampling set to
S1 ⊃ S0 via sparse sensing techniques [18]. The procedure then
repeats with S1. This alternating update will produce a series of
sampling sets S1 ⊂ S2 ⊂ . . . ⊂ S. Without loss of generality,
we keep the selection stepsize unitary, i.e., |S|i − |S|i−1 = 1.
At iteration i, we therefore first find the sparsest representation
ŝ(i) of the sampled noisy data ySi , then sample the nodes to
build the sampling set Si+1. The algorithm terminates after
the selection budget |S| is reached. We refer to this scheme as
alternating dictionary-based sampling (ADS).

A. Support Estimation

To detail the above procedure, at iteration i, we are given
the selection set Si and the respective samples ySi . First, we
construct the corresponding normalized subsampled dictionary
Ψ̃Si by first removing the all-zero columns of CSiΨ, and
then normalizing the remaining ones. The support of s(i) is
identified by solving the optimization problem

argmin
s(i)

‖s(i)‖0

subject to ‖ySi − Ψ̃Sis
(i)‖2 ≤ ε,

(PεSi,0)

which is a typical sparse recovery problem and can be solved
via a range of well-developed algorithms [17]. We will use the
OMP algorithm to solve problem (PεSi,0). This is because OMP
is one of the simplest and fastest sparse recovery algorithms;
and our goal is to demonstrate the effectiveness of the proposed
ADS paradigm, for which OMP suffices.

The OMP algorithm is a greedy sparse recovery algorithm,
which at every iteration identifies the (normalized) dictionary
atom that is the most correlated to the input observation. Then,
the contribution of the identified atom is excluded from the
input data and the residual is regarded as the next input. Such
a process is repeated until the stopping criterion is met. There
exist a few different OMP stopping criteria that are commonly
used [19]:

1) The algorithm terminates when the number of iterations
reaches the desired sparsity.

2) The algorithm terminates when the magnitude of the
residual is sufficiently small.

3) The algorithm terminates when the correlation between
the non-selected atoms and the residual is smaller than a
threshold.

While for criterion 1) the OMP algorithm requires the knowl-
edge of the sparsity as prior information, the other two criteria
require tuning the respective thresholds to get desirable sparse
recovery performances. Since in this work we do not focus on
the explicit implementation of the sparse recovery algorithm,
we choose the stopping criterion 1) but any of the others can
be used.

B. Node Sampling
Once the estimate ŝ(i) is obtained, the goal next is to leverage

its sparsity to update the sampling matrix CSi+1
. At first sight,

it may seem we still need to face an underdetermined system.
But since we know the support of ŝ(i), we can transform
the system into an overdetermined one. Considering ŝ(i) is
sufficiently sparse, we can remove the redundant atoms in Ψ
and keep only those Ψ(i)

nnz that are necessary to represent the
estimate, i.e.,

x̂(i) = Ψ(i)
nnzŝ

i
nnz (6)

where ŝinnz is the shorter vector containing the non-zero en-
tries of ŝ(i) and Ψ(i)

nnz has now dimensions N × nnz(ŝ(i)),
with nnz(ŝ(i)) denoting the number of non-zero elements in
ŝ(i). Therefore, we can write the measurement model for the
sampling set Si+1 as

ySi+1
= CSi+1

Ψ(i)
nnzs

(i)
nnz + nSi+1

, (7)

where now we work with a tall matrix Ψ(i)
nnz. Notice that in

(7) we treat s
(i)
nnz as an unknown variable for which we want to

design the sampling matrix CSi+1 that leads to the best estimate
for it. In other words, the sparse solution obtained by solving
(PεSi,0) with OMP is only used now to obtain the support of
the sparse representation and build the tall matrix Ψ(i)

nnz.
The second step (i.e. node sampling) of the ADS algorithm

consists of updating the sampling set by adding one of the
residual nodes that yields the best estimate of s

