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Abstract—This paper addresses the problem of training data
classification as homogeneous or heterogeneous. To this end, the
problem is formulated as a multiple hypothesis test and specific
structures for the interference covariance matrix are considered
at the design stage. The unknown parameters, under the hetero-
geneous hypotheses, are estimated by resorting to hidden random
variables representing homogeneous clutter classes and to a
procedure based upon the expectation maximization algorithm as
well as a cyclic estimation procedure. Remarkably, the proposed
architectures are capable of estimating the unknown number
of statistically homogeneous subsets in the radar window. The
performance analysis on simulated data shows that the devised
architectures represent an effective means to classify secondary
data.

Index Terms—Adaptive detection, Clutter classification, Expec-
tation Maximization, Homogeneous Environment, Heterogeneous
Environment, Multiple hypothesis test, Radar.

I. INTRODUCTION

Adaptive radar detection of targets embedded in unknown
interference is a challenging problem in the radar community
which has attracted several research efforts [1]–[6]. In a
clutter-dominated environment, where the other interference
sources are assumed negligible as compared with the clutter,
a very spread design model is the homogeneous environment.
This model assumes that clutter is stationary over range and
time allowing to collect a set of training or secondary data in
the vicinity of the cell under test to achieve adaptivity with
respect to the unknown clutter parameters [1], [2], [4], [5], [7],
[8]. In fact, training data are used to obtain reliable estimates
of the Interference Covariance Matrix (ICM) that make the
detection schemes adaptive.

However, in practice, the homogeneous assumption may be
not perfectly satisfied leading to a severe performance degrada-
tion for the architectures designed under this hypothesis [9]. To
overcome this problem, a possible solution consists of making
the training set homogeneous by means of outliers detection
and suppression as shown in [10]–[12]. Another approach
relies on a suitable modeling of the heterogeneous environment
at the design stage. For instance, in order to account for a
different clutter reflectivity between primary and secondary
data, the well-known partially homogeneous environment has

been introduced [13], [14, and references therein]. This model
assumes that interference in primary data shares the same
covariance structure of the ICM of the secondary data but
a different power level. This model can be further generalized
to come up with a “completely-heterogeneous” environment
where data are characterized by different power levels [15]–
[19].

The above approaches highlight that incorporating a priori
information about the environment at the design stage can
mitigate the performance degradation due to the model mis-
match. Therefore, the problem of environment classification is
of primary interest in the radar context since the outcomes of
the classification could drive the selection of the most suitable
detection and/or estimation procedure [15], [16]. However, a
preliminary stage responsible for this task would depend on the
ICM estimation quality and, hence, on the volume of available
data. In fact, in sample-starved scenarios, a low-quality ICM
estimate may lead to unreliable classification results and,
as a consequence, to a severe performance depletion of the
subsequent detection stages. A remedy for this drawback is
the design of ICM estimation procedures that exploit the a
priori information about the specific structure of the ICM.
Specifically, in this paper, we assume the generic (Hermi-
tian) unstructured case, the persymmetric (or centrohermitian)
case, the (real) symmetric case, and the centrosymmetric case
(which raises from the joint assumption of a persymmetric
ICM structure and a symmetric clutter spectrum). This as-
sumptions properly fit real radar applications. For instance,
ICM exhibits a persymmetric structure when symmetrically
spaced linear arrays or symmetrically spaced pulse trains are
used [20], [21]. Possible symmetry in the clutter spectral char-
acteristics can be also found in the presence of ground clutter,
observed by a stationary monostatic radar, often exhibiting a
symmetric power spectral density (PSD) centered around the
zero-Doppler frequency implying that the resulting ICM is real
[22], [23].

