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Abstract—This paper addresses the problem of multi-source
direction finding with a system that employs fewer receivers
than sensors. We propose a new system architecture, specifying
a time-multiplex scheme together with a refined array geometry.
The proposed array geometry consists of a centrosymmetric
prototype array that is connected to the receiver through a switch
and multiple reference elements that are directly connected to
the receiver. Under the assumption of wide-sense stationary
source signals, it is possible to reconstruct the array signals of
the prototype array, as if it was sampled simultaneously. The
resulting signals are amenable to conventional array processing
techniques and direction of arrival (DOA) estimators such as the
MUltiple SIgnal Classification (MUSIC) method. The processing
steps exploit the geometry of co-arrays constructed at each switch
position relating to the time-multiplex scheme. The problem of
fully coherent equivalent source signals, inherent to the co-array
approach, is mitigated by spatial smoothing. Finally, the proposed
technique is verified using numerical experiments and compared
to the Cramér-Rao lower bound (CRLB).

Index Terms—antenna array, switched element, time-varying
array, co-array, more sensors than receivers, Direction Finding,
DOA (estimation), AOA, coherent sources

I. INTRODUCTION

The problem of finding the directions of arrival (DOAs) of
multiple planar electromagnetic waves using antenna arrays
is well-known and has been extensively studied in the past.
Direction finding (DF) is a key enabler for applications like
passive emitter localization, navigation or communication and
therefore of high theoretical and practical interest. Commonly,
direction finding and so-called super-resolution algorithms re-
quire the array to be sampled simultaneously. Thus, a complete
receiver channel, consisting of an analog front-end and a
digital data path, is required for each antenna.

In order to reduce hardware costs and system complexity,
different techniques have been proposed and implemented to
decrease the number of required receiver channels, without
decreasing the total number of antenna elements. This is
commonly achieved by analog pre-processing, which can
be roughly divided into three categories: time-varying pre-
processing or beamforming [1], time-multiplexing or switch-
ing [2]–[5] (schematically depicted in Fig. 1) and finally
approaches based on (random) combiner networks or compres-
sive sampling [6]. In this paper, the focus is drawn towards
the second category.
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Fig. 1: System block diagram of an antenna array with more sensors than receivers.

Sheinvald et al. derived the maximum likelihood estimator
(MLE) and proposed a computationally simplified approxima-
tion also known as generalized least-squares (GLS) estimator
for the data of sub-arrays that are sequentially sampled [2].
In [1], these estimators are applied to the output of a time-
varying pre-processing network (or beamformer) and their
performance is compared to the Cramér-Rao lower bound
(CRLB). The authors of [3] presented a technique that aims
at directly reconstructing the spatial covariance matrix of an
antenna array from the output of a sequentially sampled array
using two receiver channels. Though, this direct augmented
covariance matrix is not guaranteed to be Hermitian, possibly
degrading the performance of subsequent estimators. Wu et
al. presented a root minimum variance distortionless response
(MVDR) DF algorithm for the output of a switched-element
system [4] and compared it to the CRLB. In our previous
work [5], we presented a two-channel receiver architecture,
that employs a single switch and a fixed reference element. By
normalizing the multiplexed channel to the reference channel
and restructuring the received signals, the sources’ DOA can
be estimated using conventional DF techniques.

Recently, co-arrays have gained a lot of attention [7]–[11],
as they offer the potential of resolving more sources than
sensors. The co-array model relies on the conventional array
model and creates a new virtual (co-)array, solely based on
the difference positions of the physical array. The resulting
co-array has a greater number of (virtual) elements than
the physical array, but not all of the element positions are
unique. However, if the number of unique element positions
is greater than the number of physical elements, the degrees
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of freedom (DOF) are increased, allowing to identify more
sources than sensors. In the past, different (linear) array ge-
ometries, including minimum redundancy, co-prime and nested
arrays [10]–[12], have been proposed in order to reduce the
number of redundant positions. Fewer publications focus on
two dimensional array geometries, or circular arrays, which
would allow to unambiguously estimate the 2D-DOA angles.

While increasing the DOF, co-array techniques often suffer
from rank deficient observation matrices, as the equivalent
source signals of the co-array model are merely the source
signal powers, behaving like fully coherent sources [10]. The
following three techniques have been commonly accepted as
the solution to this problem:
• Quasi-stationary sources (i.e. with time-varying signal

powers) [9],
• Direct augmented covariance matrices [7], [10], [11],
• Spatially smoothed covariance matrices [7], [10], [11].

