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Abstract—In this paper we propose a novel technique to
estimate the parameters of two Gaussian envelope oscillatory
signals, with the same time-locations and oscillatory frequencies
but possibly different phases. The phase difference and the length
of the Gaussian envelope are estimated directly from the slopes
of the corresponding cross-spectrogram reassignment vectors.
Including the phase difference and the envelope length in the
scaled reassignment of the cross-spectrogram will give a perfectly
concentrated time-frequency spectrum where the location of the
maximum gives estimates of the time and oscillatory frequency
parameters. The proposed method is evaluated for different SNRs
and is also compared to state-of-the-art techniques for phase
estimation of oscillatory electrical activity measured from the
brain.

Index Terms—time-frequency reassignment, oscillating tran-
sient signals, parameter estimation, phase estimation, EEG

I. INTRODUCTION

The use of time-frequency (TF) methods has increased
in many application areas, where signals often are multi-
component and non-stationary, e.g. vibration analysis, radar
detection, geophysics, and medicine. Most methods aim at
increased concentration of components and suppression of
cross-terms using the quadratic class of TF representations
[1]. In recent years, most focus has been directed to instanta-
neous frequency estimation of linear and non-linear frequency
modulated signals. In this area, numerous methods have been
proposed with different treatment of the TF representation, e.g.
eigenvector decomposition [2], image enhancement [3], and
compressed sensing [4], [5]. The TF reassignment [6], and
the related invertible synchrosqueezing [7], two well known
techniques for sharpening the TF representation, have also
been further developed e.g. [8]–[10].

For short oscillating transient signals we have recently
invented novel techniques and corresponding underlying the-
ory. We have shown that a Gaussian envelope oscillatory
signal can achieve perfect time- and frequency localization, i.e.
localization to one single time-frequency point, using a scaled
reassignment technique, where the scaling is controlled by
the combination of the spectrogram window and the Gaussian
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envelope [11], [12]. The method has been applied for char-
acterization of transient components within the echolocation
beam of a dolphin [13], [14]. We have further shown that a
short transient of arbitrary envelope can achieve perfect time-
and frequency localization with use of the matched window in
a reassigned spectrogram [15]–[17] and explored the technique
into a phase synchronization detection method [18].

In this paper we investigate the cross-spectrogram reassign-
ment vectors and derive the formulas for estimating the set
of parameters, which is modeling Gaussian envelope transient
signal pairs. We start with a short presentation of the scaled re-
assigned spectrogram in section 2 followed by the derivation of
the cross-spectrogram reassignment in section 3. In section 4,
the performance of the proposed technique compared to state-
of-the-art estimators is evaluated, especially for estimation
of phase difference. An example of phase estimates from
transient responses in the measured electrical activity from the
brain is also given. Conclusions are presented in section 5.

II. THE SCALED REASSIGNED SPECTROGRAM
The reassigned spectrogram of the signal x(t) is defined as

RSh
x (t, ω) =

∫∫
Sh
x (s, ξ)δ(t− t̂x(s, ξ), ω − ω̂x(s, ξ))dsdξ, (1)

where δ(t, ω) is the two-dimensional Dirac impulse, integrals
run from −∞ to∞ and Shx (t, ω) = |Fhx (t, ω)|2 with the short
time Fourier transform (STFT)

Fhx (t, ω) =

∫
x(s)h∗(s− t)e−iωsds, (2)

where * denotes complex conjugate. The reassignment vectors
t̂x and ω̂x, are defined as

t̂x(t, ω) = t+ ct<
(
F thx (t, ω)

Fhx (t, ω)

)
, (3)

ω̂x(t, ω) = ω − cω=

(
F
dh
dt
x (t, ω)

Fhx (t, ω)

)
, (4)

where < and = represents real and imaginary parts, F thx (t, ω)

and F
dh
dt
x (t, ω) are the STFTs, with t ·h(t) and dh(t)/dt used

as window functions.
We define a Gaussian windowed constant frequency signal

x(t) = g(t− t0)eiω0t−φ0 , (5)
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where t0 is the time location, ω0 the oscillating frequency, φ0

the phase and

g(t) = e−
t2

2σ2 , −∞ < t <∞, (6)

is the transient envelope shape with scaling parameter σ. In
[11] we have shown that a unit energy Gaussian window with
scaling parameter λ,

h(t) = 1/(π1/4
√
λ)e−

t2

2λ2 , (7)

will result in the following reassignment vectors

t̂x(t, ω) = t− ct
(

λ2

λ2 + σ2

)
t, (8)

ω̂x(t, ω) = ω − cω
(

σ2

λ2 + σ2

)
ω. (9)

The reassigned spectrogram according to Eq. (1) will be
perfect time-frequency localized with all mass centered at time
t0 and frequency ω0 for

ct =
λ2 + σ2

λ2
, cω =

λ2 + σ2

σ2
. (10)

In general σ is unknown, and one approach suggested in
[12] estimates σ by evaluation of the resulting reassigned
spectrogram concentrations for a number of candidate σ.

