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Abstract—One-bit error-feedback quantizers for uniform lin-
ear antenna arrays are developed to enable efficient spatial
noise shaping. The SNR of the maximum ratio combiner for
received signals quantized by one-bit error-feedback quantizers
is evaluated. Then, the optimal error-feedback quantizer that
maximizes the worst SNR for the signals whose arrival angles
are in a fixed range of interest is designed. Numerical results are
provided to show that our one-bit spatial noise shaping exhibits
flat BER performance for the signals from the prescribed range.

Index Terms—Error-feedback quantizer, Delta-Sigma modula-
tor, antenna array, noise shaping

I. INTRODUCTION

Massive MIMO that equips base stations with very large
antenna arrays is a key technology for 5G wireless communi-
cation systems [1]. To enable reasonable massive MIMO, it is
necessary to reduce the hardware cost and power consumption
of radio-frequency (RF) font-ends. Especially at higher band-
widths and sampling rates, high-resolution analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs) are
expensive and require a large amount of energy, which are
prohibitable for small devices. This motivates the research on
massive MIMO systems with low-resolution ADC and DAC
(see, e.g., [2] and references therein).

Energy-efficient low-dynamic range power amplifiers can
be utilized for low-resolution ADC and DAC. There exists
a trade-off between numbers of bits for ADC and DAC and
implementation/running costs. One-bit ADC and DAC are the
simplest and the most power-saving, whereas they generate the
largest quantization errors. Fortunately, it is often the case that
a very large number of antennas can mitigate the performance
loss due to quantization errors.

For example, in the uplink of massive MIMO systems, low-
resolution ADCs can achieve satisfying spectral efficiency [3];
one-bit ADCs achieve sufficient channel estimation accuracy
[4]. For the downlink, one-bit precoding for one-bit DACs has
been developed in [5], [6].

The original ∆Σ modulator has been provided in [7] for
code modulation, which has been used as efficient ADC and
DAC [8]. The noise shaping of the original ∆Σ modulator can
also be applied to multiple antenna array systems [9], [10],
where the outputs of the multiple antenna array at one-time
slot successively are fed into the ∆Σ modulator, which can be
considered as a spatial ∆Σ modulation. For massive MIMO

with one-bit ∆Σ, the spectral efficiency has been studied in
[11] and channel estimation has been considered in [12]. For
the downlink, one-bit precoding methods have been presented
using the original ∆Σ modulator [13] as well as the second
order ∆Σ modulator [14]. However, most of them utilizes
the original ∆Σ modulator, which exhibits poor performance
compared with modern ∆Σ modulators. To obtain better noise
shaping properties, the filters in the ∆Σ modulators should be
well designed [8].

On the other hand, error-feedback quantizers have been
presented to reduce quantization error in the coefficients of
digital filters [15]–[17]. In an error-feedback quantizer, the
quantization error of a uniform quantizer is filtered and fed
back into the input of the uniform quantizer. As shown in
[18], any stable ∆Σ modulators can be converted into error-
feedback quantizer and optimal error-feedback filters can be
designed based on linear matrix inequalities (LMIs).

The object of this paper is to develop one-bit error-feedback
quantizers for massive MIMO systems with uniform linear
antenna arrays. To illustrate the spatial noise shaping for
uniform linear antenna arrays, we focus on the uplink of the
single-user with one transmit antenna to a base station with a
uniform linear antenna array.

First, we present an one-bit spatial noise shaping by an
error-feedback quantizer for the received signal of an antenna
array, which subsumes the spatial noise shaping by the original
∆Σ modulator as a special case. Then, we evaluate the SNR
of the quantized received signal, which is a function of the
amplitude response of the noise shaping filter (NSF) of the
error-feedback quantizer at the frequency that corresponds to
the arrival angle of the signal. To obtain flat performance
for different arrival angles in a fixed range, we minimize the
maximum of the amplitude response of the NSF at frequencies
in the fixed range. The minimization is cast into a convex
optimization, which can be solved numerically and efficiently
by using a numerical solver like CVX [19]. Numerical results
are provided to show that designed filters have flat low
amplitude responses in the frequency range and that our one-
bit spatial noise shaping exhibits flat BER performance for
angles in the prescribed range.
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Fig. 1: Quantization and scaling.

