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Abstract—We consider the problem of inferring the condi-
tional independence graph (CIG) of high-dimensional Gaussian
vectors from multi-attribute data. Most existing methods for
graph estimation are based on single-attribute models where
one associates a scalar random variable with each node. In
multi-attribute graphical models, each node represents a random
vector. In this paper we consider a sparse-group smoothly clipped
absolute deviation (SG-SCAD) penalty instead of sparse-group
lasso (SGL) penalty to regularize the problem. We analyze an
SG-SCAD-penalized log-likelihood based objective function to
establish consistency of a local estimator of inverse covariance.
A numerical example is presented to illustrate the advantage of
SG-SCAD-penalty over the usual SGL-penalty.

Keywords: Multi-attribute graph learning; inverse covariance

estimation; undirected graph; SCAD penalty.

I. INTRODUCTION

Graphical models provide a powerful tool for analyzing

multivariate data [1], [2]. In an undirected graphical model, the

conditional dependency structure among p random variables

x1, x1, · · · , xp, (x = [x1 x2 · · · xp]
⊤), is represented using

an undirected graph G = (V, E), where V = {1, 2, · · · , p} =
[p] is the set of p nodes corresponding to the p random

variables xi’s, and E ⊆ [p]× [p] is the set of undirected edges

describing conditional dependencies among xi’s. The graph G
then is a conditional independence graph (CIG) where there is

no edge between nodes i and j iff xi and xj are conditionally

independent given the remaining p-2 variables.

Gaussian graphical models (GGMs) are CIGs where x is

multivariate Gaussian. Suppose x has positive-definite covari-

ance matrix Σ with inverse covariance matrix Ω = Σ−1.

Then Ωij , the (i, j)-th element of Ω, is zero iff xi and xj

are conditionally independent. Given n samples of x, in high-

dimensional settings, one estimates Ω under some sparsity

constraints; see [3]–[7]. In these graphs each node represents

a scalar random variable. In many applications, there may

be more than one random variable associated with a node.

This class of graphical models has been called multi-attribute

graphical models in [8]–[11]. Image graphs for color images

with three variables (RGB) per pixel node, is an example

of multi-attribute graphical models. Methods of [12], [13]

concerned with grayscale images do not apply to color images.

Recently in [14], a sparse-group lasso (SGL) based penalized

log-likelihood approach for graph learning from multi-attribute
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data was presented; in comparison, [9], [10] consider only

group lasso, and therefore, are a special case of SGL.

Contributions: In this paper we consider a sparse-group

smoothly clipped absolute deviation (SG-SCAD) penalty in-

stead of SGL penalty [14], following group SCAD penalty

[15]. The SCAD penalty was first exploited for graphical

model selection in [16]. SCAD penalty can produce sparse set

of solution like lasso, and approximately unbiased coefficients

for large coefficients, unlike lasso. But this penalty is non-

convex, unlike lasso. Sufficient conditions for consistency of

inverse covariance estimator and specification of its rate of

convergence are provided in this paper. Such aspects are not

considered in [15]; [11] deals with low-dimensional models.

Notation: Given A ∈ R
p×p, we use φmin(A), φmax(A),

|A| and tr(A) to denote the minimum eigenvalue, maximum

eigenvalue, determinant and trace of A, respectively. For B ∈
R

p×q , we have ‖B‖ =
√

φmax(B⊤B), ‖B‖F =
√

tr(B⊤B)
and ‖B‖1 =

∑

i,j |Bij | where Bij is the (i, j)-th element of

B (also denoted by [B]ij). Given A ∈ R
p×p, A+ = diag(A)

is a diagonal matrix with the same diagonal as A, and

A− = A−A+ is A with all its diagonal elements set to zero.

The notation yn = OP (xn) for random vectors yn,xn ∈ R
p

means that for any ε > 0, there exists 0 < M <∞ such that

P (‖yn‖ ≤M‖xn‖) ≥ 1− ε ∀n ≥ 1.

