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Abstract—This paper presents a new extended nested array
geometry with enhanced degrees-of-freedom (DOFs) and a hole-
free difference coarray for Direction-of-Arrival (DOA) estimation
applications. The array is developed by distributing the sensor
of the dense section of the nested array to the nested array’s
outer subarray while retaining a hole-free difference coarray. The
rendered extended nested array has enhanced array aperture and
a hole-free difference coarray compared to most existing nested
array configurations. Moreover, the proposed array has a closed-
form expression for array sensor location and reduced mutual
coupling due to sparsely located sensors. Numerical simulations
show that the proposed array offers improved DOA estimation
resolution than other conventional sparse arrays due to the
enhanced aperture.

Index Terms—Nested array, sparse arrays, direction-of-arrival
estimation, extended aperture, difference coarray.

I. INTRODUCTION

Direction-of-Arrival (DOA) estimation is one of the useful
techniques in the array signal processing field for detection and
localization of array input signals [1]–[2]. Hence, it has a wide
range of applications in sonar, automotive radar, imaging, and
wireless communication systems [3]. Conventionally, uniform
linear arrays (ULAs) are commonly used, where the sensors
are placed at a half-wavelength from each other to avoid spatial
aliasing. However, ULAs have limited degrees of freedom
(DOFs) such that given M sensors, ULA can resolve up to
M−1 sources. Moreover, they suffer from the mutual coupling
between sensors owing to the closely spaced sensors [5].

To circumvent the above issues, non-uniform arrays (also
known as sparse arrays) have become more attractive than con-
ventional ULAs for several reasons. Firstly, in the view of the
difference coarray (DCA) concept, sparse arrays can achieve
enhanced DOFs and resolve more uncorrelated sources than
the number of sensors [5]. Secondly, the larger interelement
spacing between sparse arrays sensors enables them to reduce
the mutual coupling effect between sensors compared to their
conventional ULA counterparts [3]–[6].

The common prototype sparse arrays include minimum
redundancy arrays (MRAs) [3], minimum hole arrays (MHAs)
[4], coprime arrays (CAs) [5] and nested linear arrays (NAs)
[6]. However, despite having some of the properties of sparse
arrays, these sparse arrays have limitations. The MRAs and
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MHAs lack closed-form expressions for sensor location [5]–
[6]. Also, coprime arrays have holes in their DCA. Hence,
the realized DOFs are lower than in MRAs, and NAs [6].
Furthermore, NAs exhibit severe mutual coupling effect due
to the existence of a dense uniformly spaced subarray [7].

Recently, motivated by limitations of the prototype sparse
arrays, i.e., NAs and CAs, several modifications aiming to
enhance the DOFs and reduce mutual coupling effect have
been proposed [8]. Some of NA’s and CA’s variants that
have been proposed include super nested array (SNA) [7],
generalized nested array (GNA) [9], generalized coprime array
(GCA) [10], thinned coprime array (TCA) [11], augmented
nested array (ANA) [12], enhanced nested array (ENA) [13],
improved nested array (INA) [14], Iizuka NA [15], sparse
array with maximum interelement spacing constraint (MISC)
[16] and one-side extended nested array (OS-ENA) [17].
Nonetheless, some variant arrays, such as SNA, share the same
DOFs or less with the parent arrays. Additionally, INA and
ENA still retains the prototype NA’s dense subarray and suffer
severe mutual coupling effects. Moreover, the DCA of sparse
arrays such as GCA, GNA, and TCPA, are not hole-free. As a
result, they have small DOFs compared to their parent arrays.

This paper proposes an enhanced nested array with multiple
subarrays (ENAMS) with enhanced DOFs and reduced mutual
coupling. The ENAMS array is designed by splitting the
nested array into several sparse subarrays with different sensor
separations. The sparse sensor separation enables ENAMS to
possess enhanced DOFs and reduced mutual coupling com-
pared to NA, ENA, and INA with the same number of sensors.
More importantly, the ENAMS array enjoys all the nested
array’s desired properties, such as hole-free difference coarray
and closed-form expression, to determine sensor locations.
Numerical simulations and theoretical analysis are used to
demonstrate the superiority of the proposed sparse array.
The results show that the proposed array has superior DOA
estimation performance than other conventional sparse arrays
through simulations.
Notations: Throughout the paper, we use lower-case and

upper-case bold characters to denote vectors and matrices,
respectively, i.e., IK represents the K × K identity matrix.
Operators (·)T and (·)H stand for transpose and the conjugate
transpose of a vector or matrix in that order. And, vec(·) de-
notes vectorization operator and diag(·) represents a diagonal
matrix. Moreover, ⊗ and E

