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Abstract—In this paper, the recently introduced concept of
Partial Relaxation in Direction-of-Arrival (DoA) estimation [1],
[2] is extended to a new class of Partially Relaxed Fourier
Domain DoA estimation methods. The periodic cost function of
the Partially Relaxed Deterministic Maximum Likelihood and
the Partially Relaxed Weighted Subspace Fitting DoA estimation
method are approximated by means of a truncated Fourier
series expansion. The truncated Fourier series is expressed as
a polynomial and the source DoAs are estimated from its roots,
similar to root-MUSIC. Simulation results show that the proposed
Partially Relaxed Fourier Domain DoA estimation techniques
provide improved estimation accuracy over their conventional
counterparts especially in difficult scenarios with limited sample
size and low Signal-to-Noise Ratio.

I. INTRODUCTION

DoA estimation is among the most classical research topics
in signal processing with a wide field of applications including
radar, sonar, seismic exploration, electronic surveillance and
mobile communication [3]–[7]. A variety of DoA estimators
has been proposed in the literature such as high resolution
algorithms like Multiple Signal Classification (MUSIC) [8],
the minimum variance method of Capon [9] and Estimation
of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [10]. These conventional spectral search based esti-
mators treat multi-source scenarios as single source scenarios
and thereby ignore the presence of interfering sources. Hence,
the dependence between the sources is neglected which allows
to derive “low-cost” DoA estimators. However, the DoA
estimation accuracy of these “low-cost” estimators strongly
degrades in scenarios with closely spaced sources or large
number of sources where the interference power increases
[11], [12].

More recently, the Partial Relaxation (PR) framework has
been introduced in [1], [2], [13] to overcome the aforemen-
tioned drawbacks of the conventional spectral-based DoA
estimation techniques. Although, the presence of multiple
sources is considered in the PR approach the computational
demand is kept low due to a relaxation of the manifold
structure of the interfering signal part. The manifold struc-
ture of the desired signal component remains unchanged. A
closed-form solution for the relaxed undesired signal part is
computed and substituted back into the initial optimization
problem which considers multiple sources. A concentrated cost
function is obtained that considers the dependence between
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the sources and admits simple spectral-based grid search. A
computational efficient implementation of the partially relaxed
DoA estimators which has similar computational complexity
than the MUSIC DoA method can be found in [1].

A common way to further improve the estimation accuracy
of an existing DoA estimation method is to express its cost
function as a polynomial that can be rooted to estimate the
DoAs [14]. This technique was successfully used in the root-
MUSIC method which was obtained from the convention
MUSIC cost function using a Uniform Linear Array (ULA)
[15], [16]. Motivated by the performance improvement of root-
MUSIC over conventional MUSIC, a Fourier Domain (FD)
DoA estimation technique is proposed that is based on the
PR approach and allows to estimate the DoAs by rooting
a polynomial equation, similar to root-MUSIC. However, in
comparison to root-MUSIC which is limited to ULAs only,
the proposed Partially Relaxed FD DoA estimation techniques
can be applied to any array geometry. The concept of ap-
proximating periodic cost functions by means of a truncated
Fourier series was initially introduced in [17], [18] and can
also be applied to DoA estimators under the PR framework.
Simulation results reveal that the proposed Partially Relaxed
FD DoA estimators provide a substantial performance im-
provement over the conventional PR methods especially at low
Signal-to-Noise Ratios (SNRs) and in scenarios with limited
sample size.

This paper is organized as follows. The signal model is
introduced in Section II. The concept of conventional DoA
estimators is introduced in Section III followed by the PR
framework in IV. The proposed partially relaxed FD DoA
estimation methods are introduced in Section V and simu-
lation results are provided in Section VI. Finally, Section VII
concludes this paper.