For the last two approaches a quadratic relationship can be
established [11]. Moreover, we do not necessarily assume the
source powers to vary over time, therefore we will focus on
the spatial smoothing approach.

In this paper, we propose a new processing technique
and array geometry for a time-multiplexed receiver system.
Making weak assumptions for the source signals (i.e. wide-
sense stationary), the received data can be pre-processed and
restructured, resulting in a well-behaved sufficient statistic
for estimating the DOA angles. The proposed array model
is, in contrast to existing techniques [1]–[5], amenable to
conventional super-resolution techniques like MUltiple SIgnal
Classification (MUSIC) [13] and can resolve more sources
than physically available receiver channels.

II. DIRECTION FINDING PROBLEM

This section first introduces a generic model for the received
signal of antenna arrays and co-arrays. Finally, implications of
a time-multiplex receiver system are taken into account.

A. Array Data Model

We consider an antenna array composed of M sensor ele-
ments. We assume Q plane electromagnetic waves impinging
on the array from the distinct directions θq = (αq, εq), q =
1, . . . , Q, with α and ε denoting the azimuth and elevation
angles, respectively. Then, the k-th sample of the received
signal zk ∈ CM can be modeled as superposition of the
narrowband source signals’ complex envelope sk ∈ CQ
multiplied by the array transfer matrix A ∈ CM×Q and
Gaussian white noise wk ∈ CM :

zk = Ask +wk, (1)
A = (a1, . . . ,aQ) , (2)

aq =
(

ej 2πλ d
T
1 e(θq), . . . , ej 2πλ d

T
Me(θq)

)T

. (3)

The columns of the array transfer matrix A are composed of
the array transfer vectors aq ∈ CM for each source, where
λ is the wavelength, dm ∈ R3 is the sensor position for
m = 1, . . . ,M and e(θq) denotes the unit vector pointing

from the array center to the q-th source. Commonly, the spatial
covariance R ∈ CM×M is computed, since it is a sufficient
statistic for estimating the DOA angles θq, q = 1, . . . , Q. It
can be modeled as follows:

R = E
[
zzH

]
= APAH + σ2

wIM , (4)

P = E
[
ssH

]
, (5)

were P ∈ CQ×Q is the signal covariance matrix and σ2
w is

the noise variance/power. In case of uncorrelated sources, P
reduces to a diagonal matrix with the source powers σ2

q :

P = diag(p) = diag(σ2
1 , . . . , σ

2
Q). (6)

This assumption is also required for the co-array model [10].

B. Co-array Data Model

Introducing the vec(·) operation, that stacks the columns
cn, n = 1, . . . , N of a matrix C into a single vector:

C = (c1, . . . , cN ) , (7)

vec(C) =
(
cT

1 , . . . , c
T
N

)T
, (8)

the co-array model can be obtained by vectorizing the spatial
covariance matrix R, [9], [11]:

r = vec (R)

= (A∗ �A)p+ σ2
wiM ∈ CM

2

. (9)

Here, � denotes the Khatri-Rao product (i.e. the column-wise
Kronecker product) and iM = vec(IM ) is the vectorized
identity matrix IM . Equation (9) can also be interpreted as a
new array model, where Aco = A∗�A ∈ CM2×Q is the new
array transfer matrix and p ∈ RQ is the vector representing
the equivalent source signals

r = Acop+ σ2
wiM . (10)

The new transfer matrixAco can be alternatively interpreted as
the transfer matrix of a virtual array, whose positions solely
depend on the difference positions dco,m, m = 1, . . . ,Mco

where Mco = M2, of the physical array:

Aco = (aco,1, . . . ,aco,Q) , (11)

aco,q =
(

ej 2πλ d
T
co,1e(θq), . . . , ej 2πλ d

T
co,Mco

e(θq)
)T

, (12)

dco,m = di − dj , 1 ≤ i, j ≤M. (13)

Not all Mco rows of the array transfer vectors aco,q (12),
are unique and can be removed prior to estimating the source
DOAs.