[
·
]

denote the Kronecker product
and statistical expectation operator respectively.
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II. PRELIMINARIES

A. Array Signal Model

Assume that K uncorrelated narrowband sources from far
field directions θ1, θ2, ..., θk, for k = 1, 2, ...,K impinge
on a M−element sparse linear array. Then, in the pres-
ence of mutual coupling the received signal vector x(t) =
[x1(t), x2(t), · · · , xM (t)]T at t−th snapshot can be expressed
as

x(t) = CA(θ)s(t) + n(t), (1)

where s(t) = [s1(t), s2(t), · · · , sK(t)]T and n(t) are the
source signal and the noise vector respectively. And, A =
[a(θ1),a(θ2), . . . ,a(θK)] is the array manifold whose k-th
source steering vector a(θk) can be expressed as

a(θk) = [1, ejd2κ sin(θk), . . . , ejdMκ sin(θk)]T , (2)

where κ = 2π/λ, and λ is the carrier’s frequency wavelength.
The matrix C is mutual coupling matrix which can be approx-
imated by a B-banded mode [7]

C =

{
c|d1−d2|, |d1 − d2| ≤ B
0, |d1 − d2| > B

(3)

which satisfies 1 = c0 > |c1| > |c2| > · · · > |cB |.
Thus, assuming that the signals and the noise are uncorrelated
spatially and temporally, the covariance matrix of (1) can be
expressed as

Rx = E
[
x(t)xH(t)

]
= CARsA

HCH + σ2
nIM , (4)

where Rs = diag([ρ21, ρ
2
2, . . . , ρ

2
K ]) with ρ2k and σ2

n being
signal and noise powers respectively [16]. In practical, the
sampled snapshots are limited as such (4) can be approximated
as

R̃x =
1

T

T∑
t=1

x(t)xH(t). (5)

B. Difference Co-array

Following [6] –[16], vectorizing (4) yields

y = vec(Rx) = C̃ÃQ + σ2
nI, (6)

where C̃ = (C∗ ⊗ C), Ã = [ã(θ1), ã(θ2), . . . , ã(θK)] is
the extended virtual array manifold with ã(θk) = (a(θk)

∗ ⊗
a(θk)) denoting the virtual steering vector. In other words,
Ã can be regarded as a difference coarray. Additionally, Q
represents the equavalent signal vector, y becomes the new
received signal vector and I = vec(IM ).

Definition 1. (Difference Coarray): Given a sparse array Zp,
the difference coarray [7] of Zp is defined as

Dp = {d1 − d2|d1, d2 ∈ Zp}. (7)

Definition 2. (Uniform DOF): Given a sparse array Zp, the
number of elements in the consecutive segment of its difference
coarray Dp is known as “Uniform DOF,” i.e., uDOF [14].

This implies that the number of uncorrelated sources that
any subspace method i.e., coarray MUSIC [18], can resolve is
up to (uDOF − 1)/2 [17].

Definition 3. (Weight Function): The weight function w(m)
of a sparse array Zp is the pair of sensors that contributes to
coarray index m [7], i.e.,

w(m) = |{(d1, d2) ∈ Z2|d1 − d2 = m}|,m ∈ Dp. (8)

In the subsequent sections, we will use the definitions above
to evaluate the qualities of the proposed array.

III. EXTENDED NESTED ARRAY WITH MULTIPLE
SUBARRAYS

This section presents an extended nested array with multiple
subarrays and its main properties considering the maximum
achievable DOFs and mutual coupling effect. The comparisons
between ENAMS and other existing sparse arrays are also
given.

