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Abstract—The reassigned spectrogram is a powerful tool for
analysing non-stationary signals, and in an ideal setting it gives
perfect time and frequency localisation. A method very well
suited for oscillating transient signals is the matched window
reassignment, which requires a matching window, i.e. the en-
velope of the transient, to be known or estimated beforehand.
This paper proposes a novel method for estimating the envelope
of noisy transients, using a non-parametric and computationally
efficient approach. The estimated envelopes are used to calculate
the matched window reassignment, obtaining estimates of the
time-frequency centre of the transients. The reassignment using
the estimated envelopes is shown to give good estimates of
the time-frequency centres, and good localisation in time and
frequency. The novel envelope estimation approach is illustrated
on measured marine biosonar data.

Index Terms—time-frequency analysis, oscillating transient,
reassigned spectrogram

I. INTRODUCTION

A common method for analysing non-stationary signals is
the spectrogram, however a major drawback of this method
is the trade-off between resolution in time and frequency.
A long time-window can be used to get a reliable estimate
of the frequency content, but the information on where in
time that frequency content is will be poor. Conversely, a
short time-window can be used to get better resolution in
time, but with consequential poor frequency information. The
reassignment method has been proposed as a solution to this
problem [1]. The reassigned spectrogram can give perfect
localisation in time and frequency and was first designed for
linear chirps, but has in more recent years been adapted for
oscillating transient signals, reassigning signal energy to the
time-frequency centres (TF) of individual transients [2], [3].

Transients are common in ultrasonic and marine biosonar
analysis, machine fault diagnosis, and biomedical signal pro-
cessing [4]-[7]. The matched window reassignment (MWR)
can identify the time centres and frequencies of individual
transient components, but good performance relies on having
good information about the transient envelope [3]. However,
the signal envelope is usually not known and thus needs to
be estimated. In previous studies, we have used parametric
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methods to estimate the envelope, assuming a Gaussian func-
tion and optimising the length [8], or by evaluating different
functions and lengths [9]. These approaches either requires
some prior information about the envelope or can be costly if
many window functions or lengths are evaluated.

In this paper, we present a novel method for estimating the
envelope of an oscillating transient from a noisy realisation.
Our proposed method is non-parametric and requires no prior
knowledge of the transient envelope. The estimated envelope
is used to calculate the matched window reassignment, from
which a TF centre estimate of the transient is obtained. The
performance of the envelope estimation method is evaluated by
examining the bias of the TF centres, and the Rényi entropy
of the reassigned spectrograms. The estimation approach is
automatic, and we evaluate the method for signals disturbed
white and pink noise, respectively. The estimation approach is
also evaluated on a measured marine biosonar signal.

II. THE MATCHED WINDOW REASSIGNMENT

The reassigned spectrogram of a real-valued signal z(t) and
window function A(t)

RS"(t, f) = / S (s,€)6(t—(s.€). f— [(s.€))dsdg, (1)

where the integrals run from —oo to co and (¢, f) is the
two-dimensional Dirac impulse, improves the readability of
the spectrogram
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This is achieved by reassigning the signal energy of the
spectrogram closer to the instantaneous frequencies of the
signal components. The energy is moved according to the
reassignment coordinates, which depend on the signal and
window. While the reassignment method was originally in-
vented for longer oscillating signals [1], the scaled reassigned
spectrogram expands this theory to oscillating transients [2].

2
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The scaled reassignment coordinates are calculated according
to

it f) =t + o (Fh(tf)) |

FR(t, f) )
F5) = 1 g n (F 0 D)
T\ TR )
where ¢; and c; are the scaling constants, 93 and J represent

the real and imaginary parts and F"*, F** and F2"/™ are the

short-time Fourier transforms (STFTs) that use h(t), t - h(t)
and dh(t)/dt as window functions.

We have previously presented the matched window reas-
signment (MWR) [3], which for ¢; = ¢y = 2 gives perfect
localisation at the TF centre of a general oscillating transient

x(t) = a(t — t) cos(2m frt), 4

where a(t) is the envelope function, ¢; and f; are the time
and frequency shifts, if the window function is h(t) = a(—t).
This result holds for any time and frequency shifts due to the
linearity of the Fourier transform and thus the reassignment
coordinates [10].

