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Abstract—We address the problem of decentralized eigenvalue
decomposition of a general symmetric matrix that is important,
e.g., in Principal Component Analysis. The proposed algorithm
only uses local interactions among neighboring agents and is
based on the representation of the matrix as a recursive update
of rank-one components. This makes the algorithm attractive
for online eigenvalue and eigenvector tracking applications.
We study the performance of the proposed algorithm in two
important application examples: First, we consider the online
eigendecomposition of a sample covariance matrix over the
network. Then, we investigate the online computation of the
spectra of the graph Laplacian that is important in, e.g., graph
Fourier analysis and graph-dependent filter design. Simulation
results reveal that the proposed algorithm outperforms existing
decentralized algorithms both in terms of estimation accuracy as
well as communication cost.

I. INTRODUCTION

The eigenvalue decomposition is fundamental in various
application areas such as signal processing, data mining,
and machine learning [1]-[3]. In particular, when the data
dimension is large, dimensionality reduction techniques, such
as the Principal Component Analysis (PCA), are required to
obtain lower-dimensional representations of the data, e.g., by
means of eigendecomposition [4]-[6]. In big data applications
and when the data is massively distributed over a network of
agents, decentralized algorithms are required as scalable solu-
tions. Based on the concept of in-network processing, agents
perform local processing and collaborate by exchanging in-
formation only within their local neighborhood. A distributed
PCA algorithm is proposed in [6], where the local PCA is
performed on the local data and then merged at a central
coordinator. To employ the PCA fully distributively, consensus
gossiping strategies are applied in many decentralized signal
processing algorithms [7], [8]. Combined with the Average
Consensus (AC) algorithm, the decentralized power method
is proposed in [9]. The distributed Oja’s method is proposed
in [10], where the Oja’s rule is performed in a distributed
manner. A distributed adaptive algorithm named DACMEE is
proposed in [11], where no nested AC iterations are required.
However, the applications of this algorithm are limited to fully
connected or tree network topologies.

Based on the distributed power method for eigenvalue
decomposition, the distributed ESPRIT (d-ESPRIT) algorithm
is proposed in [12] for distributed Direction-of-Arrival (DoA)
estimation. To reduce the communication cost, the d-ESPRIT
is further developed as the L-ESPRIT in [13], where the
decentralized Lanczos method is used instead of the distributed
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power method. Combining the AC algorithm and the non-
Hermitian generalized eigendecomposition, an online adaptive
algorithm is proposed in [14] to perform the decentralized
cooperative DoA tracking.

In this work, we propose a decentralized online adaptive
eigendecomposition algorithm that is based on the eigende-
composition of a rank-one modified diagonal matrix [15].
The data available at each agent is diffused through the
network using parallel consensus protocols with local inter-
actions between agents. At termination, each agent knows
all eigenvalues and the respective rows of the eigenvector
matrix that correspond to its own data. The benefit of the
proposed decentralized algorithm with respect to the popular
decentralized power method [9] is that all eigenvalues and
eigenvectors are computed in parallel and that the algorithm
is particularly suitable for online tracking applications where
rank-one updates are natural. We evaluate the performance
of the proposed decentralized eigendecomposition algorithm
in two prominent application examples: (A) the decentralized
eigendecomposition of the sample covariance matrix and (B)
the decentralized online computation of the graph eigenvectors
and eigenvalues in a dynamically evolving graphical network.

II. ONLINE DISTRIBUTED STRATEGY FOR EIGENVALUE
DECOMPOSITION

Consider a network of N agents that is described by the
graph G = (V,€) where V = {1,..., N} is the set of nodes
(agents) and £ C V x V is the set of edges. Assume that the
network G is unweighted, i.e., the graph G is characterized
by its symmetric adjacency matrix A = [a;;] € RV*N. The
entry a;; is 1 if (4,5) € £, i.e., if agent 7 has a communication
link to agent j, and 0 otherwise. Let d; = Zjvzl a;j denote
the degree of node i, then D = diag (dy,ds,...,dy) is the
degree matrix of G. The corresponding graph Laplacian matrix
can be expressed as L = D — A. Let z;(t) € R denote
the signal of node ¢ at the time instant ¢, and the vector
x(t) = [z1(t),22(t),...,2n(t)]T € RY collects the signal
of all nodes in the network.