III. PHASE-CORRECTED REASSIGNED
SPECTROGRAM

We now define pairs of oscillating transients with different
amplitudes and phases as

yn(t) = Ang(t− t0)eiω0t−φn n = 1, 2 (11)

The complex-valued cross-spectrogram using the window h(t)
in Eq. (7) is

Shy12(t, ω) = Fhy1(t, ω)(Fhy2(t, ω))∗, (12)

where
Fhyn(t, ω) = Ane

−iφnFhx (t, ω), (13)

which relates to x(t) as defined in Eq. (5). Example data is
seen in Figure 1a of y1(t) and y2(t) with t0 = 100, ω0 =
2π0.0625, A1 = A2 = 1 and φ2 − φ1 = π/4. The Gaussian
envelope parameter is σ = 12 and in Figure 1b the signals are
depicted with a Gaussian white noise disturbance, SNR=10
dB, where SNR is defined as the average power of the signal
within ±3σ of the envelope to the noise variance. In Figure 1c
the corresponding cross-spectrogram absolute value is depicted
using a Gaussian window with λ = 18.

We study the case when A1 = A2 = 1 and use Eq. (13)
with h(t) replaced with th(t) and dh(t)/dt respectively. We
use

F thx (t, ω) = − λ2

λ2 + σ2

(
t+ iσ2ω

)
Fhx (t, ω), (14)

and the proportionality relation

F dh/dtx (t, ω) = −(1/λ2)F thx (t, ω), (15)

Fig. 1. a) The signal pair y1(t), y2(t) with t0 = 100, ω0 = 2π0.0625,
A1 = A2 = 1 and φ2 − φ1 = π/4 and Gaussian envelope parameter
σ = 12; b) Signals in white Gaussian noise disturbance, SNR=10 dB; c)
The corresponding cross-spectrogram absolute value, for a window h(t) with
λ = 18.

derived in [11], giving the following expressions for the
suggested cross-spectrogram reassignment vectors,

F thy1
Fhy2

+
F thy2
Fhy1

= −λ
2(t+ iσ2ω)

λ2 + σ2
(ei∆φ + e−i∆φ) (16)

F
dh
dt
y1

Fhy2
+
F
dh
dt
y2

Fhy1
=

(t+ iσ2ω)

λ2 + σ2
(ei∆φ + e−i∆φ) (17)

where ∆φ = φ2−φ1 and where t and ω on the left side of the
equality are dropped for convenience. Following the general
formulation of the reassignment vectors in Eqs. (3,4) we find
that the real and imaginary parts of Eqs. (16,17) simplify into

CR(t, ω) = <

(
F thy1
Fhy2

+
F thy2
Fhy1

)
=
−2λ2

λ2 + σ2
cos(∆φ)t (18)

CI(t, ω) = =

(
F
dh
dt
y1

Fhy2
+
F
dh
dt
y2

Fhy1

)
=

2σ2

λ2 + σ2
cos(∆φ)ω, (19)

where we note that CR(t, ω) is independent of ω and CI(t, ω)
of t. We use the information from the above equations to
find an estimate of cos(∆φ) without actual knowledge of
the component length parameter σ and we define the linear
direction coefficient in t of Eq. (18) as

kt = − 2λ2

λ2 + σ2
cos(∆φ), (20)

the linear direction coefficient in ω of Eq. (19) as

kω =
2σ2

λ2 + σ2
cos(∆φ). (21)

From Eqs. (20,21) follows

−kt − kω
2

= cos(∆φ). (22)
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Fig. 2. a) CR(t, ω) and the estimated slope k̂t · t, (red line) and b) CI(t, ω)
and the estimated slope k̂ω ·ω, (red line), for the signal pair shown in Figure 1.