III. NON-PARAMETRIC ENVELOPE ESTIMATION
Estimating a(t) from the real-valued z(t) in Eq. (4) is
trivial, given that the signal is measured long enough and is
adequately sampled. It is a more difficult problem if the signal

has added noise. In this paper, we will consider signals

y(t) = =(t) +€(1), (5)

where €(t) is zero-mean noise uncorrelated with x(¢). The
noise can be either white or pink (1/f). An example of such
a signal with white noise is shown in the top plot of Figure 1,
the transient z(¢) is shown in the bottom plot.

A. Estimation approach

The method we propose is designed to be used automatically
on noisy signals with one transient component and consists of
four steps:

1) Denoise the signal
2) Calculate the envelope of the denoised signal using the
Hilbert transform
3) Cut and smooth the shape of the envelope
4) Estimate the mass centre point and adjust envelope
length so that point is centred lengthwise
In step 1 we suggest to denoise the signal. This helps create
consistent results for the following steps but is not always
necessary especially if the signal has high SNR. The denoising
can be done by decomposing the signal using the discrete
wavelet transform, which is computationally efficient. In our
analysis we used the Daubechies db4 wavelet [11], a four-
level decomposition, and the Stein’s Unbiased Risk Estimate
threshold [12]. Figure 1 shows an illustration of this step.
Step 2 calculates the envelope of the denoised signal. This
is done by using the Hilbert transform of the real-valued
denoised signal to get the corresponding analytic signal. The
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Fig. 1. The steps of the envelope estimation demonstrated on a transient with
white noise (SNR = —2 dB) and denoised using discrete wavelet transform.
The lowest plot shows the final estimate superimposed on the transient without
noise.

envelope is then obtained by the absolute value of the analytic
signal. The Hilbert transform does require that the centre
frequency of the transient is not too close to zero, but as this
paper deals with oscillating transients we will assume that
the centre frequency is sufficiently high, otherwise it is likely
that the transient would not be oscillating. Figure 1 shows an
example of the result of this step, it can see seen that the
envelope is not very smooth at this stage.

The denoising step should make sure that the areas outside
the transient are close to zero, however it cannot be expected
that these areas are exactly zero or without smaller areas of
higher amplitudes, see step 2 in Figure 1. Therefore, step
3 is needed. The envelope is at this stage of equal length
with the signal, and the transient can be located by finding
the envelope point that has the highest value. Seen from that
maximum, we expect the envelope to taper down on both sides
and after reaching values close to zero, we would not like the
amplitude to increase again. Because of this a tolerance can
be set of what is considered close enough to zero, and when,
seen from the maximum, the envelope first goes below this
tolerance the envelope is cut. This should be done on both
sides of the maximum. The smoothing of the cut envelope can
be accomplished by a short moving average or low-pass filter.
Figure 1 shows the result of step 3 on the example signal,
it can be seen that only slight smoothing is used, this is to
preserve the general shape of the transient envelope. In this
paper the length of the moving average filter is 15% of the
length of the envelope after the cut in step 3.
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The tolerance in step 3 can be set by considering the median
value of the signal envelope. If the signal is relatively long
and the transient relatively short, the median value should be
an estimation of the general “close to zero” level outside the
transient envelope. However, if the signal is relatively short
compared to the transient, the median is not necessary a good
estimate. Then a good tolerance can instead be a fraction
of the maximum amplitude already calculated in step 3. We
recommend calculating both these potential tolerances and
choosing the smallest of them as the final tolerance.

The envelope now looks good enough, however, step 4
significantly improves the TF centre estimate given by the
reassigned spectrogram that uses the estimated envelope. First,
numerically calculate the mass centre of the envelope from
step 3, that point should then be centred lengthwise in the
envelope. This is best done by adding samples to the window,
either in the beginning or end, depending on if the mass centre
point was larger or smaller than half the envelope length. To
avoid sudden changes in the amplitude of the window, it is
preferable to add samples with the same value as its neighbour,
i.e. the value of the first or last sample of the envelope. This
will of course slightly alter the mass centre, but this change
seems to not significantly affect performance. In Figure 1
samples are added to the beginning of the envelope.