We address the problem of the online distributed computa-
tion of the eigenvalues of a rank-one modification

R(t) = R(t — 1) + p(t)x(t)x(t)". (D
where p(t) € {—1,1}. We assume that the eigenvalues
A(t—1) =diag(M(t —1),...,An(t — 1)) and correspond-
ing eigenvectors U(t — 1) = [uy(t — 1),...,un(t — 1)] of
R(t — 1) are known, which are related as follows

Ut-DTR(t-1)U(t—-1)=A(t—-1). ()
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Furthermore, we assume the eigenvalues are distinct and sorted
in descending order as Ay (t —1) > --- > An(t —1).

Multiplying both sides of (1) with U(¢t — 1)T and U(t — 1)
from the left and the right, respectively, leads to

Ut-1)TRHOU(E—-1)=At-1)+p®)z(t)z(t)", 3)
with

2(t) = [21(8)see 2w (O] = U= DTx(0). @)

The expression on the right hand side of (3) represents a
rank-one modification of a diagonal matrix. The modified
eigenvalues and corresponding modified eigenvectors are de-
noted as A(t — 1) = diag (A\(t—1),...,An(t—1)) and
Vit —1) = [vi(t —1),...,vnN(t — 1)], respectively, which
are related as

V(t— DT(A(t — 1) + p()2(t)z()T)V (¢ — 1) = At - 1),

V(t—1)TU(t—-1)TRHU(t - 1)V(t—1) = A(t —1).

Furthermore, since )
U(t)TR()U(t) = A(t), (6)

we observe that R(t) shares the same eigenvalues with the
rank one modified matrix, i.e., A(t) = A(t — 1), and the
corresponding eigenvectors can be computed by

U#)=Ut-1)V(Et-1). (7
A. Rational Function Approximation Approach

As described above, the eigenvalue decomposition of a
diagonal matrix modified by a rank-one matrix in (5) plays
a crucial role in our proposed distributed algorithm. For
notational simplicity, we drop the dependence of the matrix
arguments on the time instant ¢. By exploiting the structure
of the matrix argument, the efficient implementation of the
rank-one modification problem is facilitated by the following
theorem [16]:

Theorem 1: Suppose A = diag(A\1,...,Any) €
where the diagonal entries are distinct and are sorted in
descending order, i.e., Ay > --- > Ay. Further assume that
p# 0and z = [21,...,25] € RY with z; # 0 for all
i=1,...,N.If V= [vy, - ,vn] € RV*¥ is an orthogonal
matrix such that

VT(A + pzz")V = diag (A1, . ..
with A\; > --- > Ay, then

1) The values in set {\;} Y, are the N Zeros of the secular
function f(\) =1+ pzT(A — )~}
2) The values {)\;} Y, satisfy the interlacing property, i.e.,
M >A > A > o> Ay > Ay, if p>0,
AL > AL > A >0 > A > A, if p <0
3) The eigenvector v; associated with ); is a multiple of
(A — S\iI)’lz
There is no loss in generality in assuming that p > 0,
otherwise, we can replace A\; by —Any_;11 and p by —p [16].
The eigenvalues )\ of the matrix A + pzzT can be computed
by solving f(\) =0, i.e.,

RNXN

AN
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Based on the interlacing property of the eigenvalues, for the
k-th eigenvalue Ay € (Ag, Ap—1) with Ag = Ay + pzTz [17],
we can rearrange the equation as

—p—1(A) = 1+ dr(N) )

_pZA :pZA

Since both functlons 7,/1k_1( ) and ¢y () are sums of rational

where

Yr—1(A

2

and ¢ () . (10)

functions, it is natural to approximate them with simple
rational functions [16] as
~ q ~ S
-1(A) = —— — and A) = . (11
Vi-1(A) PEy ™ Pr(A) rt o 4D

In (11), the parameters p, ¢, » and s are chosen such that,
at the given iteration point A\(7), the rational approximants
Yr_1(\) and ¢r(\) in (11) coincide with the true rational
functions () and ¥,_1(A) in (10) up to the first derivative,
respectively. The next iteration point AT+ € (A, Ap_1) is
obtained from a solution of the following equation

—hr—1(A) = 1+ dx(N). (12)
For special case where & = 1, 9,_1()) is approximated as
1¥o(N\) = 0. The rational function approximation algorithm is
summarized in Algorithm 1 [18] as follows:

Algorithm 1 Computing the k-th Eigenvalue of Rank-One
Modification With Rational Function Approximation, RA(-)

1: Imitialization: Iteration index 7 = 0, scalar p, vector z,
tolerance ¢, arbitrary starting point A7) e (Mky Ak—1)

2: repeat

3:  Find the parameters p and ¢ such that

Ge-1(AD) = g1 (A7) and g (A7) = g (AT).
(13)
4:  Find the parameters r and s such that
Pe(A7)) = ¢(A7)) and (A7) = gL (AT).  (14)
5. Find AT € (A, A1) which satisfies
1A =14 g, (ATTY) (15)

6: T+ T+1
7 umtil ATHD — A <€
8: return \, = \"tD v, =

(A=XI) 7 z/|(A =M\ I) "2

B. Push-Sum Consensus

To compute the eigenvalues and eigenvectors over the
network as presented in Algorithm 1, the sample vector update
z(t) defined in (4) must be available at all nodes. Nevertheless,
each node in the network knows only its corresponding entry
in the vector x(t) locally. Therefore, in this section, we
introduce a distributed consensus procedure to compute the
update vector z(t) over the network. We assume that each
node maintains at each time instant one row of the eigenvector
matrix U(¢t — 1) and one entry of the signal vector x(¢). The
k-th entry of z(t) for all k =1,..,, N is computed as

2(t) = el U(t — 1)x Zuzkt—lxl t),  (16)
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where ey, is the k-th column of an identity matrix, and z;(t)
and u,x (t—1) are available locally at the i-th node. We remark
that the expression in (16) can be computed distributively with
different methods, e.g., the averaging consensus algorithm,
linear graph filters, and nonlinear graph filters [19], [20]. One
candidate for computing (16) distributively is the Push-Sum
consensus algorithm, which was first introduced and analyzed
in [21], and the convergence of the generalized weighted
gossiping algorithm is proven in [22] for any graphs based
on weak ergodicity arguments. Benefiting from the drop of
the double stochasticity of the updating matrix, the Push-
Sum algorithm is naturally applicable to directed networks.
Its principle is provided in the following.

Assume that the vector y = [y1,...,yn]" contains the
values of N nodes whose average needs to be computed
distributively over the network. From the adjacency matrix
of the network, we introduce a column stochastic matrix P
which satisfies 1TP = 17, where p;; = 0 if there is no direct
edge between node ¢ and j. A simple and sufficient example

of matrix P is
1/d;,
ij - {0’

In order to perform the averaging operation distributively,
the Push-Sum consensus algorithm further assumes that, at
a given consensus instant 7, each node ¢ maintains a set
consisting of two values: a cumulative estimate of the sum
Si(yy and a weight w;,) for ¢ = 1,...,N. The vector

(1,5) €V,

17
otherwise. a7

of cumulative sums s,y = [S1(y),..-,5n(y)] € RV and
the vector of weights w = [wl(y),...,wN(,Y) € RY are
initialized as

Sy =Y and W) = 1, (18)

respectively. The Push-Sum consensus algorithms consists of
two steps, which are iteratively performed in all nodes of
the network until convergence. At the ~y-th consensus instant,
based on the chosen column stochastic matrix P, node 7
first splits its total sum s;,) and weight w;(,) into shares
and sends to its neighboring node j the corresponding share
Sissi(y) = {PjiSi(y)> PjiWi(y) }- Then, each node updates its
own sum and weight by summing up all the shares received
from its adjacent nodes. The above mentioned process are
summarized in vector form as
(19)
Given the estimated sum and weight in (19), the estimated
average is calculated at each node by

Z(y) =8(y) @ W(y); (20)
where © is Hadamard division. At the end of the Push-Sum
iteration, each node shares the same average value, i.e.,
Siy _ 1y

= li ——, forall i e€V.
VT aSewg, N Z

S(y) = Ps(y-1) and w(;) = Pw(,_1).

lim 2; (21)
Y00
Remark: If only one node starts with weight 1, then the
value computed at the nodes converges to the sum 1Ty, instead
of their average. Furthermore, if each node starts with value
Si(y) = 1, the network size can be determined distributively.
Now the computation of (16) can be achieved distributively,

and (4) can be performed by N parallel consensus steps.