II. SYSTEM MODEL

We will call G considered in Sec. I a single-attribute

graphical model for x. Now consider p jointly Gaussian

random vectors zi ∈ R
m, i = 1, 2, · · · , p. We associate zi

with the ith node of an undirected graph G = (V, E) where

V = [p] and edges in E describe the conditional dependencies

among vectors {zi, i ∈ V }. As in the scalar case (m = 1),

there is no edge between node i and node j in G iff random

vectors zi and zj are conditionally independent given all the

remaining random vectors [9], [10]. This is the multi-attribute

Gaussian graphical model of interest in this paper.

Define the mp-vector

x = [z⊤
1 z⊤

2 · · · z⊤
p ]⊤ ∈ R

mp . (1)

Suppose we have n i.i.d. observations x(t), t = 0, 1, · · · , n−1,

of zero-mean x. Our objective is to estimate the inverse

covariance matrix (E{xx⊤})−1 and to determine if edge

{i, j} ∈ E , given data {x(t)}n−1
t=0 . Let us associate x with

an “enlarged” graph Ḡ = (V̄ , Ē), where V̄ = [1,mp] and
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Ē ⊆ V̄ × V̄ . Now [zj ]ℓ, the ℓth component of zj asso-

ciated with node j of G = (V, E), is the random variable

xq = [x]q , where q = (j − 1)m + ℓ, j = 1, 2, · · · , p and

ℓ = 1, 2, · · · ,m. The random variable xq is associated with

node q of Ḡ = (V̄ , Ē). Corresponding to the edge {j, k} ∈ E in

the multi-attribute G = (V, E), there are m2 edges {q, r} ∈ Ē
specified by q = (j − 1)m+ s and r = (k − 1)m+ t, where

s = 1, 2, · · · ,m and t = 1, 2, · · · ,m. The graph Ḡ = (V̄ , Ē) is

a single-attribute graph. In order for Ḡ to reflect the conditional

independencies encoded in G, we must have the equivalence

{j, k} 6∈ E ⇔ Ē(jk) ∩ Ē = ∅, where Ē(jk) =
{

{q, r}
∣

∣ q =
(j − 1)m + s, r = (k − 1)m + t, s, t = 1, 2, · · · ,m

}

. Let

Rxx = E{xx⊤} ≻ 0 and Ω = R−1
xx . Define the (j, k)th

m×m subblock Ω(jk) of Ω as

[Ω(jk)]st = [Ω](j−1)m+s,(k−1)m+t , s, t = 1, 2, · · · ,m . (2)

It is established in [10, Sec. 2.1] that Ω(jk) = 0⇔ {j, k} 6∈ E .

Since Ω(jk) = 0 is equivalent to [Ω]qr = 0 for every {q, r} ∈
Ē(jk), and since, by [1, Proposition 5.2], [Ω]qr = 0 iff xq

and xr are conditionally independent, hence, iff {q, r} 6∈ Ē , it

follows that the aforementioned equivalence holds true.

A. SG-SCAD-Penalized Log-Likelihood

Given n samples {x(t)}n−1
t=0 of zero-mean x, define the

sample covariance Σ̂ = 1
n

∑n−1
t=0 x(t)x⊤(t). Let X =

[x(0)x(1) · · · x(n − 1) ]⊤. The log-likelihood, up to some

constants, is

ln fX(X) = ln(|Ω|)− tr(Σ̂Ω) . (3)

To estimate sparse Ω, consider minimization of a penalized

version of the negative log-likelihood

L(X;Ω) = − ln fX(X) + P (Ω) (4)

using a sparse-group SCAD penalty

P (Ω) =

mp
∑

i 6=j

Pαλ(Ωij) +

p
∑

k 6=ℓ

P(1−α)λ(‖Ω
(kℓ)‖F ) , (5)

where, for some a > 2, the SCAD penalty is defined as

Pλ(θ) = λ|θ| for |θ| ≤ λ, = 2aλ|θ|−|θ|2−λ2

2(a−1) for λ < |θ| < aλ,

and = λ2(a+1)
2 for |θ| ≥ aλ, λ > 0 is a tuning parameter used

to control sparsity, and 0 ≤ α ≤ 1. To explain α, first consider

sparse-group lasso penalty [17] where Pλ(θ) is replaced with

Psgl(Ω) = αλ

mp
∑

i 6=j

|Ωij |+ (1− α)λ

p
∑

k 6=ℓ

‖Ω(jk)‖F , (6)

0 ≤ α ≤ 1 yields a convex combination of lasso and group

lasso penalties (α = 0 gives the group-lasso fit while α = 1
yields the lasso fit). In SG-SCAD each of the lasso penalties

in Psgl(Ω) is replaced with SCAD penalties, mimicking group

SCAD of [15].

