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Abstract—This paper addresses the problem of the target
location and velocity estimation in Multiple-Input Multiple-
Output (MIMO) radars with widely dispersed antennas. We
derive the Cramér-Rao Lower Bounds (CRLB) on range and
velocity of a target in the presence of Complex Elliptically
Symmetric (CES) distributed clutter. Focusing on the particular
case of Complex t-distribution clutter, we analyze the impact of
the clutter spikyness on the estimation performance.

Index Terms—Cramér-Rao lower bounds (CRLB), MIMO
Radar, Joint Estimation, Complex Elliptically Symmetric (CES)
distributed, Complex t-Distribution.

I. INTRODUCTION

In recent years, Multiple-Input Multiple-Output (MIMO)
radars have received a huge attention in radar literature.
Many papers have been published [1], [2] regarding their
performance for target detection [3], and target parameter
estimation [4], considering both categories of MIMO systems,
with widely separated antennas [4] and with closely spaced
antennas [5].

Due to the remarkable characteristics of MIMO radars
in estimating target parameters, various studies have been
performed in different applications, including different antenna
deployment [6], target models (motion or static target) [7], and
various estimation algorithms [8], [9].

In this paper we derive the CRLBs on the estimation of
target range and velocity with coherent MIMO radars in CES-
distributed clutter. After the introduction of signal and clutter
model, we focus on a specific CES distribution, the complex
t-distribution that is often used in radar literature to model
non-Gaussian spiky clutter [10], [11]. The CRLBs for the
joint estimation of target range and velocity are derived and
analyzed as function of clutter spikyness and Signal to Clutter
power ratio (SCR).

II. SIGNAL MODEL

Consider a coherent MIMO radar with M transmitter (TX)
and N receiver (RX) antennas, widely dispersed in a 2-D
plane as shown in Fig.1. In order to simplify the CRLB deriva-
tion we assume an isotropic target whose unknown complex
amplitude is ζ = ζR + jζI . The unknown target location is
(x, y) and the unknown target velocity is (vx, vy). The known
locations of the M transmitters are (xtk, y

t
k), (k = 1, ...,M)

and of the N receivers are (xrl , y
r
l ), (l = 1, ..., N). Φk is the

bearing of the kth transmitter, and φl is the bearing of the lth
receiver with respect to the x− axis.

Fig. 1 Location of transmitters and receivers with respect to the moving
target.

The echo of the lth receiver given from the transmission
of all the M transmitters and reflected from the target, after
down-conversion and sampling, is

rl[n] =

√
E

M
ζ

M∑
k=1

e
−j2πf0τlke

j2πflknTssk(nTs − τlk) + zl[n],

l = 1, ..., N n = 1, ...., Ns

(1)

where ζ is the target complex reflectivity (deterministic
and unknown), f0 is the carrier frequency (carrier frequen-
cies of all transmitters are assumed to be identical), Ts
is the sampling time (chosen to satisfy the Nyquist crite-
rion) and Ns is the number of samples in the observa-
tion period,sk(∆n) = f(∆n) · rect( ∆n

Tp
) with ∆n = (nTs − τlk),

is the complex baseband signal received by the lth receiver
antenna sent by the kth transmitter antennas. The rect(∆n

Tp
)

part models the single pulse time interval while f(∆n) refers
to the specific class of signal implementation, and Tp refers
to the pulse duration. Each signals is emitted by an individual
transmitter antenna with energy Es, while E = EsM is the
total transmitted energy. Finally, zl[n] is the clutter echo at
the lth receiver. τlk represents the time delay of a signal
which propagates along the path from the kth TX antenna
to the target, that is dtk =

√
(xtk − x)2 + (ytk − y)2, and

then the path from the target to the lth RX antenna, that is
drl =

√
(xrl − x)2 + (yrl − y)2. Note that the τlk =

dtk+drl
λ ,

where c is the speed of light. flk is the target Doppler
frequency shift given by

flk =
vx(xtk − x) + vy(ytk − y)

λdtk
+
vx(xrl − x) + vy(yrl − y)

λdrl
(2)

where λ is the wavelength of the carrier frequency.
In our derivation we assume that the transmitted signals

are orthogonal. Furthermore, they retain approximately the
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orthogonality, even after a variety of allowed time delays and
Doppler frequency shifts, that is

Ns∑
n=1

sk(nTs − τlk)s
∗
k(nTs − τl′k′ )e

j2π(flk−fl′k′ )nTs

{
1 l = l

′
, k = k

′

0 l 6= l
′
, k 6= k

∀τlk, flk, τl′k′ , fl′k′

(3)

The Ns-dimensional observation vector at the lth receiver
can be expressed as rl =

{
rl[1] rl[2] ... rl[Ns]

}T . The
observations from the set of all receivers can be written as the
NsN -dimensional vector r =

{
rT1 rT2 ... rTN

}T .

III. COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

Complex Elliptically Symmetric (CES) distributions are
often used in cases where we need to model non-Gaussian
heavy tailed radar clutter [12], [13]. The m-variate random
vector (r.v) z ∈ Cm, that follows the CES model has a
probability density function (pdf) of the form

fz(z) = Cm,g
∣∣Σ∣∣−1

g
(

(z− µ)HΣ−1(z− µ)
)

(4)

where µ ∈ Cm and m × m matrix Σ denote the mean
vector and scatter matrix, respectively. The function g: R+

0 →
R+ the density generator, satisfies the constraint δm,g =∆∫∞

0
tm−1g(t)dt < ∞, and (.)H refers the Hermitian (com-

plex conjugate and transpose) operator. Lastly, Cm,g is a
normalizing constant such that fz(z) integrates to 1 and
Cm,g = 2(Smδm,g)

−1, where Sm =∆ 2πm

Γ(m)
. In short notation

z ∼ CEm(µ,Σ, g) = CEm,g(µ,Σ).
Therefore, the probability function of the received data

vector r is
r ∼ CENsN,g(µ,Σ) (5)

where µ =
{
µT1 µT2 ... µTN

}T ,
µl =

{
µl[1] µl[2] ... µl[Ns]

}T
,µl[n] =

√
E
M

∑M
k=1 ζΥlk[n]sk(∆n), and Υlk[n] =

e−j2πf0τlkej2πflknTs .
Σ is the space-time scatter matrix of the CES-distributed

clutter.

IV. CRAMÉR-RAO LOWER BOUND EXPRESSION

In this section, we derive the CRLBs for the MIMO radar.
ψ = [x, y, vx, vy, ζR, ζI ] is the vector of all the unknown
parameters in the received signal. Since we assume here that
the target has already been detected and we now want to
estimate target range and velocity, we consider the target
reflectivity, ζR and ζI , as a nuisance parameter [14], [15], we
derive the CRLBs of the unknown vector β = [x, y, vx, vy].

A. General CRLB for Location and Velocity Estimation

In order to derive the Cramér-Rao lower bounds of target
location and velocity, the first step is to calculate the Fisher
Information Matrix (FIM) and then to invert it, since the CRLB
matrix is the inverse of the FIM CRLB(ψ) = [J(ψ)]−1.

The FIM matrix is defined as

J(ψ) = −Er,ψ

{ ∂

∂ψ
[
∂

∂ψ
ln p(r;ψ)]T

}
(6)

where E{.} indicates the expectation operator and ln p(r;ψ)
is the Log-Likelihood (LL) function.

Since (1) is a function of time delay and Doppler fre-
quency shift, we introduce the parameter vector as Θ =
[τ11, τ12, ..., τlk, f11, f12, ..., flk, ζR, ζI ]

T , and, since ψ is a
function of Θ, in order to compute the FIM, the chain rule
[16] is applied , therefore, the FIM can be express as

J(ψ) = PJ(Θ)PT (7)

where P = ∂ΘT

∂ψ
depends on the geometry of the scenario and

is given by

P =
∂ΘT

∂ψ
=

[
U4×2NM 04×2

02×4 I2

]
(8)

where 0 and I are the zero and identity matrix respectively,
while U is given by

U =


∂τ11

∂x ... ∂τNM
∂x

∂f11

∂x ... ∂fNM
∂x

∂τ11

∂y ... ∂τNM
∂y

∂f11

∂y ... ∂fNM
∂y

0 ... 0 ∂f11

∂vx
... ∂fNM

∂vx

0 ... 0 ∂f11

∂vy
... ∂fNM

∂vy

 (9)

The details on the derivation of the elemements of U are in
[16].