(v

Moreover, since each node has the access to one row of
U(t — 1) and full knowledge of V(¢ — 1), the update (7) for
each row can be performed locally at each node easily with
e]U(t) =e]U(t-1)V(t—1), forall i € V. (22)
The Push-Sum consensus protocol can be summarized in
Algorithm 2 as follows:

Algorithm 2 Push-Sum Consensus Protocol Performed at the
i-th Node for the k-th Entry of z(t), PSy(-)

1: Imitialization: Iteration index v = 0, maximum number of
consensus iterations I, pj;, initialize s;(0) = wix (t)2;(t)
and Wi(0) = 1.

2: while v <T do

. Push step: Send the shares S;_, ;(-) to all adjacent nodes
j €V with (i,7) € £.

4. Sum step: Sum the shares S;_,;,) obtained from all
adjacent nodes j € V with (j,4) € £.

y—v+1

6: end while

7: return z(t) = Nsi(wﬂ)/wi(wl)

C. Online Distributed Eigenvalue Decomposition Protocol

After applying the Push-Sum consensus protocol to diffuse
the information of new sample vector x(t), and applying
rational function approximation to compute the eigenvalues of
the rank-one modification, we are able to track the eigenvalues
of R(¢) in an online manner for new samples x(¢) that
are collected distributively over the network. Our proposed
algorithm to track the eigenvalues of the matrix with the rank-
one modification (1) is summarized in Algorithm 3 as follows:

Algorithm 3 Online Distributed Eigenvalue Computation Per-
formed at Node i
1: Initialization: A(0) = 0,e]U(0) = €],
2: while x(t) observed do
3:  Network Communication (Push-Sum)
4: forall k€[l,...,N] do in parallel
5 2 (t) = PSk(e]U(t — 1)x(t))
6: end for
7
8
9

p(t),t=1

Node Computation (local update)
for all k € [1,..., N]| do in parallel
: Me(t—1),vi(t—1)] = RAL(A(t = 1) + pz(t)z(t)T)
10: end for
11:  Update A(t) = A(t —1)
122 Update e]U(t) = e]U(t — 1)V (t — 1) (Eq. (22))
13: end while

At each time instant ¢, the i-th node contributes a new
sample z;(t) and maintains a row of U(¢). By running the
Push-Sum consensus protocol, an instant of the vector z(t)
is computed in each node throughout the network. Then the
rational function approximation is performed locally in each
node since A(t), p(t), and z(t) are accessible to all the nodes.
Depending on the computation and storage capacity, each
node can perform the rational function approximation fully
parallelized or sequentially.
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Remark: In the first N — 1 samples witht =1,..., N — 1,
the sample covariance matrix R(t) has zero eigenvalues with
multiplicity larger than one, which violates the assumptions
in Theorem 1. Thus, an extra deflation step is required to
remove the multiplicity to have a rank-one modification with a
smaller size. The deflation technique is discussed in [16] and
the potential case where z(t) contains zero components can
also be deflated.

III. CASE STUDY

To evaluate the performance of our proposed algorithm,
we studied two application cases, and the relative errors are
defined as . ~ .

et = 2 = DL gy () = O o
Ak ()] Ak ()]
where A () is the k-th eigenvalue computed by our proposed
algorithm, e (t) is the k-th eigenvalue computed by a central-
ized processor, and Ay is the k-th eigenvalue of the true sample
distribution. Throughout this section, the numerical precision
for the rational function approximation is set as e = 10712,

A. Application Example 1: Eigenvalue Decomposition of Sam-
ple Covariance Matrix

One natural application example with our proposed algo-
rithm is the computation of the eigenvalues of the sample
covariance matrix. In this case, x;(t) is the observation ob-
tained at the i-th node, and R(t) = an:o x(m)x(m)T is
the sample covariance matrix. A decentralized power method
proposed in [9] is used as a comparison, where the number of
power method iterations is denoted as €.

10!
L (I'=6) ('=10) =
‘% - nl,ra — 1l,ra (N m
-m- pI=6) _ A (I'=10)
7fll,pm 1,pm

10°

Relative Error

10!

| |
400 600
Sample Vector Update

\
200

O T

800 1,000

Fig. 1. Relative error of A1 for R(t) with different maximum number of
consensus iterations I', where 7o and 7pn stand for relative errors using our
proposed online algorithm with rational function approximation and using
distributed power method (2 = 30), respectively.