Definition 4. For a pair of integers M1 ≥ 4 and M2 ≥ 2, the
configuration of the ENAMS array can be defined as

Zp = Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 (9)

where

Z1 = {1 + (`1 − 1)|`1 = 1, 2, · · · ,M1 − 2},
Z2 = M1 + 1,

Z3 = {2M1 + `2(M1 + 1)|`2 = 0, 1, · · · ,M2 − 2},
Z4 = M2(M1 + 1),

Z5 = M2(M1 + 1) +M1 − 2.

To appreciate the construction of the proposed array, let us
consider a nested array shown in Fig. 1 (a). The nested array
consists of two connected ULAs with different interelement
spacing. The first ULA consists of M1 elements with a unit
interelement spacing λ/2 and the second ULA comprises of
M2 elements with the interelement spacing of (M1 + 1)λ/2
[6]. For simplicity, henceforth we normalize λ/2 to 1.

Based on the structure of nested array, the proposed array
is characterized by (9) where subarrays Z1, Z2, and Z4

are constructed by splitting the dense-ULA of nested array
whereas subarrays Z3 and Z5 are developed from the sparse-
ULA of NA. In particular, Z1 consists of (M1 − 2) sensors
with a unit spacing, Z2 and Z4 each contains a single sensor
at locations (M1 + 1) and M2(M1 + 1) respectively. For the
remaining sets, Z3 comprises of (M2 − 1) sensors placed at
a spacing of M1 from each other and the remaining sensor of
M2 is placed at M2(M1 + 1) +M1 − 2 as set Z5.

In order to verify the validity of (9), let us consider a
formulation using M1 = 4 and M2 = 6. Then, the definition in
(9) renders Z1 = {1, 2}, Z2 = {5}, Z3 = {8, 13, 18, 22, 28},
Z4 = {30} and Z5 = {32} thereby yielding a sparse array as
shown in Fig. 1 (b).

The proposed ENAMS array defined in (9) has the following
properties:
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(a)

1

M1 + 1

Sparse ULA, M2 sensors

Dense ULA, M1 sensors

1 2 3 4 5 6 12 18 24 307 8 9 10 11 13 14 15 16 17 19 20 21 22 23 26 26 27 28 29

(b)

1

M1

Sparse ULA, M2 − 1 sensors

M1 + 1 M2(M1 + 1)

M2(M1 + 1) +M2 − 2
Dense ULA, M1 − 2 sensors

1 2 5 8 13 18 23 28 30 324 4 6 7 9 10 11 12 14 15 16 17 19 20 21 22 24 26 26 27 29 31

Fig. 1: Sparse array configuration of (a) nested array with M1 = M2 = 5 and (b) proposed ENAMS array with M1 = 4 and
M2 = 6. The bullets and crosses denote physical sensors and empty spaces respectively.

TABLE I: Optimal Solution for ENAMS Configuration

M Optimal, M1,M2 Maximum uDOF

Even M1 = M2 = M/2 M2/2 + 2M − 1

Odd
M1 = (M − 1)/2 M2/2 + 2M − 4.5

M2 = (M + 1)/2

Proposition 1. For M1 ≥ 4 and M2 ≥ 2, the DCA of the
proposed array is hole-free.

Proof. The proof of Proposition 1 is shown in Appendix A.

Proposition 2. For a given number M = M1 + M2, the
ENAMS array achieves maximum uDOF of M2/2+2M −1.

Proof. As described in Proposition 1, the DCA of the ENAMS
array is hole-free and ranges from −(M2(M1 + 1) +M2− 3)
to M2(M1 + 1) +M2 − 3, i.e.,

Dp = {−(M2(M1 + 1) +M2 − 3), . . . ,

− 2,−1, 0, 1, 2, . . . ,M2(M1 + 1) +M2 − 3} . (10)

Since, DCA is symmetric about zero, the one-side consecutive
DOFs are du = M2(M1 + 1) + M2 − 3. Then, the whole
consecutive DOFs are D = 2du+1 = 2M2(M1+1)+2M2−5.
As such, maximum DOFs under the constraint of number of
M = M1 + M2 can be cast as the following optimization
problem:

max
M1,M2

D = 2M2(M1 + 1) + 2M2 − 5

subject to M = M1 +M2

(11)

Problem (11) can be solved using arithmetic mean-geometric
mean inequalities, and the solution is summarized in Table
I.