IV. EVALUATION

The estimated transient envelope, a(t), is used to calculate
the MWR, by having h(t) = a(—t) in Eq. (1) and its
associated calculations. The calculation of the MWR also
requires a decision on what signal to use, the original noisy
one or the denoised signal obtained in step 1 of the estimation
approach, both options will be evaluated in this paper. The first
option, we will call the estimated envelope reassignment (EER)
and calculates the spectrogram and reassignment with the
original noisy signal. The second option calculates the spectro-
gram and reassignment with the denoised signal, we call this
the estimated envelope denoised reassignment (EEDR). The
performance of these two options, which use the estimated
envelope, will be compared to calculating the spectrogram and
reassignment with a Gaussian window, a common window
choice if information is limited, and the noisy signal.

The signal envelope used for this evaluation is asymmetrical
with a heavier tail, since this is a common appearance of
measured transients [13]-[15]. Such an asymmetrical envelope
can be modelled by a skewed distribution function, in this
paper we use the Gumbel distribution

1 _%_6—%

a(t) = 56 ,

teR, (6)

where p is the scaling parameter. This means that the envelope
will be skew in time and symmetric in frequency, which in turn
gives a time mass centre, ¢, that is not equal to the time shift,
t7, since the mass centre is

to = /\a(t—tI)P(t—tI)dt, (7
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Fig. 2. Time and frequency marginals of the reassigned spectrograms of a
transient Eq. (8) with white noise (SNR = 0 dB), for EER, EEDR and Gaussian
p = 8. The vertical, dashed red lines show the true time and frequency centres.

and a(t — ¢7) is not symmetric. The frequency centre can
be calculated in an analogue way, but since the frequency
distribution is symmetric, it holds that f, = f;.

To evaluate the EER, EEDR and Gaussian approaches, we
use a set of simulated oscillating transient signals with noise

y(t) = a(t —tr) cos(2mfot) + €(t), t =0,1,...249, (8)

where the envelope a(t) is the Gumbel distribution in Eq. (6).
The sampling rate is 1 Hz, time shifts ¢; € U/(50, 170), giving
a similar but not equal range for the time centre ¢(, frequency
centres are fo € U(0.1,0.4) and scaling p € U(4,14). The
spectrogram is calculated with 256 positive frequency bins,
making the number of time and frequency bins approximately
equal. Two types of noise are evaluated, white noise and pink
noise, 1000 simulations are used for each noise type and a
range of SNR. The SNR range (—4,10) dB for the white
noise and (—2,12) dB for the pink noise, where

SNR = 10log;,(signal energy/noise variance) (9)

and the signal energy is calculated as the L2-norm of z(t).
The performance of the EER, EEDR and Gaussian is
evaluated on two aspects. The first is the bias of the TF
centre estimate (o, fo). According to previous studies [16],
the estimated TF centres are obtained from the location of the
highest peak in the reassigned spectrogram using the respective
windows/envelopes. The time and frequency marginals of the
reassigned spectrograms in Figure 2 illustrates how this can
be done. All the marginals have clear peaks close to the
true TF centres. The bias is calculated as the radial distance,
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Fig. 3. Mean bias in estimates of the TF mass centres obtained from the reassigned spectrograms with the different windows for the transient signals Eq. (8)
with different SNR and (a) white noise, (b) pink noise. Logarithmic scale is used on the y-axis.
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Fig. 4. The mean Rényi entropy of the reassigned spectrograms with the different windows for the transient signals Eq. (8) with different SNR and (a) white

noise, (b) pink noise.

r= \/(to —t0)2 + (fo — fO)Q, where the true ty is given by
Eq. (7) and fy by Eq. (8). The second aspect is how localised
the signal energy is after reassignment, which is measured
using the Rényi entropy, where a lower entropy is better [17].

