Sparse-Group Non-convex Penalized Multi-Attribute
Graphical Model Selection

Jitendra K. Tugnait
Dept. of Electrical & Computer Eng.
Auburn University, Auburn, AL 36849, USA

Abstract—We consider the problem of inferring the condi-
tional independence graph (CIG) of high-dimensional Gaussian
vectors from multi-attribute data. Most existing methods for
graph estimation are based on single-attribute models where
one associates a scalar random variable with each node. In
multi-attribute graphical models, each node represents a random
vector. In this paper we consider a sparse-group smoothly clipped
absolute deviation (SG-SCAD) penalty instead of sparse-group
lasso (SGL) penalty to regularize the problem. We analyze an
SG-SCAD-penalized log-likelihood based objective function to
establish consistency of a local estimator of inverse covariance.
A numerical example is presented to illustrate the advantage of
SG-SCAD-penalty over the usual SGL-penalty.

Keywords: Multi-attribute graph learning; inverse covariance
estimation; undirected graph; SCAD penalty.

I. INTRODUCTION

Graphical models provide a powerful tool for analyzing
multivariate data [1], [2]. In an undirected graphical model, the
conditional dependency structure among p random variables
T1,21, ,Xp, (® = [T1 T3 -+ x,] "), is represented using
an undirected graph G = (V, &), where V = {1,2,--- ,p} =
[p] is the set of p nodes corresponding to the p random
variables x;’s, and £ C [p] x [p] is the set of undirected edges
describing conditional dependencies among x;’s. The graph G
then is a conditional independence graph (CIG) where there is
no edge between nodes ¢ and j iff x; and x; are conditionally
independent given the remaining p-2 variables.

Gaussian graphical models (GGMs) are CIGs where x is
multivariate Gaussian. Suppose x has positive-definite covari-
ance matrix X with inverse covariance matrix £ = 37!
Then €25, the (i,j)-th element of €, is zero iff x; and x;
are conditionally independent. Given n samples of z, in high-
dimensional settings, one estimates {2 under some sparsity
constraints; see [3]-[7]. In these graphs each node represents
a scalar random variable. In many applications, there may
be more than one random variable associated with a node.
This class of graphical models has been called multi-attribute
graphical models in [8]-[11]. Image graphs for color images
with three variables (RGB) per pixel node, is an example
of multi-attribute graphical models. Methods of [12], [13]
concerned with grayscale images do not apply to color images.
Recently in [14], a sparse-group lasso (SGL) based penalized
log-likelihood approach for graph learning from multi-attribute
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data was presented; in comparison, [9], [10] consider only
group lasso, and therefore, are a special case of SGL.

Contributions: In this paper we consider a sparse-group
smoothly clipped absolute deviation (SG-SCAD) penalty in-
stead of SGL penalty [14], following group SCAD penalty
[15]. The SCAD penalty was first exploited for graphical
model selection in [16]. SCAD penalty can produce sparse set
of solution like lasso, and approximately unbiased coefficients
for large coefficients, unlike lasso. But this penalty is non-
convex, unlike lasso. Sufficient conditions for consistency of
inverse covariance estimator and specification of its rate of
convergence are provided in this paper. Such aspects are not
considered in [15]; [11] deals with low-dimensional models.

Notation: Given A € RP*P, we use ¢min(A), dmax(A),
|A| and tr(A) to denote the minimum eigenvalue, maximum
eigenvalue, determinant and trace of A, respectively. For B €
RP*4, we have || B|| = \/¢max(B ' B), | B||r = /tr(BT B)
and || B|[1 = >_, ; |Bij| where Bj; is the (i, j)-th element of
B (also denoted by [B];;). Given A € RP*?, AT = diag(A)
is a diagonal matrix with the same diagonal as A, and
A~ = A— A" is A with all its diagonal elements set to zero.
The notation y,, = Op(x,,) for random vectors y,,, ¢, € RP
means that for any € > 0, there exists 0 < M < oo such that
Plllyall < Mlaal) > 1 ¢ ¥n > 1.