The first-order derivative of Pλ(θ) w.r.t. |θ| is P ′
λ(θ) = λ for

|θ| ≤ λ, = aλ−|θ|
a−1 for λ < |θ| < aλ, and = 0 for |θ| ≥ aλ. Its

second-order derivative is P ′′
λ (θ) =

−1
a−1 for λ < |θ| < aλ, and

= 0 otherwise. The SCAD penalty was proposed by [18] and

exploited for graphical model selection in [16]. As suggested

in [16], we take a = 3.7 in this paper.

Algorithm 1 ADMM Algorithm for Sparse-Group Graphical

Lasso (typos in [14] corrected)

Input: Number of samples n, number of nodes p, number

of attributes m, data {x(t)}n−1
t=0 , x ∈ R

mp, regularization

and penalty parameters λ, α and ρ0, tolerances τabs and τrel,
variable penalty factor µ, maximum number of iterations imax

Output: estimated inverse covariance Ω̂ and edge-set Ê

1: Calculate sample covariance Σ̂ = 1
n

∑n−1
t=0 x(t)x⊤(t)

(after centering x(t)).
2: Initialize: U (0) = W (0) = 0, Ω(0) = (diag(Σ̂))−1, where

U ,W ∈ R
(mp)×(mp), ρ(0) = ρ0

3: converged = false, i = 0
4: while converged = false and i ≤ imax, do

5: Eigen-decompose Σ̂ − ρ(i)
(

W (i) −U (i)
)

as Σ̂ −
ρ(i)

(

W (i) −U (i)
)

= V DV ⊤ with diagonal matrix

D consisting of eigenvalues. Define diagonal ma-

trix D̃ with ℓth diagonal element D̃ℓℓ = (−Dℓℓ +
√

D2
ℓℓ + 4ρ(i) )/(2ρ(i)). Set Ω(i+1) = V D̃V ⊤.

6: Set A(jk) = (Ω(jk))(i+1) + (U (jk))(i). Define soft

thresholding scalar operator S(a, β) := (1 − β/|a|)+a
where (a)+ := max(0, a). The diagonal m × m sub-

blocks of W are updated as

[(W (jj))(i+1)]st =

{

[A(jj)]ss if s = t
S([A(jj)]st,

αλ
ρ(i) ) if s 6= t

j = 1, 2, · · · , p, s, t = 1, 2, · · · ,m. The off-diagonal

m×m subblocks of W are updated as

(W (jk))(i+1) = B
(

1−
(1− α)λ

ρ(i)‖B‖F

)

+

where B = S(A(jk), αλ/ρ(i)), S(A, α) denotes

elementwise matrix soft thresholding, specified by

[S(A, α)]st := S([A]st, α), and j 6= k = 1, 2, · · · , p.

7: Dual update U (i+1) = U (i) +
(

Ω(i+1) −W (i+1)
)

.

8: Check convergence. Set tolerances

τpri =mpτabs + τrel max(‖Ω(i+1)‖F , ‖W
(i+1)‖F )

τdual =mpτabs + τrel ‖U
(i+1)‖F /ρ

(i) .

Define dp = ‖Ω(i+1) − W (i+1)‖F and dd =
ρ(i)‖W (i+1) − W (i)‖F . If (dp ≤ τpri) and (dd ≤
τdual), set converged = true.

9: Update penalty parameter ρ :

ρ(i+1) =







2ρ(i) if dp > µdd
ρ(i)/2 if dd > µdp
ρ(i) otherwise .

We also need to set U (i+1) = U (i+1)/2 for dp > µdd
and U (i+1) = 2U (i+1) for dd > µdp.