If the number of unique rows Mco,unique is greater than the
number of physical elements Mco > Mco,unique > M , the
total number of DOF of the virtual array is increased. This
allows to identify more sources than physical sensors available.
Commonly, a selection matrix B is introduced, such that only
the unique rows of Aco are retained [11]:

y = Br

= BAcop+ σ2
wBiM. (14)
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By closely inspecting the co-array model (10), it can be
noted, that the equivalent source signals p behave like fully
coherent sources [10]. Therefore, a covariance or observation
matrix computed from the co-array signals r might be rank-
deficient. This can lead to severe performance degradations
of subsequent DOA estimators. To mitigate this problem, one
of the previously introduced approaches can be used. Since
the source signals’ powers do not necessarily vary with time,
the direct augmentation or spatial smoothing technique can be
applied.

Both approaches assume that the co-array is a uniform linear
array (ULA), such that the array transfer vector aco,unique

exhibits a Vandermonde structure. Then, the array can be
partitioned into L sub-arrays of size Ml, such that yl ∈ CMl

represents the output of the l-th sub-array (ULA segment).
Following [10] and [11], a rank restored covariance matrix
R ∈ CMl×Ml of the virtual (sub-)array can be computed as:

RDA = (yMl
, . . . ,y1), (15)

RSS =
1

Ml

L∑
l=1

yly
H
l , (16)

where (15) and (16) summarize the processing steps of the
direct augmentation and spatial smoothing technique, respec-
tively.

C. Time-Multiplex Receiver

We assume a receiver architecture as depicted in Fig. 1,
exhibiting a total of M ′ < M channels. This implies, that up
to M ′ − 1 antenna elements can be directly connected to the
receiver, while M −M ′ + 1 elements are connected through
an analog switch to the M ′-th receiver channel.

Introducing the switching index v = 1, . . . , V , where
V = M − M ′ + 1, that describes the switch position, the
received signal zv,k ∈ CM ′ can be similarly modeled to (1),
by replacing the full arrays’ transfer vector aq with the time-
varying array transfer vector

av,q =
(

ej 2πλ d
T
v,1e(θq), . . . , ej 2πλ d

T
v,M′e(θq)

)T

, (17)

such that dv,m, m = 1, . . . ,M ′, represent the array elements
that are connected to a receiver channel for the v-th switch
position. Conventionally, the total number of DOF is limited
by the number of array elements M . The DOF of the time-
multiplex system architecture are reduced to the number of
receiver channels M ′ and hence the maximum number of
identifiable sources is less than M ′. Moreover, it is worth
noting, that subspace algorithms like MUSIC are not directly
applicable to the received data Rv ∈ CM ′×M ′ for the case
M ′ ≤ Q, since no signal/noise subspace can be found.

D. DOA Estimation Problem

The considered DOA estimation problem can be stated as
follows: Estimate the source DOAs θq for q = 1, . . . Q from
all collected data covariance matrices R̂v = 1

K

∑K
k=1 zv,kz

H
v,k

at each switch position v = 1, . . . , V .

dref,m

(a) Proposed physical
array geometry

dref,m

−dref,m

(b) Resulting co-array geometry

Fig. 2: (a): The proposed geometry of the physical array can be separated into
two parts: the positions of the reference elements are indicated by orange
squares, while the (circular) prototype array is depicted as blue dotes.
(b): The combined co-array geometry exhibits four spatially shifted copies
(sub-arrays) of the prototype array, each marked with dots, squares, diamonds
and triangles.

III. DIRECTION FINDING METHODS FOR
TIME-MULTIPLEXED RECEIVERS

This section first develops a new array model by combining
the co-array model with a time-multiplex receiver. Subse-
quently an estimator for the two-dimensional source DOA
angles is proposed.

A. Combined Co-Array Data Model

We propose a new array geometry and receiver architecture,
consisting of at least one reference element and a prototype
array. This is schematically depicted in Fig 2a, where the
squares indicate the positions dref,m, m = 1, . . . ,M ′ − 1
of the reference elements and the dots depict the element
positions dprot,m, m = 1, . . . ,M − M ′ + 1 of the proto-
type array. Each reference element is assumed to be directly
connected to a distinct receiver channel, while the elements
of the prototype are assumed to be connected to a single
receiver channel through a switch. We propose the following
rules for constructing an array, whose signals are amenable to
the proposed pre-processing technique:
R1) The reference elements (squares in Fig. 2a) are not

located in the array center and do not coincide with an
element position of the prototype array.