J(Θ) is the Jacobian matrix given by

J(Θ) = −E
{ ∂

∂Θ

( ∂

∂Θ
ln p(r; Θ

)}
(10)

where p(r; Θ) is the pdf of the oberservation vector. In the
derivation here, we consider the case of independent and
identically distributed (i.i.d.) clutter samples in both time and
space, then, if rl[n] is the generic sample of the observed
signal of the lth receiver antenna,

p(rl[n]; Θ) =
1

C1,g
g(tl[n]) (11)

and the log-likelihood function is given by

ln p(r|Θ) = ln

NS∏
n=1

N∏
l=1

p(rl[n]|Θ) =

C +

Ns∑
n=1

N∑
l=1

ln p(rl[n]|Θ) = C +

Ns∑
n=1

N∑
l=1

ln g(tl[n])

(12)

where C is a generic constant that does not depend on
the parameters of interest, tl[n] is the quadratic form

tl[n] = 1
σ

∣∣∣rl[n]−
√

E
M
ζul[n]

∣∣∣2, and ul[n] =∆
M∑
k=1

Υlk[n]sk[n].

A special case of CES-distributions is the Complex t-
Distribution [17], in short notation z ∼ Ctm,ν(µ,Σ). In this
case, the density generator is given by

g(t) =

(
1 +

2t

ν

)−(2m+ν)
2

(13)

yielding Cm,g =
2mΓ( 2m+ν

2
)

(πν)mΓ( ν
2

)
as the normalizing constant. It is

worth mentioning that ν denotes the shape parameter of the
distrubution and it is related to the spikyness of the clutter.
The lower the value of ν, the spikier is the clutter.
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When the clutter is independent in both space and time
domain the scatter matrix reduces to the scalar σ. In our
derivations, if not differently specified, σ = 1. Each element
of the Jacobian matrix is[

J(Θ)
]
i,j

= −E
[∂2 ln p(r|Θ)

∂Θi∂Θj

]
=

−E
[
Ns∑
n=1

N∑
l=1

(
g
′′

(tl[n])

g(tl[n])
−
g
′
(tl[n])2

g(tl[n])2

)
∂tl[n]

∂Θi

∂tl[n]

∂Θj
+
g
′
(tl[n])

g(tl[n])

∂′2tl[n]

∂ΘiΘj

]
i, j = 1, ..., 2NM + 2

(14)
It should be pointed out that, in calculating the second
derivative of the LL function with respect to the parameters in
(14) we should take into account the orthogonality assumption
of the transmitted waveforms, which means that for instance,
the derivative respect to the time delay ∂2 ln p(r;Θ)

∂τlk∂τl′k′
= 0

if l 6= l
′
, k 6= k

′
because each signal given by each

TX/RXelement is independent of the signal belonging to
any other independent pair of TX/RX elements. Therefore if
l = l′and k = k′, the generic element of (14) is achieved by
considering the derivative expressions as follows

∂tp[n]

∂flk
=

(
4πnTs

σ

√
E

M
=
{
ζΥlk[n]sk(∆n)r

∗
p [n]

}
−

4πnTs

σ

E

M
|ζ|2=

{
Υlk[n]sk(∆n)u

∗
p[n]

})
δ(l− p)

(15)

∂tp[n]

∂τlk
=

(
−

2

σ

√
E

M
<
{
ζr
∗
p [n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)}
+

2

σ

E

M
|ζ|2<

{
u
∗
p[n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)})
δ(l− p)

(16)
∂tp[n]

∂ζR
= −

2

σ

√
E

M
<
{
up[n]r

∗
p [n]

}
+

2

σ

E

M
ζR

∣∣∣up[n]
∣∣∣2 (17)

∂tp[n]

∂ζI
=

2

σ

√
E

M
=
{
up[n]r

∗
p [n]

}
+

2

σ

E

M
ζI

∣∣∣up[n]
∣∣∣2 (18)

∂2tp[n]

∂ζR∂ζR
=
∂2tp[n]

∂ζI∂ζI
=

2

σ

E

M

∣∣∣up[n]
∣∣∣2, ∂2tp[n]

∂ζR∂ζI
= 0 (19)

∂2tp[n]

∂flk∂ζR
=

(
4πnTs

σ

√
E

M
=
{

Υlk[n]sk(∆n)r
∗
p [n]