II. SYSTEM MODEL

We will call G considered in Sec. 1 a single-attribute
graphical model for . Now consider p jointly Gaussian
random vectors z; € R™, ¢ = 1,2,--- ,p. We associate z;
with the ith node of an undirected graph G = (V, &) where
V = [p] and edges in & describe the conditional dependencies
among vectors {z;, ¢ € V'}. As in the scalar case (m = 1),
there is no edge between node ¢ and node j in G iff random
vectors z; and z; are conditionally independent given all the
remaining random vectors [9], [10]. This is the multi-attribute
Gaussian graphical model of interest in this paper.

Define the mp-vector

T T ..

r=[z z9 - z;r]—r e R™P. (D

Suppose we have n i.i.d. observations x(t),t = 0,1,--- ;n—1,
of zero-mean . Our objective is to estimate the inverse
covariance matrix (E{xx'})~! and to determine if edge
{i,j} € &, given data {x(t)}7=;. Let us associate = with
an “enlarged” graph G = (V,&), where V = [1,mp] and

EUSIPCO 2021



& C V x V. Now [zj]s, the fth component of z; asso-
ciated with node j of G = (V,&), is the random variable
xq = [x]q, where ¢ = (j — 1)m+€, j=1,2,---,p and
¢ =1,2,--- ,m. The random variable x, is associated with
node g of G = (V, £). Corresponding to the edge {j,k} €& in
the multi-attribute G = (V, ), there are m? edges {q,7} € £
specified by ¢ = (j — 1)m + s and r = (k — 1)m + ¢, where
s=1,2,--- ,mandt =1,2,--- ,m. The graph G = (V, &) is
a single-attribute graph. In order for G to reflect the conditional
independencies encoded in G, we must have the equivalence
{j,k} ¢ € & EUWNE =0, where EUM = {{q,r}|q =
G—1m+s,r=(k-1)m-+t st=12-- ,m}. Let
R,, = E{zz"} = 0 and @ = R_!. Define the (j,k)th
m x m subblock QU¥) of € as

[Q(jk)]st = [Q}(]’—l)m-l-s,(k—l)m-&-t , $,t=1,2,--- . m. (2)
It is established in [10, Sec. 2.1] that QU*) =0 < {j k} € €.
Since QUk) = 0 is equivalent to [2],, = 0 for every {q,7} €
EUR) and since, by [1, Proposition 5.2], [Qy =0 iff x,
and z,- are conditionally independent, hence, iff {q,r} & &, it
follows that the aforementioned equivalence holds true.

A. SG-SCAD-Penalized Log—Likelihood
Given n samples {x(t)}7=) of zero-mean x, define the
. C 1 n—1 T
sample covariance ¥ = Zt o x(t)x' (t). Let X =
[2(0)z(1) --- x(n — 1)]T. The log-likelihood, up to some
constants, is
In fx(X) = In(|Q]) — tr(EQ). (3)

To estimate sparse {2, consider minimization of a penalized
version of the negative log-likelihood

L(X;9) = —In fx(X
using a sparse-group SCAD penalty

mp p
Q) = Par(2)) + Y Pa—apn(I12F9]£), (5
i#] ke
where, for some a > 2, the SCAD penalty is defined as
Pa(0) = M6| for [0] < A, = 222" o0 X < 9] < a,

a—1
— N(atD) o
and = “—=5—* for |f| > a\, A > 0 is a tuning parameter used

to control sparsity, and 0 < a < 1. To explain ¢, first consider
sparse-group lasso penalty [17] where Py (6) is replaced with

)+ P(Q2) “4)

mp P
Put(@) = ax 3104+ (1 - a)d Y 2095, (6)
i#j k#€
0 < a <1 yields a convex combination of lasso and group
lasso penalties (aw = 0 gives the group-lasso fit while a@ = 1
yields the lasso fit). In SG-SCAD each of the lasso penalties
in P,4;(£2) is replaced with SCAD penalties, mimicking group
SCAD of [15].