Remark: Thus, for optimal number of M1 and M2 the
proposed array has four more DOFs than nested and super
nested array. However, the opposite is true in a case of
ENAMS and minimum redanducy array.

Considering weight functions, the first three functions–
w(1), w(2) and w(3), contribute considerably to mutual cou-
pling effects. Hence, the robustness of a sparse array to mutual
coupling can be judged based on these weight functions’
values. The smaller the values of the three weight functions,
the lower the mutual coupling effect and vice versa [8]. And,
for M1 ≥ 4 and M2 ≥ 2 the proposed array satisfies the
following weight functions

w(1) = M1 − 3, w(2) = 3 and w(3) = 2. (12)

In contrast, the first three weight functions of the nested array
are

w(1) = M1, w(2) = M1 − 1 and w(3) = M1 − 2.
(13)

and those of super nested array include

w(1) =

{
1, if M1 is even
2, if M1 is odd

(14)

w(2) =

{
M1 − 3, if M1 is even
M1 − 1, if M1 is odd

(15)

w(3) =


3, if M1 = 4, 6,

4, if M1 is even (M1 ≥ 8),

1, if M1 is odd.
(16)

Comparing the weight function values of the ENAMS array
with those of nested arrays and super nested arrays, the
proposed array has reduced weights than nested arrays and
comparable to those of super nested arrays as demonstrated in
(12)–(16).

IV. NUMERICAL EXAMPLES

In this section, we conduct simulations to compare the pro-
posed array’s performance with that of the nested array, super
nested array, and minimum redundancy array (benchmark). For
the nested array and the super nested array, we set M1 = 4 and
M2 = 6 and M1 = 5 and M2 = 5 respectively. Furthermore,
for the minimum redundancy array, we set M = 10. The
sensor location of the super nested array (Zsna) and minimum
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(a) Nested (b) Super Nested (c) Proposed (d) MRA
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Fig. 2: Weight functions and MUSIC spectra P (θ̄) comparison among (a) nested arrays, (b) super nested arrays, (c) proposed
array and (c) MRA in the presence of mutual coupling. The spectra is computed under M = 10, SNR = 0 dB, 500 snapshots
and K = 27 sources marked by ticks on the θ̄ axis.

redundancy array (Zmra) are listed below (except for those of
nested array and ENAMS which are shown in Fig. 1(a) and
(b) respectively).

Zsna = [1, 3, 5, 8, 12, 18, 24, 29, 30],

Zmra = [1, 2, 5, 11, 17, 23, 29, 31, 34, 36].
(17)

In the first example, we evaluate the proposed array proper-
ties in comparison to other sparse arrays. The weight functions
associated with various array configurations are shown in the
first row of Fig. 2. It can be observed that all the arrays exhibit
no holes in their DCAs, and the proposed array has four more
DOFs than the nested and super nested array. The results are in
line with propositions 1 and 2. Hence, the proposed array can
resolve more sources than the nested and super nested arrays.
Moreover, weight functions w(1) of nested, super nested array,
MRA, and the proposed array are 4, 1, 1, and 1 in that order.
Hence, the proposed array shares reduced mutual coupling
property with super nested array and MRA.

In the second example, we compare the MUSIC spectra
P (θ̄) of DOA estimation of various array configurations as
shown in the second row of Fig. 2. In this example, we assume
0 dB SNR, 500 Snapshots and K = 27 uncorrelated sources,
located at θ̄k = −0.2 + 0.5(k − 1)/26 for k = 1, 2, · · · , 27.
Furthermore, we assume the signal model in (6) with the fol-
lowing mutual coupling parameters: c1 = 0.3ejπ/3, B = 100
and cl = c1e

jπ(l−1)/8/l for 1 ≤ l ≤ B. It can be observed
that only the MRA and proposed array resolved all sources
correctly whereas the nested and super nested array show false

peaks. The bahavior of super nested array in this case can be
attributed to limited DOFs.