(i)
nnz through

model (7). To describe how good the estimation can be
achieved for s

(i)
nnz (and hence for the entire graph signal x),

we use the best linear unbiased estimator [20],

x̂
(i+1)
B = Ψ(i)

nnzΘ
†
iΨ

(i) H
nnz C>Si+1

(
CSi+1

ΣnC>Si+1

)−1
ySi+1

(8)

with Θi = Ψ(i),H
nnz C>Si+1

(
CSi+1ΣnC>Si+1

)−1
CSi+1Ψ

(i)
nnz and

(·)† denoting the Moore–Penrose pesudoinverse. We then
quantify the estimation performance through its mean square
deviation (MSD)

MSD = E
[
‖x̂(i+1)

B − x‖22
]

= tr
(
Θ−1i

)
= tr

[(
Ψ(i)H

nnz diag(ci+1)Σ−1n Ψ(i)
nnz

)−1]
,

(9)

where the last equality holds since Σn is diagonal.
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Figure 1. Performance comparison of different sampling methods: (a) relative error of different selection methods vs. the number of observations;
(b) average percentage of the correctly recovered support by OMP for the results in (a); (c) relative error for different SNRs. For (a) and (c),
the solid lines indicate the medians, whereas the shaded areas mark the inter-quanrtile ranges of 25%-75% percentiles.

Thus, we can now update the sampling set Si+1 by mini-
mizing the MSD w.r.t. ci+1, i.e., solving

argmin
ci+1

tr
[(

Ψ(i)H
nnz diag(ci+1)Σ−1n Ψ(i)

nnz

)−1]
subject to ci+1 ∈ {0, 1}N×1, ‖ci+1‖0 = |Si+1|

‖ci+1 − ci‖0 = 1, Si ⊂ Si+1

. (10)

where the last constraint indicates that we increase the sampling
set by one sample. Therefore, Si+1 should contain Si. In the
above steps, the noise coveriance Σn is a known, which can
be easily estimated from pilot samples.

Problems of the form in (10) are standard within the sparse
sensing framework. Since we have the set inclusion constraint
Si ⊂ Si+1 and need to increase the size of the sampling
set, approaching such via greedy methods is a natural choice
[1]. As a result, we can directly apply the greedy heuristic
to problem (10) by adding to the sampling set the residual
node n ∈ S̄i = V \ Si that minimizes the MSD. Alternatively,
other criteria from experimental design that exhibit amenable
properties for greedy selection (e.g., submodularity [21]), such
as the (pseudo) log-determinant criterion

fi(n) = − log det
[
Θi(Si ∪ {n}) + ξI

]
(11)

can be used, where the term ξI with ξ � 1 avoids the rank
deficiency of Θi. We considered the log-determinant critetion
in the numeral experiments.

The node sampling step concludes iteration i of the ADS
algorithm. All the steps are summarized in Algorithm 1. We
would like to remark that the interplay between the support
estimation and node selection does not necessarily have any
submodularity guarantee even if a submodular function is used
in (10). This is because the support estimated from (PεSi,0)
may change between iterations; especially in the earlier ones.
However, when the number of samples becomes large enough
and the support does not change, using submodular functions
in (10) may come with near-optimal guarantees [21]. A deeper
analysis of the latter will be done in future work.

V. NUMERICAL EXPERIMENTS

This section presents numerical experiments to corroborate
the proposed approach and compare it with the baseline graph-
bandlimited sampling. We considered the scenario in [14]

comprising a graph of N = 100 randomly placed nodes
and a PGD with S = 4 subdictionaries of FIR filters with
orders K = 5. We generate the signal x through the linear
combination of four random atoms of the oracle dictionary
with uniformly distributed coefficients in [0, 1]; hence S0 ≤ 4.
We corrupt the data with different SNRs in [−5dB, 30dB].
The parameter ξ in (11) is set to 10−3. The initial selection
set is built at random and contains two nodes out of the 100
available. We run R = 103 Monte-Carlo simulations, and we
measure the reconstruction performance through the relative
error, RE = ‖xr − x̂r‖2 / ‖xr‖2, where xr and x̂r denotes
the r-th true signal and reconstructed signal, respectively. We
compare the proposed ADS approach with:

1) OA-greedy: Oracle algorithm that knows the S0 = 4 true
atoms (instead of estimating through OMP) and adopts a
greedy solution to sample the nodes. It allows comparing
with the best performance we can achieve.