The first-order derivative of Py (6) w.r.t. |0] is P (0) = X for
0] <A = az%lf\ for A < |0 < aA, and = 0 for |0] > aX. Its
second-order derivative is P{/(§) = —% for A\ < |f] < a), and
= 0 otherwise. The SCAD penalty was proposed by [18] and
exploited for graphical model selection in [16]. As suggested

in [16], we take a = 3.7 in this paper.

Algorithm 1 ADMM Algorithm for Sparse-Group Graphical
Lasso (typos in [14] corrected)

Input: Number of samples n, number of nodes p, number
of attributes m, data {z(t)}/=;, * € R™P, regularization
and penalty parameters A\, o and py, tolerances 7,ps and Ty.¢,
variable penalty factor p, maximum number of iterations zmam
QOutput: estimated inverse covariance Q2 and edge set £

1: Calculate sample covariance 3 = + ) S Ya(t)xT(t)
(after centering x(t)).
2: Initialize: U©®) = W(©) = 0, Q) = (diag(2))~*
U, W e Rmp)x(mp) = 50) — 5
3: converged = false, : = 0
4: while converged = false and ¢ < i,,,,, do
5. Eigen-decompose 3 — p@ (W) —U®) as 3 —
p® (W(i) — U(i)) = VDV with diagonal matrix
D consisting of eigenvalues. Define diagonal ma-

, Where

trix D with /th diagonal element Da = (=D +
\/ D3, +4p@)/(2p%). Set QU+ = VDV,

6 Set AUR) = (QUFYEHD 4 (U UR)O), Define soft
thresholding scalar operator S(a, 8) := (1 — /|a|)+a
where (a)+ := max(0,a). The diagonal m x m sub-
blocks of W are updated as

[AUD)] 1f s=t
S([AUN], i ) if s#t

7 =212,---,p, s,t =1,2,--- ,m. The off-diagonal
m x m subblocks of W are updated as
N (5 (I—a)X
(W R +D) — 3(1 _ 7)
Bl +

where B = S(AUR) a)/p®), S(A,a) denotes

elementwise matrix soft thresholding, specified by

[S(A’ a)]St = S([A]St?a)_’ and .] 7& k= 1a 27_' b
7. Dual update UCHD) = U® + (QO+D — wi+D),

. Check convergence. Set tolerances

(W] {

Tyri =P Taps + Trer max([| QO] p, [|[W D[ 1)

=P Tabs + Trel ||U(i+1)||F/p(i) )
Define d, = [Q0f) — W0z and dy =
pONWEHD - WO | g If (d, < 7pr) and (dg <
Tdual), S€t converged = true.

9:  Update penalty parameter p

Tdual

' 20 if d, > pdy
P =28 D2 if dy > pd,
p®) otherwise .

We also need to set U+ = U+ /2 for d, > pdy
and U = 22U+ for dy > pd,,.
10 i< i+1
11: end while
12: For j # k, if [WUR||p > 0, assign edge {j, k} € &, else
{j, k} ¢ E. Inverse covariance estimate 2 = W.
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III. SOLUTION

Similar to the single attribute results of [16], since SCAD
penalty is non-convex, we first solve the SGL problem using
[14], and then linearize the SG-SCAD function around the
SGL estimate, which then results in a convex problem. We first
recall the ADMM-based SGL solution of [14]. Using variable
splitting, consider

le(}’r%}v{tr(ﬁlﬂ) —In(|Q2]) + Psgz(W)} subject to Q@ = W .

The scaled augmented Lagrangian for this problem is [21]

Ly = x(EQ) = () + Pe (W) + 22 = W + U3

(7

where U is the dual variable, and p > 0 is a penalty
parameter. The ADMM-based solution of [14] is given in
Algorithm 1 (with typos in [14] corrected), where we use the
convergence criterion following [21, Sec. 3.3.1] and varying
penalty parameter p following [21, Sec. 3.4.1]. At (i + 1)st
iteration, the primal residual is given by QU+1D — Wi+l
and the dual residual by p() (W (+1D) — W), Convergence
criterion is met when the norms of these residuals are below
tolerances 7,,; and 74,41, T€spectively; see line 8 of Algorithm
1. In turn, 7,,; and Tguq are chosen using an absolute and
relative criterion as in line 8 of Algorithm 1 where 7,5
and 7,.; are user chosen absolute and relative tolerances,
respectively.