10: i← i+ 1
11: end while

12: For j 6= k, if ‖W (jk)‖F > 0, assign edge {j, k} ∈ Ê , else

{j, k} 6∈ Ê . Inverse covariance estimate Ω̂ = W .
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III. SOLUTION

Similar to the single attribute results of [16], since SCAD

penalty is non-convex, we first solve the SGL problem using

[14], and then linearize the SG-SCAD function around the

SGL estimate, which then results in a convex problem. We first

recall the ADMM-based SGL solution of [14]. Using variable

splitting, consider

min
Ω≻0,W

{

tr(Σ̂Ω)− ln(|Ω|) + Psgl(W )
}

subject to Ω = W .

The scaled augmented Lagrangian for this problem is [21]

Lρ = tr(Σ̂Ω)− ln(|Ω|) + Psgl(W ) +
ρ

2
‖Ω−W +U‖2F

(7)

where U is the dual variable, and ρ > 0 is a penalty

parameter. The ADMM-based solution of [14] is given in

Algorithm 1 (with typos in [14] corrected), where we use the

convergence criterion following [21, Sec. 3.3.1] and varying

penalty parameter ρ following [21, Sec. 3.4.1]. At (i + 1)st

iteration, the primal residual is given by Ω(i+1) −W (i+1)

and the dual residual by ρ(i)(W (i+1) −W (i)). Convergence

criterion is met when the norms of these residuals are below

tolerances τpri and τdual, respectively; see line 8 of Algorithm

1. In turn, τpri and τdual are chosen using an absolute and

relative criterion as in line 8 of Algorithm 1 where τabs
and τrel are user chosen absolute and relative tolerances,

respectively.

Use Algorithm 1 to obtain SGL solution Ω̂(1), Ŵ (1) and

Û (1) to (7). Linearize P (Ω) around Ŵ (1) as

Plin(W ) =

mp
∑

i 6=j

P ′
αλ

(

Ŵ
(1)
ij

)

|Wij |

+

p
∑

k 6=ℓ

P ′
(1−α)λ

(

‖(Ŵ (1))(kℓ)‖F
)

‖W (jk)‖F . (8)

Again solve a convex SGL problem after replacing Psgl(W )
with Plin(W ), and with following “obvious” modifications to

Algorithm 1: in line 6 therein, replace αλ with P ′
αλ

(

Ŵ
(1)
ij

)

,

and replace (1 − α)λ with P ′
(1−α)λ

(

‖(Ŵ (1))(kℓ)‖F
)

. Recall

that P ′
λ(θ) = λ for |θ| ≤ λ, = aλ−|θ|

a−1 for λ < |θ| < aλ,

and = 0 for |θ| ≥ aλ. The resulting (SG-SCAD) solution is

denoted by Ω̂(2), Ŵ (2) and Û (2).

IV. THEORETICAL ANALYSIS

Let Ω0 denote the true Ω and E0 denote the true edgeset.

Assume

(A1) Card(E0) = |E0| ≤ sn0.

(A2) 0 < βmin ≤ φmin(Σ0) ≤ φmax(Σ0) ≤ βmax < ∞
where Σ0 = Ω

−1
0 , and βmin and βmax are not functions

of n.

(A3) min{{i,j}:Ω0ij 6=0} |Ω0ij | ≥ δ0 > 0.

Let Ω̂λ = argminΩ≻0 L(X;Ω). We denote p by pn to

indicate that it can grow with n.

Theorem 1 (Consistency): For τ > 2, let

C0 = 40 max
k

(Σ0kk)
√

2 (τ + ln(4)/ ln(mpn)) . (9)

For δ1 ∈ (0, 1) and “small” δ2 > 0, let

M =(1 + δ1)
2(2 + δ2)C0/β

2
min, (10)

rn =

√

(mpn +m2sn0) ln(mpn)

n
= o(1) , (11)

N1 =2 (ln(4) + τ ln(mpn)) , (12)

N2 =argmin

{

n : rn ≤
δ1βmin

(1 + δ1)2(2 + δ2)C0

}

. (13)

Pick λn and integer N3 as (a > 2 is a SCAD parameter)

λn =

{

max( 1
α
, 1
1−α

)max(M,C0) rn , α ∈ (0, 1)

max(M,C0) rn , α = 0 or 1
(14)

N3 = argmin

{

n : λn <
min{{i,j}:Ω0ij 6=0} |Ω0ij |

a

}

. (15)

For n > max{N1, N2, N3}, under assumptions (A1)-(A3),

there exists a local minimizer Ω̂λ such that

‖Ω̂λ −Ω0‖F ≤Mrn (16)

with probability > 1 − 1/(mpn)
τ−2. In terms of rate of

convergence, ‖Ω̂λ −Ω0‖F = OP (rn) •

V. PROOF OF THEOREM 1

Lemma 1 follows from [20, Lemma 1].

