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Abstract—The compressed sensing (CS) problem is considered,
where a sparse signal with known structure has to be recovered
from an under-determined system of linear equations. Iterative
algorithms in CS alternate between two subproblems, which are
given by the structure of the signal and the system of equations,
respectively. Hereby, the components of the signal vector are
usually updated in parallel. Alternatively, a sequential processing
of the components of the signal vector is possible, where the
order of processing can be varied and individual variances are
utilized. A suitable scheduling can speed up the convergence and
thereby reduce the complexity, which is necessary to achieve a
certain performance level. In this paper, we introduce a sequential
algorithm for CS, discuss a variety of schedules and show by
numerical simulations that the number of signal components to
be processed in order to attain a specific performance level can
be significantly reduced with suitable schedules.

Index Terms—Compressed sensing, sequential processing,
VAMP

I. INTRODUCTION

Signal reconstruction in compressed sensing (CS) [3], [5] is
the task of finding a suitable solution for a given observation
under two constraints. The first constraint is established by
an under-determined system of equations, defined by the
channel observations and the sensing matrix. The second
constraint is prior knowledge of the signal, in particular its
probability density function (pdf). A standard approach to
solve this problem is to iteratively consider the problem under
one of the constraints. Vector approximate message passing
(VAMP) [15], derived from the expectation-consistent (EC)
approximate inference framework [14], is an example of such
an iterative algorithm.

VAMP uses an average variance as indicator for the relia-
bility of the estimated signal. This can be improved by using
individual variances for each element of the estimate, as has
been shown in [7]. However, this results in higher complexity,
since the necessary matrix inversion cannot be avoided using
a singular value decomposition (SVD) of the sensing matrix,
as is possible for the average variances case [15, Alg. 2].
Nevertheless, the usage of individual variances allows for
processing the elements of the signal sequentially, thereby
enabling to profit from insights at earlier stages of processing
and an optimized scheduling.

Sequential processing has been addressed in code-division
multiple-access for successive interference cancellation, see
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[6] for an overview, in decoding of low-density parity-check
codes [4], and in sparse Bayesian learning [19].

In the CS literature, such approaches are used for sequen-
tially processing the observations [12], sequentially processing
dynamically changing signals [10], or sequential design of
the sensing matrix [9]. In contrast, we pursue a sequential,
element-wise processing of a given fixed signal.

Other applications to CS are, e.g., given in [16], where the
focus lies on the design of the sensing matrix, in [1] for a
Bernoulli-Gaussian prior in the noiseless case, and in [13],
where approximate message passing (AMP) [11] is adapted to
sequential processing. In contrast to the latter two, we consider
a discrete prior and the update from [7], which cannot be
derived from belief propagation or similar frameworks. Unlike
AMP, we employ the minimum mean-squared error (MMSE)
estimator for the channel-constrained part of the problem.

In this paper, we assess a sequential processing for the
algorithm given in [7] by utilizing a rank-one update for the
solution of the under-determined system of equations. The
resulting algorithm is in spirit of the one stated in [14, App. D],
however, i) we apply it to the CS setting, ii) adapt the update
according to [7], and iii) optimize the processing order. By
numerical simulations, we show that with a suitable schedule,
the increase in complexity due to the usage of individual
variances can be avoided by evaluating subsets of the signal
vector and an overall faster convergence.

The paper is organized as follows. In Sec. II we introduce
the system model for compressed sensing and briefly review
VAMP. Then, we present the sequential approach and discuss
suitable schedules in Sec. III. Results from numerical simu-
lations are presented and discussed in Sec. IV. Finally, we
conclude our work in Sec. V.