Use Algorithm 1 to obtain SGL solution 21, W) and
UM to (7). Linearize P(2) around W) as

mp
Pin(W) = > PL (W) W]
i£]

p
+ 3 Phean (W) E ) [W OB p . (8)
kL
Again solve a convex SGL problem after replacing Py, (W)
with Pj;,, (W), and with following “obvious” modifications to
Algorithm 1: in line 6 therein, replace aX with P/, (Wi(jl)),
and replace (1 — o)\ with P(’lfa)/\(H(W(l))(ke)||F). Recall
that P} (0) = X for [6] < A, = 2= for X < |g] < a),
and = 0 for [0| > a\. The resulting (SG-SCAD) solution is
denoted by ), W) and U®).
IV. THEORETICAL ANALYSIS
Let €2 denote the true € and & denote the true edgeset.
Assume
(Al) Card(é'o) = |g()| < Sno-
(A2) 0 < Bmin S (bmin(zo) S ¢max(20) S ﬁmax < 00
where ¥ = Q ! and Bmin and Pax are not functions

of n.
(A3) ming(; j1.00,;220} [Qoij| = do > 0.
Let Q) = argming. o L(X ;). We denote p by p, to

indicate that it can grow with n.
Theorem 1 (Consistency): For 7 > 2, let

Cy = 40 mgx(Eokk)\/Q (T +1n(4)/In(mp,)). (9

For 61 € (0,1) and “small” 3 > 0, let

M =(1+61)*(2+ 82)Co/ Bins (10)
- :\/(mpn + m2?51n0) hl(mpn) _ 0(1) : (11)
Ny =2 (In(4) + 7 In(mp,)), (12)
o . . 61ﬁmin
Ng—argmln{n o, < (1+51)2(2+52)Co} . (13)

Pick A,, and integer N3 as (a > 2 is a SCAD parameter)

N o= max(‘ll, ﬁ) max(M, Co) ry,
" max(M, Co) ry ,

ae€(0,1)

a=0o0r1l (14)

N3 = argmin{n A < i b ’J}'Qo”;éo}l 0J|} . (15)

a

For n > max{Ni, N2, N3}, under assumptions (A1)-(A3),
there exists a local minimizer €2 such that

190\ — Qollr < M7, (16)

with probability > 1 — 1/ (mp,)”™~2. In terms of rate of
convergence, |2\ — Qllr = Op (ry) o

V. PROOF OF THEOREM 1

Lemma 1 follows from [20, Lemma 1]. R
Lemma I: Under Assumption (A2), the sample covariance ¥
satisfies the tail bound

k.l n

P (max‘[f] — Eo]kl’ > C) ln(mpn)> < 1

= (mpn)2
a7
for 7 > 2, if the sample size n > N;, where Cj is defined in
(9) and N is defined in (12). e
We now turn to the proof of Theorem 1.

Proof of Theorem 1. Let £ = Qg+ A with both Q, Q¢ > 0,
and Q(Q) = L(X;Q) — L(X;Q). The estimate €2y,
denoted by Q hereafter suppressing dependence upon A,
minimizes Q(£2), or equivalently, A = €2 — £, minimizes
G(A) = Q(Q + A). We will follow, for the most part,
the method of proof of [19, Theorem 1] pertaining to lasso
penalty. Consider the set

0,(M):={A: A=AT, |Allp=Mr,} (18)
where M and r,, are as in (10) and (11), respectively. Since
G(A) < G(0) = 0, if we can show that infa{G(A)
A € 0,(M)} > 0, then the minimizer A must be inside
0, (M), and hence ||A||F < Mr,. It is shown in [19, (9)]
that In(|Q 4+ A|) — In(|Qo]) = tr(XoA) — A; where, with
H(Qo, A, v) = (Qo+vA) '@ (Qo+vA)~! and v denoting
a scalar,