R2) The prototype array (dots in Fig. 2a) is centrosymmetric.
Then the proposed array model is obtained by first computing
the co-array signals rv ∈ CM ′2 at each switch position v from
the covariance matrix Rv . Assuming wide-sense stationary
source signals sq and additive noise w, the signal σ2

q and
noise σ2

w powers do not vary with time and the signals rv
from each switch position can be treated as if taken at the
same time instant. Therefore the co-array signal samples rv
can be conveniently collected into a single column

r =
(
rT

1 , r
T
2 , . . . , r

T
V

)T
= Acombined,cop+ σ2

w

(
iTM ′ , . . . , i

T
M ′

)T

. (18)
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Now, the received signal r ∈ CV ·M ′2 can be alternatively
modeled by an equivalent array with the transfer matrix
Acombined,co ∈ CV ·M ′2×Q, that combines all co-arrays from
each switch position. The resulting geometry is schematically
depicted in Fig. 2b. Since the element positions of the co-
array solely depend on the differences of the physical element
positions (13), two spatially shifted copies of the prototype
array can be found in the combined co-array for each reference
element, centered around dref,m and −dref,m. Therefore, the
combined co-array exhibits a total of L = 2(M ′ − 1) shifted
copies with the corresponding selection matrices Bl, l =
1, . . . , L such that the signals yl represent the output of the
l-th copy of the prototype array:

yl = Blr

= AprotDlp, (19)

Dl = diag
(

ej 2πλ ∆T
l e(θ1), . . . , ej 2πλ ∆T

l e(θQ)
)
, (20)

where ∆l = (∆x,l,∆y,l,∆z,l)
T is the spatial shift of the l-th

(virtual) copy and Aprot is the transfer matrix of the prototype
array. Using the ceiling function for m = d l2e, the following
relationship for the spatial shift can be found

∆l =

{
+dref,d l2 e

l even,

−dref,d l2 e
l odd.

(21)

It is worth noting, that when selecting the unique rows
corresponding to the copies of the prototype array, any con-
tribution of the noise disappears (19). This is due to the fact,
that the vector iM only has non-zero entries in the rows that
correspond to the virtual array elements located in the origin.
Following the proposed rules, the element positions of the L
spatially shifted prototype array copies will not coincide with
the origin. Nevertheless, the equivalent source signals p of the
proposed model (18) still behave like fully coherent sources.

Spatial smoothing, initially introduced by Evans et al. [14]
and as described in Section II, aims at restoring the rank of
a spatial covariance matrix of an ULA. In [15], Friedlander
and Weiss noted, that the spatial smoothing technique can be
applied to any array, that can be divided into spatially shifted
sub-arrays of the same geometry. Generally speaking, an array
is amenable to spatial smoothing, if the transfer matrix Al, l =
1, . . . , L of the l-th sub-array can be written as:

Al = ADl, (22)

which is true for the proposed array (19).
Therefore, the spatial smoothing technique can be applied

to the combined co-array array and the spatially smoothed
covariance matrix R̄yy is found from averaging the covariance
matrices of each sub-array:

R̄yy =
1

L

L∑
l=1

yly
H
l

=
1

L
Aprot

(
L∑
l=1

DlRppD
H
l

)
AH

prot. (23)

Finally, the rank of the sufficient statistics R̄yy is less or equal
to the number of sub-arrays L, regardless of the rank of the
equivalent source signal covariance matrix Rpp = ppH [15,
Appendix] and the maximum number of identifiable sources
is Q ≤ rank(R̄yy)− 1, with rank(R̄yy) = min(L,Ml).

B. Direction Finding

The well-known eigenstructure technique MUSIC can be
used to estimate the azimuth and elevation DOAs, by finding
the Q largest peaks in the MUSIC (pseudo) spectrum

fMUSIC(α, ε) =
1

aH
prot(α, ε)UnU

H
n aprot(α, ε)

, (24)

where Un is the noise subspace obtained from the sample
covariance matrix R̄yy, as described in [13]. Furthermore,
aprot is the conventional array transfer vector, as defined in
(3) where dm are replaced by the element positions of the pro-
totype array dprot,m. In Fig. 2a, the element positions dprot,m

are schematically depicted by blue dots and resemble the
geometry of a uniform circular array (UCA) of size M = 14.