II. SIGNAL MODEL

Consider a scenario with an antenna array that is equipped
with M sensors and N impinging narrowband signals where
M > N . The number of sources N is assumed to be known
and the DoAs are denoted by θ = [θ1 . . . , θN ]T. The full-rank
steering matrix A(θ) ∈ CM×N is given by

A(θ) = [a(θ1), . . . ,a(θN )],

where a(θi) ∈ CM denotes the sensor array response of the
i-th impinging signal. The transmitted source signal at time
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instant t is denoted by s(t) = [s1(t), . . . , sN (t)]T ∈ CN and
the received baseband signal x(t) ∈ CM is given by

x(t) = A(θ)s(t) + n(t), t = 1, . . . , T,

where T denotes the number of snapshots and n(t) ∈ CM the
sensor noise. The transmitted source signals and the noise are
assumed to be statistically independent zero-mean circularly
Gaussian distributed and the covariance matrix of the received
signal is given by

R = A(θ)RsA(θ)H + σ2IM , (1)

where Rs = E[s(t)s(t)H] denotes the covariance of the
transmitted signal and σ2IM the noise covariance matrix. The
covariance matrix R in (1) is unavailable in practice. Hence,
the sample covariance matrix

R̂ =
1

T

T∑
t=1

x(t)x(t)H,

is used instead. The eigenvalue decomposition of the sample
covariance matrix is given by

R̂ = ÛΛ̂Û
H

= Û sΛ̂sÛ
H

s + Û nΛ̂nÛ
H

n , (2)

where Λ̂s ∈ RN×N is a diagonal matrix containing the N -
largest eigenvalues {λ̂1, . . . , λ̂N} and Û s ∈ CM×N contains
the associated N -principal eigenvectors of the sample covari-
ance matrix R̂. Accordingly, Λ̂n ∈ R(M−N)×(M−N) and
Û n ∈ CM×(M−N) contain the (M − N)-noise eigenvalues
{λ̂M−N , . . . , λ̂M} and the associated noise eigenvectors, re-
spectively. In the following, the conventional DoA estimation
framework is introduced.

III. CONVENTIONAL DOA ESTIMATION METHODS

In the conventional Maximum Likelihood (ML) DoA esti-
mation framework, the DoAs θ of the N signals are estimated
by searching for the steering matrix A within the highly
structured non-convex sensor array manifold which is denoted
by

AN = {A|A = [a(ϑ1), . . . ,a(ϑN )], ϑ1 < · · · < ϑN}. (3)

Multi-source ML DoA estimation problems generally take the
form {

Â
}

= arg min
A∈AN

f(A), (4)

where f(A) denotes the multi-dimensional, non-convex cost
function, following e.g. the Deterministic Maximum Likeli-
hood (DML) [4] or the Weighted Subspace Fitting (WSF)
criteria [19]. Due to the existence of multiple local minima,
multi-source ML DoA estimation problems require computa-
tionally expensive multi-dimensional gird search to estimate
the DoAs [19]–[21].

A common way to reduce the computational complexity is
to find a sub-optimal solution to (4) by applying the single
source approximation method [22], [23]. Instead of searching
for the steering matrix A within the highly structured array
manifold AN of (3) only one source is considered while
the remaining “interfering” sources are neglected. Hence, the
feasible set of solutions in (4) reduces from AN to A1 and

A = a ∈ A1. Correspondingly, the dependence between the
sources is not considered in the single source approximation.
In general single source approximation optimization problems
take the form

{â} = Narg min
a∈A1

f(a),

where N arg min f(·) denotes the N arguments at which the
function f(·) attains its N -deepest separated local minima. A
computational efficient one-dimensional grid search over the
Field of View (FoV) of the sensor has to be performed in
order to estimate the DoAs. However, since only one source
is considered at a time and the dependence between the
sources is neglected the estimation accuracy of single source
approximation methods is usually worse than that of multi-
source ML DoA estimation methods (see, e.g. [6]). In the
following the PR framework is introduced which provides a
good compromise between computational efficiency and high
estimation accuracy.

IV. PARTIAL RELAXATION (PR) FRAMEWORK

In the PR framework not only the signal from the “desired”
direction is considered but also the signals from other “interfer-
ing” directions, hence the dependence between the sources is
considered [1], [2]. However, the structure of the “interfering”
signals is relaxed and the computational complexity is greatly
reduced. Instead of searching for the steering matrix in the
highly structured sensor array manifold in (3) the sensor array
manifold is partially relaxed [1], [2]

ĀN =
{
A|A = [a(ϑ),B], a(ϑ) ∈ A1, B ∈ CM×(N−1)

}
.