A i=vec(A)" (/01(1 —v)H (Qp, A, v) dv) vec(A).
(19)
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Noting that 2! = ¥ and setting \; = a\,, and Ay = (1 —
a)A,, we can rewrite G(A) as
4
A=A, A=t ((z _ EO)A) (20)
i=1
mpn
Az =Y (P, (i + Aij) — Ps, (Q35)) 21)
i#]
o (ke ke
Ag =Y (P, (1967 + A% p) — Py, (196 £)) 22)
ke
Following [19, p. 502], we have
Al? All?
he o AR AR
201900+ T = 2 (5 + ary)
where we have used the fact that ||| 1= =
Pmax(Zg 1) = (bmin(Z0)) ™! < B, and [A] < [|Alp =
Mr,, = O(ry,). We now consider A, in (20). We have
Ao = Loy + Log, Loo = Z (32— 0], (24
{i.jye€s
Loy = Z (2 — 2ol A + Z[S —3oliilii . (25)
{i,j}Er‘jo i

To bound Ls1, using Cauchy-Schwartz inequality and Lemma
1, with probability > 1 — 1/(mp,,)™ 2,

|La| < HAE{) + A+||1 rrilzjix Hﬁ: — Eo]ij|

< V/m2sp0 + mpy||A||pCov/In(mpy,) /n = Col|A|| 7, -

(26)
We consider Los later as a part of A3 where
A3 =Lgi+ Lsa, Lo= > P5 (Ay) 27
{i,j}e&s
L= Y (P5,(Qoij+Ay) — Py, (i) . (28)

{i,j}e&o

For A, as in (14), \; > Mr,, > |A;;| (since [|Al|p = Mry,),
leading to Py (Ai;) = a\,|Ai;|. Consider L3y with alao

Lgo —alLp| > > (ada]Ay| = |2 = Zoliyl 1A4])

{i,j}e&s
Co  [In(mp,)
> - ..
(1 - 3 ) Y 1Ayl>0 (9

{i,5}e&s

with prob. > 1 — 1/(mp,,)" 2, since a— In(mp,)/n < 1.
Now we bound |Ls;|. A Taylor series expansion of Py(6)
for # > 0, around 6y > 0, is given by Py(0) = Px(6o) +
P{(60)(0 — 6y) + P”(é)M where 6 = 6y + (6 — 6o)
for some v € [0, 1]. Setting A = )\1, Oy = |Qo;j| and 0 =
Q05 + Ayj|, and noting that Py'(d) < 0 for any § > 0,
and |Q;;| > 0 for {i,7} € &, we have P5 (Qoij + Agj) <

Py, (Q0i5) + P5 (Q045) (1045 + Aij| = |Q045]). Since PY (0) >
0 V0, P§1(|QOZ]|) =0 for n > N3, {Z,]} € &,

Lol < > P4 (1951|1905 + Aij| — 9051
{i,5}€&o
=0 for n > N3. (30)
Now consider A4 which can be expressed as
Ay=Lu+Ly, Lip= Y Py, (A%|p), €2y
{kL}EES
Lo= Y (P19 + A% r) — Py, (1257]1r)).
{k,L}e&
Similar to , we have
Lal< > PO 01967 + A0
{k,L}e&
- HQW)HF‘ =0 for n> Ny (32)

since Pf\2(||ﬂ(()ke)|\p) =0 forn > N3 if {k,{} € & and since

miny ¢ HQ(()M) |7 > min; ; [Q0;;|. Now consider L4o with (1—
a)Los. With u = (k—1)m+s and v = (I —1)m+t, we have

Lip= (=o)L= Y (=) )a®)|r
{k,£}e€S
(1=0) D 15 = Solunl [Aul)
s,t=1

In(mpy, )
>(1-a) Y At - mCyy/ ) A

{kL}e&§

mC’o
(1 —a)A,

In(mp
> (1—a)\,(1- (n ”)) Z |AED| 5
{k}e&§

>0 (33)