II. UNIFORM LINEAR ANTENNA ARRAY AND ONE-BIT
ERROR- FEEDBACK QUANTIZATION

Let us consider a single-cell system, where each user has
one antenna and the base station equips a uniform linear
antenna array with N antennas. For the simplicity of pre-
sentation, we deal with a single-user case with a single-
path channel, using discrete-time signals. The extension from
the single-user case to the multi-user case with multi-path
channels is possible as in [11]. We confine our attention to
the uplink with one-bit quantization. Similar results can be
developed for the downlink with one-bit precoding as in [6]
but are omitted here.

During one time-slot, the user sends an symbol s with
zero mean and variance σ2

s over a single-path channel. Let
us denote the arrival angle of the signal from the user to the
base station and the antenna spacing of the uniform linear
array as θ ∈ [−π/2, π/2] and d, respectively. The wavelength
is assumed to be λ.

The received vector at the base station can be modeled as

y = a(θ)s+ n (1)

where a(θ) is the steering vector given by

a(θ) =
1√
N

[
1, e−j 2πd

λ sin(θ), . . . , e−j(N−1) 2πd
λ sin(θ)

]T
(2)

with (·)T being the transpose of the vector and n is the
additive noise vector at the receiver. The noise vector is
assumed to be a circularly symmetric white Gaussian vector
having zero mean and covariance matrix σ2

nI with I being an
N ×N identity matrix.

We assume that the range of arrival angles is given by
[−Θ,Θ] where the angular spread Θ(> 0) is less than π. This
implies that the range is symmetric with respect to the arrival
angle 0.

We utilize the subscripts R and I to denote the real and
the imaginary part of a scalar or a vector. For example, y =
yR + jyI where yR and yI are respectively the real and the
imaginary part of y.

For the uniform linear array with a symmetric range, we
independently quantize the real part and the imaginary part of
the received signal. Let us denote the real-valued input vector
of size N to our quantizer as χ and express the l∞ norm of
χ as γχ, which is the maximum of absolute values of entries
of χ denoted by ∥χ∥∞.

A schematic diagram of our quantization is illustrated in
Fig. 1. Before quantization, we normalize the input vector such
as χ/γχ and denote the normalized input vector as x. Let us
express the nth entry of the vector x as xn. Then, |xn| is
bounded such as |xn| ≤ 1 for n ∈ [1, N ]. The output vector of
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Fig. 2: ∆Σ modulator
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Fig. 3: Error-feedback quantizer.

the quantizer is denoted as v. After quantization, we multiply
v by γχ to scale the output of the quantizer to the original
range.

Fig. 2 depicts the original ∆Σ modulator presented in [7],
where xn and vn are the input and the output scalar sequence
of the modulator, and z−1 is the unit-time delay operator. More
efficient ∆Σ modulator can be obtained by replacing z−1 and
1/(1− z−1) with appropriate filters.

On the other hand, Fig. 3 shows the error-feedback quan-
tizer, where Q(·) is a uniform quantizer and R[z] − 1 is an
error-feedback filter which is stable and strictly proper. Error-
feedback quantizers have been originally proposed to mitigate
the quantization errors of uniform quantizers in digital filters
[15]–[17]. In the error-feedback quantizer, the quantization
error wn of the uniform quantizer is filtered and fed back
into the input of the quantizer.

Any stable ∆Σ modulator can be converted into its cor-
responding error-feedback quantizer [18]. For example, the
original ∆Σ modulator is equivalent to the error-feedback
quantizer with R[z] = 1− z−1 and

Q(un) = sgn(un). (3)

Thus, we adopt error-feedback quantizers for our quantization.
It should be noted that with R[z] = 1, the error-feedback
quantizer boils down to the uniform quantizer.

Let us express the z-transform of a sequence denoted by
a lowercase letter as its corresponding uppercase letter. The
z-transform of the output vn is related to the z-transform of
the output xn such as V [z] = X[z]+R[z]W [z] [8]. Since R[z]
shapes the noise spectrum, R[z] is called a noise shaping filter
(NSF), an error shaping filter, or a noise transfer function.
This paper considers FIR R[z] with real coefficients that is
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expressed by

R[z] =

nr∑
n=0

rnz
−1 (4)

with r0 = 1. We assume that the order nr of R[z] is much
less than N .