(5)
Only the manifold structure of the first column of the steering
matrix A is maintained which corresponds to the “desired”
direction whereas the structure of the “interfering” signals
is relaxed to an arbitrary matrix B. The DoA estimators
under the PR framework are obtained by replacing the highly
structure array manifold AN in (4) by the partially relaxed
manifold ĀN in (5)

{âPR} = Narg min
a∈A1

min
B

f([a,B]). (6)

The inner optimization problem with respect to B in (6) is
solved in closed-form and substituted back into the cost func-
tion. Afterwards, a computationally efficient one-dimensional
spectral search on a(ϑ) ∈ A1 is applied to search for the
N -deepest local minima of the concentrated cost function.
Next, the Partially Relaxed Deterministic Maximum Likeli-
hood (PR-DML) and the Partially Relaxed Weighted Subspace
Fitting (PR-WSF) DoA estimation methods are introduced.

A. Partially Relaxed Deterministic Maximum Likelihood
(PR-DML)

The PR-DML DoA estimation technique is derived by
applying the concept shown in (6) to the conventional DML
cost function [4]

{âPR-DML} = Narg min
a∈A1

min
B

tr
[
P⊥[a(ϑ),B]R̂

]
, (7)

1901



where PA = A(AHA)−1AH denotes the projection matrix
onto the subspace spanned by the columns of A and P⊥A =
IM − PA denotes the corresponding orthogonal projection
matrix. Solving the inner optimization problem in (7) with
respect to B and substituting the optimal solution for B into
the cost function we obtain the concentrated cost function [1],
[2]

fPR-DML(ϑ) =min
B

tr
[
P⊥[a(ϑ),B]R̂

]
=

M∑
k=N

λk

(
P⊥a(ϑ)R̂

)
,

(8)

where λk(·) denotes the k-th largest eigenvalue of the matrix
in the argument.

B. Partially Relaxed Weighted Subspace Fitting (PR-WSF)

Applying the PR framework to the conventional ML WSF
DoA method [19] yields

{âPR-WSF} = Narg min
a∈A1

min
B

tr
[
P⊥[a,B]Û sWÛ

H

s

]
, (9)

where W ∈ CN×N denotes a positive semidefinite weighting
matrix. It was shown in [19] that the estimation error of the
WSF DoA method asymptotically achieves the Cramer-Rao
Bound (CRB) as the number of snapshots T tends to infinity
if the weighting matrix is chosen as

W =
(
Λ̂s − σ̂2IN

)2

Λ̂
−1

s ,

where σ̂2 = 1
M−N tr[Λ̂n]. The concentrated PR-WSF cost

function is obtained by solving the inner optimization problem
in (9) with respect to B and is given by [1], [2]

fPR-WSF(ϑ) =min
B

tr
[
P⊥[a,B]Û sWÛ

H

s

]
=

M∑
k=N

λk

(
P⊥a(ϑ)Û sWÛ

H

s

)
.

(10)

Next, the proposed Partially Relaxed FD DoA estimation
technique is introduced.

V. PARTIALLY RELAXED FOURIER DOMAIN DOA
ESTIMATION METHODS

In this Section, we combine the previously introduced PR
framework [1] and the FD DoA estimation technique that
was introduced in [17]. Two novel Partially Relaxed FD DoA
estimators are introduced that allow to estimate the DoAs by
rooting a polynomial equation, similar to root-MUSIC [15].
It can be observed that the PR-DML and the PR-WSF cost
function in (8) and (10) are periodic in ϑ with the period 2π.
The 2π-periodicity allows to equivalently express both cost
function using a Fourier series expansion

f(ϑ) =

∞∑
m=−∞

Fme
jmϑ, (11)

where f(ϑ) denotes a generic 2π-periodic cost function and
the Fourier series coefficients are given by

Fm =
1

2π

∫ π

−π
f(ϑ)e−jmϑdϑ. (12)

The generic cost function f(ϑ) can be approximated by
truncating the Fourier series in (11) to 2ND − 1 points [17],
[18] according to

f(ϑ) '
ND−1∑

m=−(ND−1)

Fme
jmϑ , f̃(ϑ). (13)

Using z = ejϑ the truncated Fourier series in (13) can be
expressed as a polynomial in z

f̃(ϑ) =

ND−1∑
m=−(ND−1)

Fmz
m , f̃(z).