Lemma 1: Under Assumption (A2), the sample covariance Σ̂

satisfies the tail bound

P

(

max
k,ℓ

∣

∣

∣
[Σ̂−Σ0]kl

∣

∣

∣
> C0

√

ln(mpn)

n

)

≤
1

(mpn)τ−2

(17)

for τ > 2, if the sample size n > N1, where C0 is defined in

(9) and N1 is defined in (12). •
We now turn to the proof of Theorem 1.

Proof of Theorem 1. Let Ω = Ω0 +∆ with both Ω, Ω0 ≻ 0,

and Q(Ω) := L(X;Ω) − L(X;Ω0). The estimate Ω̂λ,

denoted by Ω̂ hereafter suppressing dependence upon λ,

minimizes Q(Ω), or equivalently, ∆̂ = Ω̂ − Ω0 minimizes

G(∆) := Q(Ω0 + ∆). We will follow, for the most part,

the method of proof of [19, Theorem 1] pertaining to lasso

penalty. Consider the set

Θn(M) :=
{

∆ : ∆ = ∆⊤, ‖∆‖F = Mrn
}

(18)

where M and rn are as in (10) and (11), respectively. Since

G(∆̂) ≤ G(0) = 0, if we can show that inf∆{G(∆) :
∆ ∈ Θn(M)} > 0, then the minimizer ∆̂ must be inside

Θn(M), and hence ‖∆̂‖F ≤ Mrn. It is shown in [19, (9)]

that ln(|Ω0 +∆|) − ln(|Ω0|) = tr(Σ0∆) − A1 where, with

H(Ω0,∆, v) = (Ω0+v∆)−1⊗(Ω0+v∆)−1 and v denoting

a scalar,

A1 :=vec(∆)⊤
(
∫ 1

0

(1− v)H(Ω0,∆, v) dv

)

vec(∆) .

(19)
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Noting that Ω−1 = Σ and setting λ̄1 = αλn and λ̄2 = (1 −
α)λn, we can rewrite G(∆) as

G(∆) =

4
∑

i=1

Ai , A2 := tr
(

(Σ̂−Σ0)∆
)

(20)

A3 :=

mpn
∑

i 6=j

(Pλ̄1
(Ω0ij +∆ij)− Pλ̄1

(Ω0ij)) , (21)

A4 :=

pn
∑

k 6=ℓ

(Pλ̄2
(‖Ω

(kℓ)
0 +∆(kℓ)‖F )− Pλ̄2

(‖Ω
(kℓ)
0 ‖F )) (22)

Following [19, p. 502], we have

A1 ≥
‖∆‖2F

2(‖Ω0‖+ ‖∆‖)2
≥

‖∆‖2F

2
(

β−1
min +Mrn

)2 (23)

where we have used the fact that ‖Ω0‖ = ‖Σ−1
0 ‖ =

φmax(Σ
−1
0 ) = (φmin(Σ0))

−1 ≤ β−1
min and ‖∆‖ ≤ ‖∆‖F =

Mrn = O(rn). We now consider A2 in (20). We have

A2 = L21 + L22, L22 =
∑

{i,j}∈Ēc
0

[Σ̂−Σ0]ij∆ji , (24)

L21 =
∑

{i,j}∈Ē0

[Σ̂−Σ0]ij∆ji +
∑

i

[Σ̂−Σ0]ii∆ii . (25)

To bound L21, using Cauchy-Schwartz inequality and Lemma

1, with probability > 1− 1/(mpn)
τ−2,

|L21| ≤ ‖∆
−
Ē0

+∆+‖1 max
i,j

∣

∣[Σ̂−Σ0]ij
∣

∣

≤
√

m2sn0 +mpn‖∆‖FC0

√

ln(mpn)/n = C0‖∆‖F rn .
(26)