The one-bit uniform quantizer is overloaded if |un| > 2.
When an overloading occurs, the quantization error wn may
take a large value. Then, successive overloading may unstabi-
lize the error-feedback quantizer. It is easy to see that if

nr∑
n=0

|rn| ≤ 1 (5)

then there is no overloading and the quantization error of the
uniform quantizer is bounded such as |wn| ≤ 1.

III. DESIGN OF ONE-BIT ERROR-FEEDBACK QUANTIZER

The object of this paper is to design a stable error-feedback
quantizer for a uniform linear antenna array receiver.

If a vector of inputs to the uniform quantizer and a noise
vector of quantization errors of the uniform quantizer are
defined as u = [u1, u2, . . . , uN ]T w = [w1, w2, . . . , wN ]T ,
then the output vector is given by v = u + w (see Fig.
3). On the other hand, the vector u can be expressed as
u = x+(R−I)w, where R is a lower triangular matrix whose
diagonal entries and nth sub-diagonal entries are respectively
r0 and rn, that is,

R =


1 0

r1
. . . . . .

r2
. . . 1 0
. . . r1 1

 . (6)

It follows that the vector consisting of the outputs of the error-
feedback quantizer is given by v = x+Rw.

The real part and the imaginary part of the received vector y
are independently quantized. We denote the quantization error
vectors for the real part and the imaginary part of y as wR

and wI , respectively. Then, after quantization and scaling, the
quantized received vector ỹ can be expressed as

ỹ = y + e (7)

where e is the quantization error vector of error-feedback
quantizers given by

e = R(γyR
wR + jγyI

wI) (8)

with γyR
= ∥yR∥∞ and γyI

= ∥yI∥∞.
Now, let us consider the output of the maximum ratio

combiner (MRC), which is given by z = a∗(θ)ỹ, where (·)∗
is the complex conjugate transpose operator.

For a sufficiently large N , the output of the MRC can be
approximated as

z = s+a∗(θ)
[
n+R[ej

2πd
λ sin(θ)](γyR

wR + jγyI
wI)

]
. (9)

The additive noise n is independent of wR and wI . For our
analysis and synthesis, we assume that wR and wI are uncor-
related with each other and that a∗(θ)wR and a∗(θ)wI have
the same variance σ2

q = E{|a∗(θ)wR|2} = E{|a∗(θ)wI |2}
where E{·} stands for the expectation operator. Then, the
received SNR of our system is given by

σ2
s

σ2
n + |R[ejω]|2(γ2

yR
+ γ2

yI
)σ2

q

(10)

where ω = 2πd
λ sin(θ).

Since we are interested in the arrival angles in [−Θ,Θ],
to maximize the worst-case received SNR for θ ∈ [−Θ,Θ],
we would like to minimize the maximum of |R[ejω]| for ω ∈
[−Ω,Ω] with Ω = 2πd

λ sin(Θ) subject to the no-overloading
condition. We can mathematically formulate our problem as:

min
r1,r2,...,rnr

max
ω∈[−Ω,Ω]

|R[ejω]| (11)

subject to the no-overloading condition given by (5). This
problem is equivalent to: min

r1,r2,...,rnr ,µ
µ subject to (5) and

|R[ejω]|2 < µ for ω ∈ [−Ω,Ω]. (12)

Let us cast our constrained optimization into a convex opti-
mization. First, we define state-space matrices (A,B,C,D)
of R[z] as

A =



0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

...
. . . 1

0 · · · · · · · · · 0


,B =


0
...
0
1

 (13)

C =
[
rnr

, rnr−1, · · · r1
]
,D = 1. (14)

By using the generalized KYP lemma [20], the inequality
(12) holds if and only if there exist symmetric matrices Y > 0
and X such that [21] M1 M2 CT

MT
2 M3 1

C 1 −1

 < 0 (15)

where

M1 = ATXA+ Y A+ATY −X − 2Y cosΩ (16)

M2 = ATXB + Y B (17)

M3 = BTXB − µ. (18)

Then, (15) is a linear matrix inequality (LMI) in our design
variables r1, r2, . . . , rnr and µ, which is convex.

On the other hand, introducing non-negative auxiliary vari-
ables r̄n ≥ 0 for n = 1, . . . , nr such that r̄n = |rn|, we can
express (5) as linear constraints [22]:

nr∑
n=1

r̄n ≤ 1 (19)

− r̄n ≤ rn ≤ r̄n, r̄n ≥ 0 for n = 1, . . . , nr. (20)
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Fig. 4: Amplitude responses of designed R[z] for d/λ =
1/2, 1/4, 1/8 and R[z] = 1 − z−1 of the original ∆Σ
modulator.