With the above remarks in mind, in this paper we borrow
the ideas behind [24] to develop new architectures capable of
detecting environment heterogeneity and, possibly, clustering
data into homogeneous subsets. Unlike [24], we do not assume
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that the number of statistically homogeneous subsets within
the radar reference window is known and estimate it through
a penalized likelihood ratio test, which exploits the penalty
terms of the Model Order Selection (MOS) rules [25], as the
Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC), and the Generalized Information Criterion
(GIC). More importantly, at the design stage, four different
ICM structures are considered in order to take advantage of
the a priori information about the operating scenario. The latter
aspect represents the main advancement with respect to [24].
Actually, the conceived decision schemes solve a multiple
hypothesis test comprising the null hypothesis (representative
of the homogeneous environment) and multiple alternative
hypotheses that differ in the number of homogeneous clutter
subregions. The design is carried out by applying the Latent
Variable Model (LVM) and the Expectation Maximization
(EM) algorithm in conjunction with cyclic estimation proce-
dures. Finally, the performance analysis conducted on simu-
lated data shows that architectures devised under specific ICM
structures can provide excellent detection and classification
performance.

The paper is organized as follows1. The next section is
devoted to the problem formulation. Section III contains
the architecture derivations and Section IV provides some
numerical examples. Concluding remarks are given in Section
V.

II. PROBLEM FORMULATION

In this section, we formulate the classification problem
as a multiple hypothesis test. To this aim, we consider a
radar system, equipped with N temporal channels which
illuminates an area consisting of K range bins. The signals
backscattered by these range cells are suitably conditioned
and sampled by the signal-processing unit to form vectors
zk ∈ CN×1, k = 1, . . . ,K, that can be grouped into the data
matrix Z = [z1, . . . ,zK ] ∈ CN×K . Now, we are interested
in establishing whether or not training data are homogeneous
along the range bin dimension in a clutter-dominated environ-
ment. In the heterogeneous case, we also estimate the unknown
number of homogeneous subsets assuming a maximum num-
ber of subsets denoted by M ≥ 2. Following the lead of [24],
partitioning is accomplished by introducing K Independent
and Identically Distributed (IID) discrete random variables,
cks say, which, under Hm−1 (see below), m = 2, . . . ,M ,

1In what follows, vectors and matrices are denoted by boldface lower-case
and upper-case letters, respectively. The symbols | · |, Tr (·), det(·), (·)T ,
(·)†, and (·)∗ denote modulus value, trace, determinant, transpose, conjugate
transpose, and complex conjugate, respectively. ν(·) denotes a vector-valued
function selecting the generally distinct entries of the matrix argument. C (R)
is the set of complex (real) numbers and CN×M (RN×N ) is the Euclidean
space of (N ×M)-dimensional complex (real) matrices. Given x ∈ R, then
bxc is the greatest integer less than or equal to x. The real and imaginary parts
of x ∈ CN×1 are denoted by Re{x} and Im{x}, respectively. We denote
by J ∈ RN×N a permutation matrix such that J(l, k) = 1 if and only if
l+ k = N + 1. Moreover, 0 is the null vector of proper dimension and IN
stands for the N ×N identity matrix. Finally, we write x ∼ CNN (m,M)
if x is an N -dimensional complex normal vector with mean m and positive
definite covariance matrix M .

take on values in {1, . . . ,m}, with unknown probability mass
function P (ck = l) = πl, l = 1, . . . ,m ≤ M ,

∑m
l=1 πl = 1,

and such that when ck = l, then zk ∼ CNN (0,M l). As
for the ICM of these homogeneous subsets, we suppose that
the different classes, identified by a common value of ck,
share a common structure of the covariance matrix M , but
they have different power values σ2

l , l = 1, . . . ,M , namely,
M l = σ2

lM . Under these assumptions, we formulate the
following multiple hypothesis test