We consider L22 later as a part of A3 where

A3 = L31 + L32, L32 =
∑

{i,j}∈Ēc
0

Pλ̄1
(∆ij) (27)

L31 =
∑

{i,j}∈Ē0

(Pλ̄1
(Ω0ij +∆ij)− Pλ̄1

(Ω0ij)) . (28)

For λn as in (14), λ̄1 ≥Mrn ≥ |∆ij | (since ‖∆‖F = Mrn),

leading to Pλ̄1
(∆ij) = αλn|∆ij |. Consider L32 with αL22

L32 − α|L22| ≥
∑

{i,j}∈Ēc
0

(

αλn|∆ij | − |[Σ̂−Σ0]ij | |∆ij |
)

≥ αλn

(

1−
C0

αλn

√

ln(mpn)

n

)

∑

{i,j}∈Ēc
0

|∆ij | > 0 (29)

with prob. > 1 − 1/(mpn)
τ−2, since C0

αλn

√

ln(mpn)/n < 1.

Now we bound |L31|. A Taylor series expansion of Pλ(θ)
for θ > 0, around θ0 > 0, is given by Pλ(θ) = Pλ(θ0) +

P ′
λ(θ0)(θ − θ0) + P ′′

λ (θ̃)
(θ−θ0)

2

2 where θ̃ = θ0 + γ(θ − θ0)
for some γ ∈ [0, 1]. Setting λ = λ̄1, θ0 = |Ω0ij | and θ =
|Ω0ij + ∆ij |, and noting that P ′′

λ (θ̃) ≤ 0 for any θ̃ > 0,

and |Ω0ij | > 0 for {i, j} ∈ Ē0, we have Pλ̄1
(Ω0ij + ∆ij) ≤

Pλ̄1
(Ω0ij)+P ′

λ̄1
(Ω0ij)(|Ω0ij+∆ij |−|Ω0ij |). Since P ′

λ̄1
(θ) ≥

0 ∀θ, P ′
λ̄1
(|Ω0ij |) = 0 for n ≥ N3, {i, j} ∈ Ē0,

|L31| ≤
∑

{i,j}∈Ē0

P ′
λ̄1
(|Ω0ij |)

∣

∣|Ω0ij +∆ij | − |Ω0ij |
∣

∣

=0 for n ≥ N3 . (30)

Now consider A4 which can be expressed as

A4 = L41 + L42, L42 =
∑

{k,ℓ}∈Ec
0

Pλ̄2
(∆(kℓ)‖F ) , (31)

L41 =
∑

{k,ℓ}∈E0

(Pλ̄2
(‖Ω

(kℓ)
0 +∆(kℓ)‖F )− Pλ̄1

(‖Ω
(kℓ)
0 ‖F )) .

Similar to |L31|, we have

|L41| ≤
∑

{k,ℓ}∈E0

P ′
λ̄2
(‖Ω

(kℓ)
0 ‖F )

∣

∣

∣
‖Ω

(kℓ)
0 +∆(kℓ)‖F

− ‖Ω
(kℓ)
0 ‖F

∣

∣

∣
= 0 for n ≥ N3 (32)

since P ′
λ̄2
(‖Ω

(kℓ)
0 ‖F ) = 0 for n ≥ N3 if {k, ℓ} ∈ E0 and since

mink,ℓ ‖Ω
(kℓ)
0 ‖F ≥ mini,j |Ω0ij |. Now consider L42 with (1−

α)L22. With u = (k−1)m+s and v = (l−1)m+ t, we have

L42 − (1− α)|L22| ≥
∑

{k,ℓ}∈Ec
0

(

(1− α)λn‖∆
(kℓ)‖F

− (1− α)

m
∑

s,t=1

|[Σ̂−Σ0]uv| |∆uv|
)

≥ (1− α)
∑

{k,ℓ}∈Ec
0

(λn‖∆
(kℓ)‖F −mC0

√

ln(mpn)

n
‖∆(kℓ)‖F )

≥ (1− α)λn

(

1−
mC0

(1− α)λn

√

ln(mpn)

n

)