The EER and EEDR are non-parametric methods but using
the Gaussian window is not. The length of the Gaussian win-
dow needs to be defined, fine tuning of the scaling parameter
is possible but requires additional computations and evaluation
[8]. Therefore, the two fixed lengths of the Gaussian window
are used, the first is optimal for the median length of the signal
envelope, p = 8, and the other is a long window, p = 14, that
will always fit the entire transient inside the window.

V. RESULTS AND DISCUSSION

The mean biases for the estimates of the TF mass centres
for the simulations with white noise and pink noise are shown
in Figure 3(a)-(b) respectively. The EER outperforms the
Gaussian windows for all evaluated SNR and both noise types,
there is however only small differences for the lowest SNR.
This is because the envelope estimation is harder for low
SNR, therefore the estimated envelopes will on average only
be slightly better matches compared to the Gaussian window,
especially for p = 8. As the SNR increases, the mean biases

from the EER and EEDR steadily decrease, the same is not
in general seen for the Gaussian windows as the mean biases
will reach a plateau. Both window lengths reach the same
plateau, suggesting that this is the bias we will always get by
estimating the mass centre of the transient with a heavy tail,
using the symmetric Gaussian function.

The EEDR performs significantly worse that the EER for
low SNR. This is due to the denoising sometimes affecting
the oscillations of transient, which is suggested by step 1
in Figure 1. If the denoised signal has a damaged transient
and is used for the reassignment calculations, this will affect
especially the frequency centre estimate but to a lesser degree
also the time centre estimate. This effect is dependent on the
denoising method, a better tailored denoising method might
mitigate this result, but a more careless choice will also worsen
the effect. For higher SNR it is easier to separate the transient
from the noise and the EEDR performs as well as the EER.

The mean Rényi entropies are shown in Figure 4, a low
Rényi entropy indicates a clean TF representation with lo-
calised energy. The EEDR has the lowest entropy, followed
by the EER, except for the signals with pink noise and SNR
= —2 dB. The low entropy of the EEDR is because the signal
is denoised and does not indicate higher localisation around
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Fig. 5. Example of the proposed EER on an echolocation signal from a
beluga whale. The top plot shows the signal and the estimated envelope,
the two bottom rows show the time and frequency marginals as well as the
TF representations of the spectrogram and reassigned spectrogram with the
estimated envelope.

the TF centre of the transient. There are only small differences
between the EEDR and EER, and they converge when the SNR
increases. All methods have decreasing Rényi entropy when
the SNR increases, but the decrease is much faster for the EER
and EEDR, suggesting that using the estimated envelopes to
get a matched window is preferred.

VI. MARINE BIOSONAR EXAMPLE

It is common to model the echolocation clicks of dolphins
as Gaussian enveloped oscillating signals, however it has lately
been shown that other envelopes might be better suited [15],
[18]. The EER is here applied to a transient echolocation signal
from a beluga whale (Delphinapterus leucas), the signal is
sampled with 1 MHz and recorded by one of 47 simultane-
ously sampling hydrophones as described in [19]. The echolo-
cation signal is shown in the top plot of Figure 5, superimposed
is the non-parametric and automatically estimated envelope.
In Figure 5, shows both the spectrogram and the reassigned
spectrogram calculated with the estimated envelope and their
time and frequency marginals.

VII. CONCLUSION

In this paper we propose a novel method for estimating
the envelope of a noisy oscillating transient. This envelope is
then used as a matched window when calculating the reas-
signed spectrogram of that transient. The estimation method
is automatic, computationally efficient and requires no prior
knowledge of the transient envelope.

The results show that reassignment calculations with the
estimated envelopes gives good estimates of and localisation
at the TF centres of simulated transients with white noise
(from SNR = —4 dB) or pink noise (from SNR = 0 dB). The
estimation method requires a denoising step, it is evaluated if

the denoised signal should also be used for the reassignment
calculations (EEDR) or not (EER). The results show that the
EER gives the most consistent results, and outperforms the
results obtained when assuming a Gaussian envelope.
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