The Fourier series coefficients Fm for m = −(ND −
1), . . . , (ND − 1) in (12) can be approximated using the
Discrete Fourier Transform (DFT) [17], [18]

Fm '
1

2π

ND−1∑
l=−(ND−1)

f(l∆ϑ)e−jml∆ϑ∆ϑ , F̂m, (14)

where ∆ϑ = 2π/(2ND − 1). The use of the DFT in (14)
allows to compute the Fourier coefficients in a computa-
tionally efficient way. However, due to aliasing effects that
are introduced by sampling the cost function f(l∆ϑ) for
l = −(ND−1), . . . , (ND−1) in (14), the obtained coefficients
F̂m will be different from those in (12). With this we can
approximated the 2π-periodic generic cost function f(ϑ) using
a FD polynomial of degree 2ND − 2 [17], [18]

f̃(z) '
ND−1∑

m=−(ND−1)

F̂mz
m , f̂(z) (15)

=

ND−1∑
m=−(ND−1)

F̂me
jmϑ , f̂(ϑ). (16)

In order to estimate the DoAs by rooting the polynomial
equation f̂(z) in (15) the cost function f(ϑ) has to satisfy
limT→∞ f(ϑ) ≥ 0 where equality holds iff ϑ ∈ {θ1, . . . , θN}.
This condition is a necessary condition for the unbiasedness
of the FD estimator as the number of snapshots T tends
to infinity. Whereas the PR-WSF cost function in (10) ful-
fills this condition by default, the PR-DML cost function
in (8) converges to limT→∞ fPR-DML(ϑ) = (M − N)σ2 for
ϑ ∈ {θ1, . . . , θN}. Therefore, we replace the PR-DML cost
function in (8) with

gPR-DML(ϑ) = fPR-DML(ϑ)− tr
[
Λ̂n

]
, (17)

such that limT→∞ gPR-DML(ϑ) = 0 for ϑ ∈ {θ1, . . . , θN}. We
remark that the local minima of the cost function gPR-DML(ϑ)
in (17) are identical to the ones of the cost function fPR-DML(ϑ)
in (8). However, due to the aforementioned unbiasedness con-
dition, the FD method applied on the corrected cost function
gPR-DML(ϑ) in (17) is unbiased. On the other hand, direct
application of the FD method on the cost function fPR-DML(ϑ)
in (8) results in a biased-estimator.

The roots of the FD polynomial in (15) appear in two differ-
ent groups of root pairs. The first group of root pairs contains
the root pairs that lie exactly on the unit circle and are caused
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by two sign changes of f̂(ϑ) in (16). Although the modified
PR-DML cost function gPR-DML(ϑ) in (17) and the PR-WSF
cost function fPR-WSF(ϑ) in (10) are both non-negative func-
tions by definition their corresponding FD approximation in
(16) may take values that are slightly below zero in some
of its minima [17]. This is due to the approximation error
made by truncating the Fourier series and the aliasing effects
that are introduced by using the DFT to compute the Fourier
coefficients. As a direct consequence, each pair of roots of
the polynomial f̂(z) in (15) that corresponds to a point where
f̂(ϑ) in (16) takes values smaller than zero (changes its sign
twice) will lie exactly on the unit circle.

The second group of root pairs contains the roots that appear
in conjugate reciprocal pairs and do not lie on the unit circle.
It was shown in [17] that the polynomial f̂(z) in (15) satisfies
the so-called conjugate reciprocity property which states the
following. Assuming that z0 is a root of f̂(z) in (15) that does
not lie exactly on the unit circle, then 1/z∗0 is a root of the
polynomial as well.