∑

{k,ℓ}∈Ec
0

‖∆(kℓ)‖F

> 0 (33)

with prob. > 1−1/(mpn)
τ−2, since mC0

(1−α)λn

√

ln(mpn)/n <
1. Combining A2, A3 and A4, we have

A2+A3 +A4 =
3

∑

i=1

2
∑

j=1

Lij ≥ −|L21|+ L32 − α|L22|

+ L31 + L42 − (1− α)|L22|+ L41

≥− |L21|+ L31 + L41 ≥ C0‖∆‖F rn for n ≥ N3 (34)

where we have used (26), (29), (30), (32) and (33). Using

(20), the bound (23) on A1 and (34) on A2 + A3 + A4, and

‖∆‖F = Mrn, we have with probability > 1− 1/(mpn)
τ−2,

G(∆) ≥ ‖∆‖2F

[

1

2(β−1
min +Mrn)2

−
C0

M

]

. (35)

For n ≥ N2, if we pick M as specified in (10), we obtain

Mrn ≤MrN2
≤ δ1/βmin. Then

1

2(β−1
min +Mrn)2

≥
β2
min

2(1 + δ1)2
=

(2 + δ2)C0

2M
>

C0

M
,

implying G(∆) > 0. For α = 0, omit A3, and for α = 1,

omit A4 from G(∆), to get G(∆) > 0, completing the proof.
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VI. SIMULATION EXAMPLE

Now we consider an Erdös-Rényi graph where p nodes

are connected to each other with probability per = 0.05.

In the upper triangular Ω̄, using the notation of (2), we set

[Ω̄(jk)]st = 0.5|s−t| for j = k = 1, · · · , p, s, t = 1, · · · ,m.

For j 6= k, if the two nodes are not connected, we have

Ω̄(jk) = 0, and if nodes j and k are connected in the

chain graph, then [Ω̄(jk)]st is uniformly distributed over

[−0.4,−0.1] ∪ [0.1, 0.4] if s 6= t, and [Ω̄(jk)]st = 0 if s = t.
Now add γI to Ω with γ picked to make minimum eigenvalue

of Ω + γI equal to 0.5. With ΦΦ⊤ = (Ω+ γI)
−1

, we

generate x = Φw with w ∈ R
mp as Gaussian w ∼ N (0, I).

We generate n i.i.d. observations from x, with m = 3,

p = 400, n ∈ {100, 200, 400, 800, 1600, 3200}. We then have
1
2E{|E|} = 3990.
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Fig. 1: Error norm ‖Ŵ −Ω0‖F /‖Ω0‖F and corresponding

F1 values; p =400.

We used the solution outlined in Sec. III with a = 3.7,

ρ0 = 2, µ = 10, and τabs = τrel = 10−4. Simulation

results based on 100 runs are shown in Fig. 1 for p = 400,

with varying n. We compare the SG-SCAD solution with the

SGL solution. The performance metrics used are the F1-score

and the Frobenius error norm = ‖Ŵ −Ω0‖F /‖Ω0‖F where

Ŵ = Ŵ (2) for SG-SCAD penalty and Ŵ = Ŵ (1) for

SGL penalty. We first selected the tuning parameters (λ, α)
by searching over a two-dimensional grid to minimize the

Hamming distance between E0 and Ê , for (p, n) = (400, 400),
resulting in (λ, α) = (0.08, 0.05) for both methods. (In prac-

tice, one would use an information criterion.) Then for other

values of n (and p, m), we scale λ as λn ∝
√

sn0 + (pn/m) ·
m ·

√

ln(mpn)/n for SG-SCAD based on (11) and (14), and

as λn ∝ m ·
√

ln(mpn)/n for SGL [14]. It is seen from Fig. 1

that while F1 values are comparable, the SG-SCAD approach

yields significantly smaller errors in estimating Ω compared

to the SGL approach.

VII. CONCLUSIONS

We considered the problem of inferring the conditional in-

dependence graph of high-dimensional Gaussian vectors from

multi-attribute data. We analyzed an SG-SCAD-penalized log-

likelihood based objective function to establish consistency of

a local estimator of the inverse covariance in a neighborhood of

the true value. An ADMM algorithm based iterative reweight-

ing method was used to optimize the objective function,

starting with the globally convergent SGL method of [14]. A

numerical example was presented to illustrate the advantage

of SG-SCAD over the “usual” SGL penalty.
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