In contrast to the proposed MUSIC estimator (24), existing
DOA estimators for time-multiplexed receiver systems often
rely on a cost function, where the spatial covariance matrices
Rv , computed at each switch position v = 1, . . . , V , enter
directly. Especially the MVDR beamformer [4], combines the
data from each switch position incoherently:

fMVDR(α, ε) =
1∑V

v=1 a
H
v (α, ε)R−1

v av(α, ε)
. (25)

Similarly to (25), the MLE [1] incorporates the covariance
matrices Rv in a single cost function that allows to estimate
the DOA angles of all sources jointly.

IV. SIMULATION RESULTS

This section summarizes the results of our numerical ex-
periments, that were conducted to quantify the accuracy and
resolution capabilities of the newly formed array model.
For the simulations, a physical array geometry as shown
in Fig. 2a, i.e. two reference elements and a uniform cir-
cular prototype array with M = 14 elements requiring a
total of M ′ = 3 receiver channels, were assumed. Overall
Q = 3 far-field sources impinging from the DOAs (αq, εq) ∈
{(−112◦, 31◦), (141◦, 43◦), (46◦, 45◦)} were simulated.

A. Direction Finding Accuracy

The root-mean-square error (RMSE) of the estimated direc-
tions of arrival (α̂, ε̂) was assessed for the three previously
introduced estimators, i.e. the MVDR beamformer [4], the
GLS estimator [1] and the proposed MUSIC estimator (24)
and compared to the CRLB derived in [1]. A total of 250
independent trials were conducted using K = 200 samples for
estimating the covariance matrices Rv from the signals zv,k
at each switch position v = 1, . . . , V . Fig. 3 shows the RMSE
results for the second source located at (α2, ε2) = (141◦, 43◦).

All estimators are consistent with the CRLB, but in contrast
to the GLS, the MUSIC estimator and the MVDR beam-
former are not efficient for the studied case Q = M ′. The
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proposed and the spectral MVDR algorithm from [4], respectively.
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Fig. 4: Probability of resolution Pr for two closely spaced sources with equal power,
separated in azimuth by ∆α degrees.

MUSIC estimator shows a better performance than the MVDR
beamformer, in the sense of a lower RMSE. Moreover for
high SNR values, a saturation effect of the RMSE can be
observed for all estimators. This is to be expected and is
inherent to the problem of finding more sources than available
sensors/receiver channels, as discussed in [1] and [11].

B. Probability of Resolution

The probability of resolution was analyzed using 250 inde-
pendent numerical experiments. The angular separation ∆α in
azimuth between two sources of equal power was varied from
1−12◦. Moreover, a signal-to-noise ratio of 5 dB was assumed,
while the elevation angle ε was kept constant at 0◦. The
sources are deemed to be resolved, if the DOA estimation error
is less than half of the angular separation for both sources, i.e.
|α̂i − αi| < ∆α/2, i = 1, 2 [11].

Fig. 4 plots the probability of resolution Pr against the
angular separation ∆α. As expected, the MVDR beamformer
has the worst performance. In contrast to this, the MUSIC
estimator with the proposed pre-processing techniques is able
to resolve sources separated by 6◦ or more at 5 dB SNR.
The GLS estimator [1] offers the best resolution capabilities,
beeing able to resolve sources separated by two degrees or
more in our simulation.

V. CONCLUSION

In this paper, we have proposed a time-multiplex system
architecture and pre-processing method that allows to iden-

tify more sources than available receiver channels. The pre-
processing technique reconstructs the data of a centrosym-
metric prototype array, as if it was simultaneously sampled.
Therefore, after the pre-processing, the data is amenable
to conventional super-resolution estimators like MUSIC and
other well-known array processing techniques.

In numerical simulations, it was verified that the MUSIC
estimator using the proposed data reconstruction technique, is
consistent with the CRB and offers a better accuracy than the
considered MVDR beamformer, that incoherently processes
the data collected in each switching cycle. Moreover, as
expected, the MUSIC estimator is able to resolve closely
spaced sources very well. In contrast to the GLS/MLE, the
proposed MUSIC estimator has a lower computational com-
plexity, which is beneficial with regards to run time and power
consumption.
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mann, M. Grossmann, G. Del Galdo, and R. S. Thomä, “Design
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