In Figure 1, we observe that more Push-Sum or Average
Consensus iterations are required for both protocols to have
a better error performance compared to the centralized al-
gorithm. The distributed algorithms can compute the exact
eigenvalues when they run infinite consensus gossiping.

Although the relative error associated with the distributed
power method is comparable to that of our proposed algorithm,

the total number of consensus rounds of the power method is
higher than that of our proposed method. In order to measure
the amount of required data exchange for the consensus-
based algorithms, we consider the total communication cost
denoted as C. The communication cost C' is defined as the
number of total consensus rounds that have been performed
to compute all the eigenvalues, where one Push-Sum round is
treated as two Average Consensus rounds since two values are
maintained in each Push-Sum iteration. More precisely, for an
undirected network with N nodes and 7' sample vectors, our
proposed algorithm requires Cy, = 2NT' consensus rounds
for the computation of all eigenvalues, while the distributed
power method requires a higher number of total consensus
rounds, i.e., Cpp = N(TQ+T+2)+QN(N —1)/2, including
distributed normalization and largest eigenvalue subtraction.

Furthermore, the distributed power method requires the
knowledge of all sample vectors to perform the eigenvalue
decomposition, where our proposed algorithm is an online
algorithm that can update the eigenvalue each time when new
sample vector is obtained. Note that the power method natu-
rally requires more iterations to achieve the stationary point
if the largest eigenvalue is not dominant over all eigenvalues,
which our proposed algorithm does not suffer from.

B. Application Example 2: Spectrum Computation in Dynamic
Graphs.

In this application example, we consider distributed on-
line estimation of the spectrum of the Graph Laplacian
for the columns of the oriented incidence matrix B =

[b1,...,bn,] € RV*Ne where N, = |€|. The element by,
for node k£ and edge ¢ (connecting node ¢ and j) is given by
1, ifk=1i (=3
bre = —1, iftk=j, (=1 (24)
0, otherwise.
The graph Laplacian matrix can be expressed as
Ne
L=BB" =) bb]. (25)
=1

Assuming that the vertices in the network are labeled, an
appropriate protocol can be designed, where the agents coop-
eratively update the graph Laplacian with rank-one modifica-
tions according to (25). The eigendecomposition can then be
computed using Algorithm 3. This facilitates the distributed
computation of the Graph Fourier transform and distributed
graph-dependent graph filter design. The relative error perfor-
mance and communication cost of our proposed algorithm and
the distributed power method are shown in Figure 2.

One advantage of our proposed method compared to the
distributed power method is the ability to efficiently track
eigenvalues of Laplacian matrices associated with dynamically
evolving graphs. For the sake of simplicity, we assume a given
graph Laplacian L(¢—1) at instant ¢t — 1. Further assume that at
instant ¢, a random edge ¢ disappears in the network. Then we
can use equation (1) with R(t—1) = L(t—1), x(¢) = by, and
p(t) = —1 to express the Laplacian at instant ¢ as a rank-one
update. Similarly, if at instant ¢ a new edge n appears in the
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Fig. 2. Relative error of A\; and total communication cost C' of all eigenvalues
for graph Laplacian matrix of d-regular (d = 4) networks with different
network size N, where I' = 100 and © = 20.

network we choose p(t) = 1 in the update. Figure 3 shows the
largest eigenvalue tracking when the network evolves, where
the network is initialized as an undirected d-regular network
with d = 4, and N = 50 nodes. For the first 100 iterations, our
algorithm evaluates over all existing edges and computes the
eigenvalue. Then, the network starts evolving, i.e., edges are
randomly removed or added, and the relative error behavior
shows that our algorithm is able to track the evolution of the
network in the eigenvalues.

Learning ,Adaptation
—
10°
=)
3 102
o
=
g
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Fig. 3. Eigenvalue learning and adaptation for dynamic graph network with
N = 50 nodes and I" = 100.

IV. CONCLUSION

In this paper we propose a decentralized online eigendecom-
position algorithm for parallel tracking of all eigenvalues of a
rank-one modified matrix. Our proposed algorithm is based on
parallel averaging consensus steps and local rational function
approximations. Our decentralized solution of the proposed
algorithm converges to the centralized solution at a reduced
total communication cost compared to the distributed power
method.
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