}
−

8πnTs

σ

E

M
ζR=

{
Υlk[n]sk(∆n)u

∗
p[n]

})
δ(l− p)

(20)

∂2tp[n]

∂flk∂ζI
=

(
4πnTs

σ

√
E

M
<
{

Υlk[n]sk(∆n)r
∗
p [n]

}
−

8πnTs

σ

E

M
ζI=

{
Υlk[n]sk(∆n)u

∗
p[n]

})
δ(l− p)

(21)

∂2tp[n]

∂τlk∂ζR
=

(
−

2

σ

√
E

M
<
{
r
∗
p [n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)}
+

4

σ

E

M
ζR<

{
u
∗
p[n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)})
δ(l− p)

(22)
∂2tp[n]

∂τlk∂ζI
=

(
−

2

σ

√
E

M
<
{
jr
∗
p [n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)}
+

4

σ

E

M
ζI<

{
u
∗
p[n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)})
δ(l− p)

(23)

∂2tp[n]

∂flk∂fl′k′
=

(
8π2n2T 2

s

σ

√
E

M
<
{
ζΥlk[n]sk(∆n)

(
r
∗
p [n]−

√
E

M
ζ
∗
u
∗
p[n]

)}

+
8π2n2T 2

s

σ

E

M
|ζ|2<

{
e
−j2πf0(τlk−τl′k′ )e

j2π(flk−fl′k′ )nTssk(∆n)s
∗
k(∆n)

})
δ(l− p, l− l′, k − k′)

(24)
∂2tp[n]

∂τlk∂τl′k′
=

(
−

2

σ

√
E

M
<
{
ζr
∗
p [n]Υlk[n]

(
− 4π

2
f

2
0 sk(∆n)− j4πf0

•
sk(∆n)+

••
sk(∆n)

)}
+

2

σ

E

M
|ζ|2<

{
Υlk[n]u

∗
p[n]

(
− 4π

2
f
2
0 sk(∆n) − j4πf0

•
sk(∆n) +

••
sk(∆n)

)
+

e
−j2πf0(τlk−τl′k′ )e

j2π(flk−fl′k′ )nTs
(
j2πf0s

∗
k(∆n) +

•

s
*
k(∆n)

)
(
− j2πf0sk(∆n) +

•
sk(∆n)

)})
δ(l− p, l− l′, k − k′)

(25)
∂2tp[n]

∂flk∂τl′k′
=

(
4πnTs

σ

√
E

M
=
{
ζr
∗
p [n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)}

−
4πnTs

σ

E

M
|ζ|2=

{
u
∗
p[n]Υlk[n]

(
− j2πf0sk(∆n) +

•
sk(∆n)

)
+ e
−j2πf0(τlk−τl′k′ )

e
j2π(flk−fl′k′ )nTssk(∆n)

(
j2πf0s

∗
k(∆n) +

•

s
*
k(∆n)

)})
δ(l− p, l− l′, k − k′)

(26)
Matrix J(Θ) , computed as in (14), can be divided into four
sub-matrices as follows

J(Θ) =

[
D2NM×2NM G2NM×2

GT
2×2NM L2×2

]
(27)

where D =

[
Dτ Dτf

Dfτ Df

]
in which Dτ , Df , and Dτf ∈

RNM×NM . The lower right submatrix L involves derivatives

of the target complex scattering coefficient, L =

[
LζR 0

0 LζI

]
.

Finally, the upper right submatrix involves the derivatives re-
lated to all parameters: time delay, the Doppler frequency, and

the target complex reflectivities, then G =

[
GτζR GfζR

GτζI GfζI

]
.

By exploiting the chain rule for (7), the FIM of ψ is given
by

J(ψ) =

[
UDUT UG

GTUT L

]
(28)

Eventually, since our aim is to calculate the CLRBs of the
vector β, we get

CRLBβ = [U(D−GL−1GT )UT )]−1 (29)

where the diagonal elements of the CRLB matrix represent
the lower bound of the variances of relevant parameters,
hence: CRLBx = [CRLBβ ]11, CRLBy = [CRLBβ ]22,
CRLBvx = [CRLBβ ]33, and CRLBvy = [CRLBβ ]44.