H0 : zk ∼ CNN (0,M), k = 1, . . . ,K,

Hm−1 : zk ∼
m∑
l=1

πlCNN (0, σ2
lM), k = 1, . . . ,K,

(1)

where m = 2, . . . ,M . As for the covariance structure, we
assume that M can be either generic Hermitian, persymmetric
such that M−1 = [M−1 + J(M∗)−1J ]/2, real symmetric
implying that Re{zk} and Im{zk} are IID, or centrosym-
metric such that M−1 = [M−1 + J(M)−1J ]/2 ∈ RN×N

implying again that Re{zk} and Im{zk} are IID.
For the next developments, we provide the expression

of the Probability Density Function (PDF) of zk un-
der Hm−1, m = 2, . . . ,M , i.e., fm(zk;πm,σm) =∑m

l=1 πlf(zk|ck = l;M l), where πm = [π1, . . . , πm]T ,
σm = [νT (M1), . . . ,νT (Mm)]T , and f(zk|ck =
l;M l) = exp{−Tr [M−1

l zkz
†
k]}/[πN det(M l)]. Finally,

the PDF of zk under H0 is given by f(zk;M) =
exp{−Tr [M−1zkz

†
k]}/[πN det(M)].

III. ARCHITECTURE DESIGN

In this section, we devise a classification architecture to
solve problem (1) exploiting a penalized log-likelihood ratio
test [21] whose generic structure is given by

{Λm̂(Z)− h(m̂)}
Hm̂
>
<
H0

η (2)

where η is a threshold to be set in order to guarantee a given
probability of classifying data as heterogeneous when they are
homogeneous2,

m̂ = arg max
m=2,...,M

{Λm(Z)− h(m)} , (3)

and the penalty term, h(m), computed by neglecting the
quantities that are invariant under the alternative hypotheses,
is [25]

h(m) =


2m, AIC,
log(2KN)m, BIC,
m(1 + ρ), ρ > 1, GIC.

(4)

Finally, the expression of Λm(Z) is given by

Λm(Z) =

K∑
k=1

[log fm(zk; π̂m, σ̂m)− log f(zk;M̂0)], (5)

2Notice that the detection threshold depends on the number of alternative
hypotheses.
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where M̂0, π̂m, and σ̂m are the estimates of M , under H0,
πm, and σm, respectively, obtained as described below.

Under H0, the estimate of M is accomplished by means
of the maximum likelihood approach that leads to the sample
covariance matrix over Z, whose expression is

M̂0=



1
KZZ

†, Hermitian,
1

2K

(
ZZ† + JZ∗ZTJ

)
, Persymmetric,

1
KRe{ZZ†}, Symmetric,
1

2K

(
Re{ZZ†}+ JRe{Z∗ZT }J

)
, Centrosymmetric.

(6)
On the other hand, under the generic Hm−1 hypothesis, we
resort to the EM algorithm coupled with a cyclic procedure to
come up with suitable estimates of M , σ2

l , and πm assuming
different symmetries for M . Let us recall that the EM estima-
tion procedure consists of the E-step and the M-step [26] that
in a iterative way maximize the log-likelihood function using
closed-form estimation updates. Now, regardless the symmetry
of M , the E-step at the (h− 1)th iteration leads to

q
(h−1)
k (l) =

f(zk|ck = l;M̂
(h−1)
l )π̂

(h−1)
l

m∑
i=1

f(zk|ck = i;M̂
(h−1)
i )π̂

(h−1)
i

, (7)

l = 1, . . . ,m and k = 1, . . . ,K, where M̂
(h−1)
l (whose

expression depends on the specific structure) and π̂
(h−1)
l are

the available estimates. As for the M-step, it is not difficult to
show that the prior updates are given by

π̂
(h)
l =

1

K

K∑
k=1

q
(h−1)
k (l), l = 1, . . . ,m, (8)

that depend on the assumed ICM structure through q(h−1)k (l).
It still remains to come up with the updates for M and σ2

l .
To this end, we have to solve the following problem

max
σm

K∑
k=1

m∑
l=1

q
(h−1)
k (l)[− log det(M l)− Tr (M−1

l zkz
†
k)],

(9)
that can be specialized according to the considered ICM
structures and, hence, leading to different estimation updates.
Thus, let us start from the generic Hermitian structure, then,
following the lead of [24], we come up with the following
cyclic procedure (the iteration index t, t = 1, . . . , tmax, is in
addition to the EM iteration index h)