II. PROBLEM FORMULATION

A. System Model for Compressed Sensing

The noisy measurements in CS are given by1

y = Ax + n ∈ RM , (1)

1We denote scalars by small letters, e.g., x, vectors by bold ones, e.g.,
x, matrices by upper case bold, e.g., X , and random variables in sans-serif
font, i.e., x, x, and X, respectively. Im: m × m identity matrix, 0: all-
zero vector, diag(·): diagonal matrix with given entries, fx(x): pdf of x,
Pr{·}: probability, E{·}: expectation, π(·): random permutation, [·]j : jth
entry, || · ||F: Frobenius norm.
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where the sensing matrix A ∈ RM×N , M � N , is known and
the noise n ∼ N (0, σ2

nIM ) is i.i.d. Gaussian. The elements xj
of x = [x1, . . . , xN ]> are assumed to be i.i.d. with marginal
pdf fx(xj), i.e.,

fx(x) =
∏N

j=1
fx(xj) . (2)

The pdf of x is hence separable. In CS, the signal x is usually
sparse, i.e., has few non-zero entries, which is reflected by the
marginal pdf. The task of recovering the signal x is given by
the estimation problem

Ex

{
x | y, A, σ2

n

}
=

1

fy(y)

∫
x fx(x)fy(y | x) dx . (3)

For a high-dimensional signal x this computation becomes
infeasible. Therefore, iterative schemes have been proposed
that split the problem into two subproblems and alternate
between these.

B. Approach and VAMP

The subtasks (denoted with indices “c” for channel constraint
and “s” for signal constraint) can be solved by a Gaussian
assumption on the pdfs fx(x) and fy(y | x) in (3), respectively.
The Gaussian assumption makes the computation feasible.
The preceding iteration delivers mean x̃• and variance σ̃2

•
(• ∈ {c, s}). Under a minimum mean-squared error (MMSE)
criterion, the optimal solution to either of the subtasks is given
by the conditional mean

m• = Ex,•
{
x | x̃•, σ̃2

•
}
, • ∈ {c, s} . (4)

Since for the channel constraint the argument of the integral
becomes Gaussian, the corresponding solution is a joint linear
estimator and given by

mc = x̃c +
(
A>A+ σ2

nΦ̃
−1

c

)−1

A>(y −Ax̃c) , (5)

with Φ̃c = σ̃2
cIN .

Due to the separability of x, the estimation for the signal
constraint can be calculated individually for each variable xj ;
giving rise to individual, non-linear estimators (NLEs)

ms,j =
1√

2πσ̃2
s

∫
xjfx(xj) exp

(
(xj − x̃s,j)

2

2σ̃2
s

)
dxj . (6)

Because of the Gaussian assumptions, mean and variance are
necessary for the computations. For the given problems, the
average variances can be computed by

σ2
c =

1

N
trace

(
σ2
n

(
A>A+ σ2

nΦ̃
−1

c

)−1
)
, (7)

σ2
s =

1

N

N∑
j=1

Ex,s

{
(xj −ms,j)

2 | x̃s,j , σ̃
2
s

}
. (8)

Using the notion of exponential families [2], it has been
derived in [14] that the connection (crossover) between the
variables of the estimators needs to be given by

x̃c,j

σ̃2
c

=
ms,j

σ2
s

− x̃s,j

σ̃2
s

,
1

σ̃2
c

=
1

σ2
s

− 1

σ̃2
s

, (9)

respectively

x̃s,j

σ̃2
s

=
mc,j

σ2
c

− x̃c,j

σ̃2
c

,
1

σ̃2
s

=
1

σ2
c

− 1

σ̃2
c

. (10)

This also fits to the notion of transferring extrinsics [8] and
bias compensation [7], [18].

The resulting algorithm is identical to vector approximate
message passing (VAMP) [15], which can be derived from the
EC framework [14].