B. A Case Study

In this paragraph, the CRLBs are calculated for a simple
MIMO radar system. Given the polar coordinates shown in
Fig.2, a M × N = 4 × 4 MIMO radar is considered whose
antenna bearings are

[
φt1 = ϕr1 = 0, φt2 = ϕr2 = 90, φt3 =

ϕr3 = 180, φt4 = ϕr4 = 270
]

with dtk = drl = 500 m
respectively. An isotropic target (T) with a complex scattering
coefficient ζ = 1+1j√

2
is placed at x = y = 0 m with velocity

vx = vy = 10 m
s .

The carrier frequency is f0 = 10 GHz, the sample fre-
quency is fS = 9 MHz, the pulse duration is Tp = 0.56 ms,
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Fig. 2 Antenna placement

the observation time is Tobs = 2.2 ms, and two different
sets of waveforms are investigated; the first set is such that
f(nTs − τlk) = ±1 ± j in which the real and imaginary
parts are randomly generated as [−1, 1]. In the second case,
f(nTs − τlk) = ej2πn∆f(nTs−τlk) with frequency increment
∆f = 1 MHz between sk[n] and sk+1[n] to satisfy the
orthogonality assumption. Furthermore, each waveform has
energy Es = 1.

The Signal to Clutter power ratio (SCR) can be formulated
as [18]

SCR =

∑M
k=1 ‖sk‖

2

E {zHl zl}
(30)

Since the clutter is i.i.d. and t-distributed E
{
zHl zl

}
=

Ns
ν
ν−2σ , where E

{
|zl|2

}
= ν

ν−2σ.
Fig.3 shows the relation of clutter power and the SCR as

a function of the shape parameter ν for fixed energy of the
signal and σ = 1.

Fig.4 shows the joint CRLBs of target location and velocity
for different values ν for the second set of waveforms. It is
worth noting that for ν = ∞ the t-distribution concides with
the Gaussian one. We only report CRLBx, CRLBvx, since
we set the same numerical values for x and y as well as for
vx and vy , therefore the CRLBs are the same.

In this figure, to obtain the CRLBs for varying ν, we fixed
the signal power and we varied σ . From the figures it seems
that, in this case, larger value of ν results in increasing the
CRLBs, which leads to lower accuracy. Following this, we
chose ν = 2.1.

Fig. 3 Clutter Power vs degree of freedom and SCR

Fig.5 and Fig.6, demonstrate the CRLB results for the target
location estimation and velocity estimation respectively, using
random and exponential signals. With respect to Fig.5 and
Fig.6, it is evident that the obtained CRLB is not particularly
sensitive to the type of signal.

(a) Target location estimation

(b) Target velocity estimation

Fig. 4 CRLB estimation with different degree of freedom for Complex t-
distribution

Fig. 5 CRLB comparison between the random (rnd) and exponential(exp)
signals for target location estimation

Fig. 6 CRLB comparison between the random (rnd) and exponential (exp)
signals for target velocity estimation

Further, the analysis of the maximum achievable accuracy in
parameter estimations (target and velocity) based on the target
position can be show through the CRLBs. To extract the best
accuracy (or the error) of target and velocity estimation we
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can write
errxy =

√
CRLBx + CRLBy

errvxvy =
√
CRLBvx + CRLBvy

(31)

Fig.7 shows the maximum achievable accuracy gained by (31)
in terms of CRLBs for both cases for varying positions and
vx = vy = 10m/s. From these figures, we can observe that the
accuracy around the up-right quadrant (the direction of the
target’s movement as vx > 0 and vy > 0) is lower. It is worth
noting that the Doppler frequency is positive in the up-right
quadrant, while it is negative in the opposite direction, as the
object is moving away from lower antennas. These graphs are
calculated for SCR= −15 dB.

(a) Accuracy in Location Estimation

(b) Accuracy in Velocity Estimation

Fig. 7 Maximum achievable accuracy in position and velocity estimation
when target is moving

V. CONCLUSION

This paper addresses the performance analysis of target
position and velocity estimation in terms of CRLBs in widely
separated MIMO radar in the presence of non-Gaussian CES-
distributed clutter.

In particular, we derived the expressions of the CRLBs
with orthogonally transmitted waveforms and white (in space
and time) t-distributed clutter. We analyzed the CRLBs for
two different set of waveforms as a function of the SCR and
the spikiness of the clutter. The derivation of the CRLBs in
presence of correlated (in space and/or in time) clutter is in
order.
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