The procedure that is used to estimate the DoAs from the
roots of the polynomial equation f̂(z) in (15) is as follows
[17]:
• Step 1: Take the root that is closest to the unit circle.
• Step 2: Assign the root to one of the groups by verifying

if its conjugate reciprocal value is a root as well.
• Step 3: If the root belongs to the first group, the corre-

sponding DoA is estimated by taking the average of this
root and its closest neighbor. Drop both roots and go to
step 5.

• Step 4: If the root belongs to the second group, then use
it to estimate the DoA. Drop this root and its conjugate
reciprocal.

• Step 5: If fewer than N DoAs have been estimate, then
go to step 1. Otherwise, stop.

In the following simulation results are provided.

VI. SIMULATION RESULTS

In this Section, simulation results of the Root-Mean-
Squared-Error (RMSE) performance of different DoA estima-
tors are compared to the stochastic CRB [24]. All simulations
are conducted for NR = 4000 independent Monte Carlo trials.
The RMSE is used as performance indicator and computed as

RMSE =

√√√√ 1

NRN

NR∑
r=1

N∑
n=1

(
θ̂

(r)
n − θn

)2

,

where both the estimated DoAs θ̂
(r)

= [θ̂
(r)
1 , . . . , θ̂

(r)
N ]T and

the true DoAs θ = [θ1, . . . , θN ]T are sorted in ascending
order. A ULA with M = 10 antennas is considered. The ULA
describes a special case as the PR cost functions in (17) and
(10) are periodic in ϑ with period π. Hence, only the roots
that lie within −π/2 and π/2 are considered. Furthermore,
we consider N = 2 uncorrelated sources at θ = [40◦, 50◦]T.
The transmitted signals are statistically independent with zero-
mean and unit power and the SNR is given by SNR = 1/σ2.
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Fig. 1. Uncorrelated sources, number of snapshots T = 40

The cost functions of the PR-DML, the PR-WSF and the con-
ventional MUSIC method are approximated by a polynomial
of order 2ND−2 where ND = 70. We remark that due to the π-
periodicity of the PR cost functions for ULAs, the polynomial
order can be reduced to half of its size if the polynomial is used
to approximate only one period of the cost function instead of
two.

In Figure 1 the RMSE performance is investigated for
different SNRs and T = 40 snapshots. It can be seen that both
proposed methods FD-PR-DML and FD-PR-WSF outperform
their spectral search based counterparts in terms of RMSE
performance. Furthermore, both proposed methods provide
better RMSE performance than conventional MUSIC, FD-
MUSIC and root-MUSIC. Note that the threshold of the FD-
PR-DML and the FD-PR-WSF method occurs at an even lower
SNR than the one of root-MUSIC.

In Figure 2 the same scenario is considered with only
T = 15 snapshots. Again, both proposed PR FD DoA
estimators show improved RMSE performance and outperform
their spectral search based counterparts. The proposed DoA es-
timators show enhanced threshold performance in comparison
to the FD-MUSIC and the root-MUSIC method.

In Figure 3 the RMSE is investigated for a fixed SNR of
−6dB and different numbers of snapshots. It can be observed
that both proposed FD PR DoA estimation methods are supe-
rior to their spectral search based counterparts PR-DML and
PR-WSF as they provide better RMSE performance especially
in the smaller sample size region.

VII. CONCLUSION

In this paper, we have extended the class of PR DoA
estimation methods by introducing two novel Partially Re-
laxed FD DoA estimation methods that allow to estimate the
DoAs by rooting a polynomial equation. Both proposed FD
DoA methods, the FD-PR-DML and the FD-PR-WSF exploit
the 2π-periodicity of the corresponding spectral-based DoA
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Fig. 3. Uncorrelated sources, SNR = −6dB

estimators. A truncated Fourier series expansion was used to
approximate the PR-DML and the PR-WSF cost function and
was reformulated as polynomial. Simulations have shown that
the proposed Partially Relaxed FD DoA estimators provide
RMSE performance that is superior to their spectral search
based counterparts and root-MUSIC. Furthermore, the pro-
posed Partially Relaxed FD methods are applicable to any type
of array geometry whereas root-MUSIC is only applicable in
case a ULA is used.
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