Estimates of kt and kω are derived from the slopes of CR(t, ω)
and CI(t, ω) in the directions t and ω respectively, close to
t0 and ω0. We use all time- and frequency values where

|Shy12(t, ω)| > max(|Shy12(t, ω)|) · ε, 0 < ε < 1, (23)

and the slopes in respective direction t and ω are derived as
the averages of the values in the perpendicular directions in
the time-frequency range defined by Eq. (23) i.e. we extract
the direction coefficients k̂t and k̂ω from

1

ω1(t)− ω0(t)

∫ ω1(t)

ω0(t)

CR(t, ω)dω = k̂t · t, (24)

1

t1(ω)− t0(ω)

∫ t1(ω)

t0(ω)

CI(t, ω)dt = k̂ω · ω. (25)

In Figure 2, we show an example from the signal pair in
Figure 1, where CR(t, ω) and CI(t, ω) are limited using
e = 0.2 in Eq. (23) and the estimated slopes k̂t · t and k̂ω · ω
are depicted with red lines. We also find

SR(t, ω) = =

(
F thy1
Fhy2
−
F thy2
Fhy1

)
=
−2λ2

λ2 + σ2
sin(∆φ)t (26)

SI(t, ω) = <

(
F
dh
dt
y1

Fhy2
− F

dh
dt
y2

Fhy1

)
=
−2σ2

λ2 + σ2
sin(∆φ)ω. (27)

The linear direction coefficients in t and ω of Eqs. (26,27) are

qt = − 2λ2

λ2 + σ2
sin(∆φ), qω = − 2σ2

λ2 + σ2
sin(∆φ), (28)

and

−qt + qω
2

= sin(∆φ). (29)

Estimates of qt and qω are found in a similar way as for k̂t
and k̂ω and the final phase estimate is found as

∆φ̂ = atan

(
−(q̂t + q̂ω)

−(k̂t − k̂ω)

)
. (30)

To perform a scaled reassigned spectrogram from the re-
assignment vectors in Eq. (10) we also need the component
length parameter σ. We rely on the following formulation

σ̂ = λ

√√√√1

2

(
q̂ω
q̂t
− k̂ω

k̂t

)
, (31)

derived from Eqs. (20,21,28), where the window parameter λ
is known. The scaled reassignment parameters ct and cω can
now be calculated as defined in Eq. (10) with an estimate of σ.
To derive a reassigned cross-spectrogram we also correct for
the phase-difference ∆φ in the reassignment vectors according
to

t̂y12(t, ω) = t+ ct<

(
ei∆φ

F thy1 (t, ω)

Fhy2(t, ω)

)
, (32)

ω̂y12(t, ω) = ω − cω=

(
ei∆φ

F
dh
dt
y1 (t, ω)

Fhy2(t, ω)

)
, (33)

resulting in the phase-corrected reassigned spectrogram
(PCRS),

PSh
y12(t, ω) =

∫∫
|Sh

y12(s, ξ)|δ(t− t̂y12(s, ξ), ω−ω̂y12(s, ξ))dsdξ.

(34)
The parameters t0 and ω0 can be estimated from the time- and
frequency locations of the peak. We also note that with use
of the estimated σ, the usual scaled reassigned spectrograms
from each signal y1(t) and y2(t) can be computed from Eq. (1)
with the scaled reassignment parameters from Eq. (10).

IV. EVALUATION

A. Evaluation for different window lengths

We simulate real-valued transient oscillating signals y1(t)
and y2(t), t = 0 . . . 199, with Gaussian envelope shapes,
σ = 12, as presented in Figure 1a. All signals have t0 = 100
and ω0 = 2π0.0625, A1 = A2 = 1, φ1 ∈ U [0, 2π] and
φ2 = φ1 + ∆φ where ∆φ ∈ U [π/8, 3π/8] to avoid possible
outlier estimates close to zero and π/2. Gaussian white noise
is added to the signal, with SNR defined as the average power
of the signal within ±3σ of the envelope to the noise variance.
All simulations are run with FFT-length 1024, which results
in about the same number of bins in time- and frequency
for a matched window spectrogram, λ = 12. For all SNRs
the parameter ε in Eq. (23) is set to 0.2. We evaluate the
performance of the proposed technique to estimate ∆φ, σ
and thereafter t0, ω0 from the peak of the final PCRS. Four
different window lengths are tested, λ = 6, 12, 18 and 24.

In Figure 3a, the resulting mean bias values of the estimated
phase difference ∆φ is depicted for different SNRs and the
four window lengths. The bias is in all cases extremely small.
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Fig. 3. a) Mean bias value of the estimated phase differences for different
SNRs and four window lengths; b) Mean value for the estimated component
length, (true value-dashed black line); c) Percentage of correct time estimates;
d) Percentage of correct frequency estimates.

However, a thorough look will show that the shortest window
continues to give a small bias also for high SNR. This can
be explained by the fact the frequency is low and for shorter
window lengths, the resulting spectrogram component width in
frequency will be larger, with increasing effect of leakage from
the negative frequency component. The standard deviations
(stds) of the results from the different windows are more or
less equal, and are not depicted. For SNR=10 dB we find the
estimated studs close to 0.077 and the stds are exponentially
decreasing for higher SNR.