(σ̂2
l )(t),(h) =

K∑
k=1

q̄
(h−1)
k (l)z†k[M̂

(t−1),(h)
]−1zk/N, (10)

M̂
(t),(h)

=
1

K

K∑
k=1

m∑
l=1

q
(h−1)
k (l)

Zk

(σ̂2
l )(t),(h)

, (11)

where q̄(h−1)k (l) = q
(h−1)
k (l)/

∑K
n=1 q

(h−1)
n (l), Zk = zkz

†
k,

and M̂
(0),(h)

= M̂
(tmax),(h−1)

for h > 1. As for the other
cases, in the following we provide the final updates and some
hints related to the derivations of them due to the limited

number of pages. Therefore, in the case of persymmetry,
exploiting the equality Tr [M−1ZZ†] = Tr [M−1(ZZ† +
JZ∗ZTJ)/2], it is possible to show that the estimates of σ2

l

and M become

(σ̂2
l )(t),(h) =

K∑
k=1

q̄
(h−1)
k (l)

2N
Tr [(M̂

(t−1),(h)
)−1Zk,J ], (12)

M̂
(t),(h)

=
1

2K

K∑
k=1

m∑
l=1

q
(h−1)
k (l)

Zk,J

(σ̂2
l )(t),(h)

, (13)

where Zk,J = Zk + JZ∗kJ . As for the symmetric structure,
since M ∈ RN×N it is possible to recast the PDF to account
for the independence of the real and imaginary parts of data.
As a consequence, the resulting estimates can be written

(σ̂2
l )(t),(h) =

K∑
k=1

q̄
(h−1)
k (l)

N
Tr [(M̂

(t−1),(h)
)−1Re{Zk}], (14)

M̂
(t),(h)

=
1

K

K∑
k=1

m∑
l=1

q
(h−1)
k (l)

Re{Zk}
(σ̂2

l )(t),(h)
. (15)

Finally, in the last case, we assume that M is centrosym-
metric. As consequence, the identity Tr [M−1Re{ZZ†}] =
Tr [M−1(Re{ZZ†} + JRe{Z∗ZT }J)/2] is valid and it
yields

(σ̂2
l )(t),(h) =

K∑
k=1

q̄
(h−1)
k (l)

2N
Tr [(M̂

(t−1),(h)
)−1Re{Zk,J}],

(16)

M̂
(t),(h)

=
1

2K

K∑
k=1

m∑
l=1

q
(h−1)
k (l)

Re{Zk,J}
(σ̂2

l )(t),(h)
. (17)

As a final remark, an initial estimate of the unknown param-
eters is necessary to start the procedures. The details of a
possible initialization strategy will be described in the next
section.

IV. PERFORMANCE ASSESSMENT

The analysis is conducted by means of simulated data and
considering the probability of correct classification, Pcc, and
the probability of correct detection, Pd, as performance met-
rics. To this end, standard Monte Carlo counting techniques are
exploited to estimate the threshold assuring Pfa = 10−3 based
on 100/Pfa runs. Both Pd and Pcc are estimated over 104

independent trials. As for the ICM, we suppose the prevalence
of the clutter contribution assuming an exponentially shaped
clutter covariance. As a consequence, the (i, j)th entry of
the ICM structure is given by ν|i−j|, where ν = 0.9. The
clutter power under H0 is set to 30 dB (assuming as reference
σ2
ref = 1).
The iteration number for both the cyclic procedures is

equal to 10 (it has been proved in [24] that a small number
is sufficient for convergence) and the maximum number of
possible classes is set as M = 5 in order to limit the
computational burden. As for the GIC-based rule in (4), we
set ρ = 2.
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Fig. 1. Pcc (%) of the three MOS-based architectures for a simulated
heterogeneous scenario with 3 homogeneous subsets using K1 = 10,
K2 = 10 and K3 = 4 (H2).
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Fig. 2. Pcc (%) of the three MOS-based architectures for a simulated
heterogeneous scenario with 5 homogeneous subsets using K1 = 8, K2 = 6,
K3 = 5, K4 = 9 and K5 = 4 (H4).