In the third and last example, we evaluate the perfor-
mance of the arrays quantitatively using root-mean-square-
error (RMSE) of DOA estimation, which can be defined as
an average over η of trials:

RMSE =

√√√√ 1

ηK

η∑
i=1

K∑
k=1

(˜̄θik − θ̄k)2, (18)

where ˜̄θik denotes i−th estimated normalized DOA for i−th
trial and θ̄k is the true normalized DOA. Figure 3 illustrates
the RMSE performance as a function of SNR and number
of snapshots where 1000 trials are used. It can be observed
that the performance of ENAMS improves with both SNR
and number of snapshots compared to other sparse arrays
except for MRA. The MRA outperform all arrays due to large
aperture and sparserness. Nonetheless, the proposed array has
improved performance compared to nested and super nested
array due to enhanced DOFs.

V. CONCLUSION

This paper presented a new extended nested array geometry
with multiple subarrays that provides enhanced DOFs and a
hole-free difference coarray. The proposed array is designed
to further distribute sensors within the outer subarray of a
conventional nested array. The realized sparse array provides
high-resolution DOA estimation compared to the conventional
nested array and other well-known sparse arrays.
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Fig. 3: Comparison of RMSE of DOA estimation among
nested arrays, super nested arrays, proposed array and MRA
in the presence of mutual coupling. The RMSE is computed
under (left) −20 ∼ 10 dB SNR with 500 snapshots and (right)
100 ∼ 600 snapshots with 0 dB SNR.

APPENDIX A: PROOF OF PROPOSITION 1

Based on (10), a lag d satisfies −M2(M1+)−M2+3 ≤ p ≤
M2(M1+) +M2−3 for M1 ≥ 4 and M2 ≥ 2. Moreover, due
to symmetric structure of the DCA, the following statements
hold:

i) If d belongs in the coarray, then its mirror, i.e., −d is
also in the same coarray.

ii) The first sensor or self-difference of any one of the
physical sensors contributes to lag d = 0.

As a result, it suffices to evaluate the scenario that 1 ≤ d ≤
M2(M1+) +M2 − 3. To that end, we consider the following
cases.

a) If 1 ≤ d ≤ M1 + 1, d can be expressed as a difference
between set Z2 and Z1, i.e., α1 = diff(Z2,Z1). Namely,

α1 = {(M1 + 1)} − {0, 1, . . . ,M1 − 3},
= {0, 1, 2, · · · ,M1,M1 + 1}. (19)

b) If M1 + 1 ≤ d ≤ 2M1 + q(M1 + 1) where q =
0, 1, . . . ,M2−2, we can check first on α2 = diff((2M1+
q(M1 + 1),Z1)

α2 = {2M1 + q(M1 + 1)} − {0, 1, . . . ,M1 − 2}

=
[(
{2M1} − {0, 1, . . . ,M1 − 2}

)
, . . . ,(

{2M1 + q(M1 + 1)} − {0, . . . ,M1 − 2}
)]
.

(20)

Thus, (20) accounts for all lags between M1 + 1 ≤ d ≤
2M1 + q(M1 + 1) and the rest of the lags can be easily
filled by diff(Z3,Z2), (Z4,Z3), (Z5,Z3), (Z4,Z2) and
(Z5,Z2).

c) If 2M1 + (M − 2)(M1 + 1) ≤ d ≤M2(M1 + 1), we can
consider set α3 = diff(Z4,Z1) which is equivalent to

α3 = {M2(M1 + 1)} − {0, 1, . . . ,M1 − 3},
= {M2(M1 + 1)− (M1 − 3), · · · ,

M2(M1 + 1)− 1,M2(M1 + 1)} . (21)

d) If M2(M1 + 1) ≤ d ≤ M2(M1 + 1) + M1 − 3, we
can check on a difference set between Z5 and Z1, i.e.,
α4 = diff(Z5,Z1) which is equivalent to

α4 = {M2(M1 + 1) +M1 − 3} − {0, 1, . . . ,M1 − 3},
= {M2(M1 + 1),M2(M1 + 1) + (M1 − 2), · · · ,

M2(M1 + 1) +M1 − 3} . (22)

In general, the union of all the sets (19)-(22) and its counter-
part set cover the consecutive integers from −(M2(M1 +1)−
M2 + 3) to M2(M1 + 1) +M2− 3, i.e., the DCA is hole-free.
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