In Figure 3b, the resulting mean values of the estimated
component length are shown, where the true value, σ = 12, is
marked as a dashed black line. We see that the best estimate
is given by the matched window, λ = 12, followed by the
longer window λ = 18 and then the shorter window λ = 6.
The result indicates that the length of the window should be
made equal or larger than the actual component length. This
is intuitively explained by that a better estimate probably is
received if the whole length of the component is included into
the window in comparison to cutting the tails. However, with
a too long window, the amount of noise becomes larger. The
stds are not shown but are all comparable for the four different
windows. For SNR=10 dB we find std values close to 0.715
and the stds are exponentially decreasing for increasing SNR.

Figure 3c and d show the final estimates of t0 and ω0,
given from the location of the PCRS maximum peak. The
resulting percentage of values with smaller error deviation than
3 samples are shown. The cross-spectrogram is calculated with
λ and the scaled reassignment is based on the estimated ∆φ̂
and σ̂ in Figure 3a and b from the corresponding λ. The results
are similar to the previous where the matched window λ = 12
has the best performance followed by the larger window λ =
18.

Fig. 4. a) and b) The average bias and standard deviation of the estimated
phase differences for different SNRs and methods.

B. Phase-estimation compared to state-of-the-art methods

We use the same signal pair simulation as above with
σ = 12. The disturbing white noise is exchanged to colored
noise, similar to Electroencephalogram (EEG), generated from
a simulation model as described in [19], with the noise balance
parameters α = 4, β = 12 and γ = 0.5 for the α, one-
over-f and measurement noise activities respectively. The noise
realizations are uncorrelated between channels and the SNR
is defined as above, where the colored noise variance is
calculated over the complete frequency range. The window
parameter is λ = 18.

Estimates of ∆φ from PCRS are compared with the results
from state-of-the-art phase estimators, such as the commonly
used time-based Pearson’s linear correlation (CORR), time-
frequency cross-spectrogram phase (XSP) [1], and Phase Lag
Index (PLI) [20]. The cross-spectrogram of the XSP is com-
puted using the window with λ = 18, and the phase values
are extracted and averaged for all cross-spectrogram values
where the absolute value exceeds 5% of the peak value. The
PLI is calculated from the signals Hilbert transforms and the
corresponding angle differences, reconstructed into positive or
negative values using the sign operator, which is then finally
averaged. Both the CORR and the PLI are limited to time
values between 70-130 for all SNR as this time range gave
the best performance.

The results of the PCRS show that the method is unbiased
for SNRs down to 5 dB, where all other methods have large
biases, see Figure 4a. The std of the PCRS is also lower than
any other method down to 5 dB.

C. Real data example

We finally illustrate with an example of EEG data measured
during visual stimulation with a 9 Hz flickering light (Grass
Photic stimulator Model PS22C). Data was recorded using a
Neuroscan system with a digital amplifier (SYNAMP 5080,
Neuro Scan, Inc.). Amplifier band-pass settings were 0.3 and
50 Hz and sample rate was 256 Hz and later down-sampled
to 128 Hz. The subject was supine with closed eyes and the
light was flashed from a distance of approximately 1 m.

The light stimulation lasted just for the short time interval
of about 1 s so the PCRS and XSP are based on a Gaussian
window of 1.22 s to fulfill that better estimates are achieved
when the window is longer than the transient. For the analysis
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Fig. 5. The figure shows the estimated phase differences ∆φ of all channels compared to channel O2 (located in the back to the right).

with CORR and PLI, the data was band-pass filtered limited
to 7 and 15 Hz and further the time sampled used was 1 s
of the detected response. Similarly, for the PCRS and XSP,
the peak value of the cross-spectrogram was detected in the
range 7 to 15 Hz and the 1 s range of the detected response.
We show the results of the PCRS, XSP and PLI, but ignore
CORR as the performance was not satisfactory. All channels
are compared to the occipital channel O2, placed above the
primary visual area to the right. We see the estimated phase
patterns in Figure 5, with estimated ∆φ presented in colours
from zero to 2π/3, where 2π/3 corresponds to about 37 ms
difference for a 9 Hz oscillations. The largest estimated phase
differences are given from the PCRS and as expected from the
frontal electrodes at the left side (F3 and Fz).

V. CONCLUSIONS

A technique for parameter estimation of pairs of Gaussian
envelope oscillatory signals is proposed, where the cross-
spectrogram reassignment vectors are directly used. The
method is shown to outperform state-of-the-art methods for
phase difference estimation in simulations of electrical brain
activity. The estimated envelope parameter can further be used
in the scaled reassigned spectrogram.
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