Under each mth hypothesis, we choose equiprobable priors
for the initialization of πls, namely, πl = 1/m, whereas

the initial value M̂
(0),(0)

is equal to M̂0. The following
initialization procedure for the m clutter power levels is
pursued. Specifically, ∀k = 1, . . . ,K, we compute

g(k) =



1
N Tr [M̂

−1
0 Zk], Hermitian,

1
2N Tr [M̂

−1
0 Zk,J ], Persymmetric,

1
N Tr [M̂

−1
0 Re{Zk}], Symmetric,

1
2N Tr [M̂

−1
0 Re{Zk,J}], Centrosymmetric.

(18)

Then, we sort the g(k)s in ascending order, g̃(1) ≤ g̃(2) ≤
. . . ≤ g̃(K). Finally, the mean values computed over the
bK/mc subsets of the ordered powers are used to set the initial
value of the clutter power levels, namely,

σ̂2
l =

1

bKmc

lbKm c∑
i=(l−1)bKm c+1

g̃(i), l = 1, . . . ,m+ 1. (19)
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Fig. 3. Pd for varying clutter power ratio: two homogeneous subsets with
K1 = 10 and K2 = 8 (σ2

1 is set to 20 dB).

Summarizing, M̂
(0)

l = σ̂2
l M̂0. All the illustrative examples

assume N = 16.
In Figures 1 and 2, the Pccs (%) are shown for two

heterogeneous scenarios with 3 and 5 homogeneous subsets
corresponding to H2 and H4, respectively. Under H2, we
assume K1 = 10, K2 = 10, K3 = 4, and [20, 30, 40] dB for
the clutter power levels, whereas under H4, we set K1 = 8,
K2 = 6, K3 = 5, K4 = 9, K5 = 4, and clutter power levels
[20, 25, 30, 35, 40] dB. The histograms clearly highlight that
each MOS-based rule conceived under the centrosymmetric
assumption for the ICM structure is superior to the analogous
counterpart based upon the other structures at least for the
considered parameters. It is also important to notice that the
poor performance of the rules based on the most general
Hermitian case is due to the lack of an adequate number of
data.

Finally, the performance in terms of Pd as a function of the
clutter power ratio is shown in Figure 3. For simplicity, we
assume that only one clutter edge is present with K1 = 10
and K2 = 8 (i.e., H1 is in force). The value of σ2

1 is set to 20
dB and σ2

2 changes according to the Clutter-to-Clutter Ratio
(CCR) defined as σ2

2/σ
2
1 . Inspection of the figure confirms the

superior performance of the decision schemes relying on a
centrosymmetric ICM structure with a gain of about 0.8 dB at
Pd = 0.9 over those based upon persymmetric and symmetric
structures. Again, due to the low volume of available data, the
Hermitian structure does not lead to satisfying performance. In
fact, for the considered parameter setting, the curves associated
with this case do not achieve Pd = 0.1.
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V. CONCLUSIONS

In this paper, the problem of detecting heterogeneous train-
ing data and clustering them according to their unknown
statistical properties is solved through the joint exploitation
of the LVM, the EM algorithm, and cyclic optimization
procedures. In addition, specific structures for the ICM have
been considered at the design stage. Remarkably, the proposed
architectures can be used to identify homogeneous subregions
without any a priori information about their number. The
performance analysis on simulated data has shown that the
devised architectures represent an effective means to detect
heterogeneity and partition data into homogeneous subsets
even when their cardinality is low.

Future research tracks may comprise the design of clas-
sification architectures also accounting for possible outliers
and the (at least asymptotic) statistical characterization of the
considered decision schemes.
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