Thus, our design problem is cast into the convex optimization:
minr1,...,rnr ,r̄1,...,r̄nr

µ, subject to (15), (19), and (20). The
problem can be solved numerically and efficiently by using a
numerical solver like CVX [19].

IV. SIMULATION RESULTS

First, we design our NSF R[z] of order nr = 16 for d/λ =
1/2, 1/4, and 1/8, solving the convex optimization with CVX.
The angular range is set to be [−π/3, π/3].

Fig. 4 compares amplitude responses of designed R[z] with
the amplitude response of R[z] = 1− z−1 of the original ∆Σ
modulator.

For d/λ = 1/2,d/λ = 1/4, and d/λ = 1/8, the maximum
values Ω for ω are 1/2, 1/4 and 1/8, respectively. Since
we minimize the maximum of |R[ejω]| for ω ∈ [−Ω,Ω],
the amplitude responses are flat for ω ∈ [−Ω,Ω]. As d/λ
decreases, the maximum values of |R[ejω]| for ω ∈ [−Ω,Ω]
decreases and hence the received SNR improves.

For every d/λ, the amplitude response of the designed
R[z] is larger than the amplitude response of the original ∆Σ
modulator from 0 up to almost a half of Ω, whereas the former
is smaller than the latter from almost a half of Ω to Ω.

Next, we evaluate bit error rates (BERs) for MRC with our
designed error-feedback quantizer, the original ∆Σ modulator,
and the uniform quantizer, when Θ = π/3, N = 64,
d/λ = 1/8, and the SNR σ2

s/σ
2
n = 10 dB We generate 105

QPSK symbols and Gaussian noise vectors and compute BERs
for arrival angles from 0 to π/2. It should be noted that the
range of angular angles is [−π/3, π/3] (1/3 ≈ 0.333), in other
words, normalized angular angles from 0.333 to 0.5 are out
of our target.

Fig. 5 shows BERs for different angles, where the BER
without quantization is also plotted, which is the limit of BER

0 0.1 0.2 0.3 0.4 0.5
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B
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R

Fig. 5: BERs with designed quantizer, original ∆Σ modulator,
and uniform quantizer compared with BER without quantiza-
tion, when N = 64, d/λ = 1/8 and Θ = π/3.
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Fig. 6: BERs at θ = π/6 with designed quantizer, original ∆Σ
modulator, and uniform quantizer compared with BER without
quantization, when N = 64, d/λ = 1/8 and Θ = π/3.

with quantization. It is remarked that theoretical BERs are
even functions of the arrival angle.

From 0 to 0.167, the BER of our designed quantizer is
worse than the BER of the original ∆Σ modulator, whereas
from 0.167 to 0.333, the former is better than the latter.
Our designed quantizer exhibits better BER than the uniform
quantizer for the whole range of angles of interest, whereas
the original ∆Σ modulator does not always.

Although the amplitude of the NSF of the original ∆Σ
modulator is very small around 0, the BER of the original
∆Σ modulator is not that small. This is due to the fact that
the quantization noise variance σ2

q in (10) is also a function
of the angle and is large when the angle is around 0, which
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Fig. 7: BERs at θ = π/3 with designed quantizer, original ∆Σ
modulator, and uniform quantizer compared with BER without
quantization, when N = 64, d/λ = 1/8 and Θ = π/3.

has been pointed out in [23] and reported by [13].
Fig. 6 compares BERs for the arrival angle θ = π/6, which

is the half of the angular spread Θ. The BERs of our designed
quantizer is almost identical with the BERs of the original ∆Σ
modulator.

Fig. 7 depicts BERs for the arrival angle θ = π/3, which is
identical with the angular spread Θ. Our designed quantizer
enjoys better performance than the uniform quantizer, whereas
the original ∆Σ modulator does worse performance. This
demonstrates the robustness of our designed quantizer to
arrival angles.

V. CONCLUSION

We have developed one-bit error-feedback quantization for
massive MIMO systems with uniform linear antenna arrays.
We have designed the optimal error-feedback quantizer that
maximizes the worst SNR for the signals whose arrival angles
are in a fixed range of interest. Numerical results are provided
to show that our one-bit spatial noise shaping exhibits flat BER
performance for the prescribed range of angles.
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