Il <

with prob. > 1—1/(mp,, )72, since (17"5)0)\
1. Combining A, Az and A4, we have
3 2
Ap+As+ Ay =Y Y Lij > —|Laa| + Lsa — 0| Lyo|
i=1j=1
+ L3y + Lyo — (1 — )| Laz| 4 Ly
— |L21| + L3y + Lgy > COHAHFTn for n > N3 (34)
where we have used (26), (29), (30), (32) and (33). Using
(20), the bound (23) on A; and (34) on Ay + A3 + A4, and
| Al = Mr,, we have with probability > 1 —1/(mp,,)" 2,
; S

min

G(A) > A% (35)

For n > N, if we pick M as specified in (10), we obtain
Mr, < Mry, < 01/Bmin. Then

1 > r2nln (2 + 52)00 @
W + M2 = 21+ 62  2M M

) > 0. For « = 0, omit A3, and for o = 1,
A), to get G(A) > 0, completing the proof.

implying G(A
omit A4 from G(
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VI. SIMULATION EXAMPLE

Now we consider an Erdos-Rényi graph where p nodes
are connected to each other with probability p., = 0.05.
In the upper triangular €2, using the notation of (2), we set
QUR), =050t for j =k =1,---,p, s,t =1,--- ,m.
For j # k, if the two nodes are not connected, we have
QUK = 0, and if nodes j and k are connected in the
chain graph, then [QU¥)],, is uniformly distributed over
[—0.4,-0.1] U [0.1,0.4] if s # ¢, and [QUN] = 0 if s = .
Now add I to € with  picked to make minimum eigenvalue
of © + I equal to 0.5. With ®®T = (Q+~I)"", we
generate * = ®w with w € R™? as Gaussian w ~ N (0, I).
We generate n i.i.d. observations from x, with m = 3,
p = 400, n € {100, 200, 400, 800, 1600, 3200}. We then have
%E{|8|} = 3990.

Erdés-Renyi graph
T T

1 T T T 1
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4
o
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e
3
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I
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o
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0 500 1000 1500 2000 2500 3000 3500
n

Fig. 1: Error norm |W — Ql|r/||Q0llr and corresponding
Fy values; p =400.

We used the solution outlined in Sec. III with a = 3.7,
po = 2, p = 10, and Tups = T = 10~%. Simulation
results based on 100 runs are shown in Fig. 1 for p = 400,
with varying n. We compare the SG-SCAD solution with the
SGL solution. The performance metrics used are the F-score
and the Frobenius error norm = ||W — Qq||z/||Q0]| 7 where
W = W® for SG-SCAD penalty and W = WO for
SGL penalty. We first selected the tuning parameters (\, «)
by searching over a two-dimensional grid to minimize the
Hamming distance between & and &, for (p,n) = (400, 400),
resulting in (A, o) = (0.08,0.05) for both methods. (In prac-
tice, one would use an information criterion.) Then for other
values of n (and p, m), we scale A as A, < \/Sno + (pn/m) -
m - +/In(mp,)/n for SG-SCAD based on (11) and (14), and
as A\, & m-+/In(mp,,)/n for SGL [14]. It is seen from Fig. 1
that while F} values are comparable, the SG-SCAD approach
yields significantly smaller errors in estimating €2 compared
to the SGL approach.

VII. CONCLUSIONS

We considered the problem of inferring the conditional in-
dependence graph of high-dimensional Gaussian vectors from
multi-attribute data. We analyzed an SG-SCAD-penalized log-
likelihood based objective function to establish consistency of
a local estimator of the inverse covariance in a neighborhood of

the true value. An ADMM algorithm based iterative reweight-
ing method was used to optimize the objective function,
starting with the globally convergent SGL method of [14]. A
numerical example was presented to illustrate the advantage
of SG-SCAD over the “usual” SGL penalty.
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