2) OMP-rand: Estimates the support with OMP but samples
nodes uniformly at random. Shows the effectiveness of the
greedy sampling de-factorizing the impact of the support.

3) Standard bandlimited-based greedy selection with a band-
width containing 90% of the energy. The bandlimited
frequency supports are calculated on a per signal basis.
This case contrasts the ADS with a baseline solution.

Cardinality sampling set. We first analyze the impact of
the number of sampled nodes; thus, we consider the true
dictionary known and fix the SNR to 30dB. Fig. 1(a) depicts
the reconstruction performance of the compared methods for
different |S|. In contrast to the bandlimited sampling, the ADS
and OMP-rand converge to the OA-greedy lower bound, which
confirms that the proposed method can indeed address the
concerned sampling that bandlimited approach struggles to
handle. The result of ADS has a typical trend - the relative
error initially reaches a slow-decaying plateau, followed by
a rapid decrease after around 30 observations. This plateau
can be a result of initial lack of observations, which makes it
considerably hard for the OMP algorithm to estimate the sparse
support. Once sufficient observations are supplied, more correct
supports can be identified. The evidence can also be found
in Fig. 1(b), which illustrates the average rate of successful
support recovery for the different methods. For the ADS, the
recovery rate is initially low and reaches its turning points
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Figure 2. Performance comparison for using a trained and the exact
dictionary. Solid lines and shaded areas indicate the median and inter-
quartile ranges.

roughly at around N = 30 nodes. The random selection follows
a similar pattern, but reaches the turning point slower (at around
N = 45), suggesting that greedily sampled data not only gives
better reconstruction but also benefits the sparse recovery.

SNR. Fig 1(c) compares the reconstruction error for the con-
cerned methods for |S| = 50 observations under different
SNRs. We can observe that the SNR has a significant impact on
the proposed method. Under low SNRs, the proposed scheme
results in considerably high reconstruction errors even with half
of the nodes being sampled. This is possibly due to the fact
the OMP’s performance degrades significantly in highly noisy
conditions. For higher SNRs, the proposed method improves
rapidly and converges to the oracle result at around 20dB.
Furthermore, the proposed method performs uniformly better
than random sampling in terms of the median and the spread of
the errors, proving the greedy method is an effective selection
scheme for the ADS framework.

Trained dictionary. Lastly, we evaluate the proposed method
when the true dictionary is unknown. We generate 2600 data
samples corrupted by noise with SNR = 30 dB, from which
600 are used to train the dictionary while the rest for testing.
The training procedure follows [14] but now with noisy data,
and results in a relative dictionary representation error of
3.62%. Fig. 2 depicts the reconstruction errors as a function
of |S| for both the true (oracle) and trained dictionaries.
When the number of selected nodes is low, the OMP-induced
noise dominates. After around 30 observations, both medians
drop rapidly and converge to their steady-state errors. The
difference between the trained and oracle dictionary in steady-
state is comparable to the dictionary representation error, which
indicates the main source of error to be dictionary training.
These results shows also the reliability of the proposed method
with trained dictionary, which does not contribute to significant
excessive error beyond those of the trained dictionary. Such
error can be further reduced by increasing the training samples.

VI. CONCLUSIONS

This work proposed a sampling strategy for graph sig-
nals that enjoy sparse dictionary representations. This sparse
representation is of interest when the graph signal does not
satisfy the smoothness or the bandlimitedness prior, thus cannot
facilitate effective sampling. We instead resort to the parametric

graph dictionaries to represent the signal and proposed a
sampling scheme for this underdetermined system that relies on
the interplay between support estimation and subset selection.
Starting with a small given sampling set (e.g., random), we
solve a trimmed-dictionary representation problem via orthog-
onal matching pursuit to estimate the support. Then, we use
this support to sample extra nodes, which in turn are used
to refine the support estimate. This alternating procedure is
repeated until the desired number of samples is reached. One
of the main limitations we have observed is the impact of the
initial sampling set, which can be addressed by not starting
at random. This aspect is left for future work due to space
limitations.
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