C. VAMP with Individual Variances

The usage of individual variances gives the estimator more in-
sight into the signal estimates at hand. Hence, the performance
and convergence speed of respective algorithms may be better.
A straightforward adaption to individual variances based on
VAMP is obtained by replacing in (5), (6), (9), and (10) σ2

c

by σ2
c,j = [Φc]jj , σ2

s by σ2
s,j , σ̃

2
c by σ̃2

c,j , and σ̃2
s by σ̃2

s,j ,
where

Φc = σ2
n

(
A>A+ σ2

nΦ̃
−1

c

)−1

, (11)

σ2
s,j = Ex,s

{
(xj −ms,j)

2 | x̃s,j , σ̃
2
s,j

}
=

1√
2πσ̃2

s,j

∫
(x−ms,j)

2fx(x) exp

(
(x− x̃s,j)

2

2σ̃2
s,j

)
dx ,

(12)

and Φ̃c = diag(σ̃2
c,j).

In [7] it has been shown that this algorithm can be improved
by a signal processing view on the crossover after the NLE.
The improved crossover is obtained by

σ̃2
c,j = σ2

s,j +
(

σ2
j

σ̃2
s,j−σ2

j
(ms,j − x̃s,j)

)2

, (13)

x̃c,j =
(

1
σ2
j
− 1

σ̃2
s,j

)−1 (
ms,j

σ2
j
− x̃s,j

σ̃2
s,j

)
, (14)

with σ2
j = Ex̃s

{σ2
s,j} being the mean-squared error (MSE). We

call this improved version of the algorithm VAMPire (VAMP
with individual reliabilities enhanced).

However, when using individual variances, the matrix in-
version in (11) is unavoidable, which increases the complexity
significantly when comparing to the average variance case of
VAMP. This problem can be overcome by a sequential update,
which is introduced in the following.

III. SEQUENTIAL UPDATES

VAMP with an average variance performs a parallel update,
i.e., the non-linear estimation is carried out for all elements
of vector x in parallel, followed by the computation of the
linear estimate, again for the complete vector x. The procedure
is indicated in the factor graph of the problem in Fig. 1.
The usage of individual variances offers the possibility to
treat the signal components individually. This can be done by
computation of the signal-constrained estimate ms,j for one
element xj and a subsequent update of the channel-constrained
estimate mc according to the change at position j. Note that
because of the coupling in the linear estimator (due to sensing
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xj. . .x1 . . . xN

fy(y | x)

fx(x1) fx(xj) fx(xN )

1. x̃s,
σ̃2
s

2. ms,
σ2
s

3. x̃c,
σ̃2
c

4. mc,
σ2
c

Fig. 1. Parallel update of VAMP in the factor graph for CS. The signal
components xj are treated jointly (vector x), the computations of the estimates
are given in (5)–(10).

xj. . .x1 . . . xN

fy(y | x)

fx(x1) fx(xj) fx(xN )

1. x̃s,j , σ̃2
s,j 2. ms,j , σ

2
s,j

3. x̃c,j , σ̃2
c,j

4. mc,N , σ
2
c,N4. mc,1, σ

2
c,1

Fig. 2. Individual update (inner iteration) for the sequential algorithm. The
computations are given by (6) and (10) (with individual variances), as well
as (12)–(16).

matrix A) the update has to be propagated to the entire signal
vector. The update strategy is depicted in Fig. 2. We denote
one round of the described update, where one vector element
is processed, as an inner iteration. On the contrary, a loop
over the vector elements is called an outer iteration.

A. Rank-one Update

The update for the linear estimator is a rank-one adjustment,
obtained from the matrix inversion lemma. Basis of the
computation is a change in the input parameters to the channel
constraint, x̃c,j and σ̃2

c,j . Let ∆σ2 = σ̃
2[k−1]
c,j − σ̃

2[k]
c,j and

∆x̃ = σ̃
2[k−1]
c,j x̃

[k]
c,j − σ̃

2[k]
c,j x̃

[k−1]
c,j , where superscripts k and

k − 1 denote current and former value of the parameters,
respectively. With these substitutions, a given covariance ma-
trix Φc = [φc,1, . . . ,φc,N ] and conditional mean mc can be
updated by (cf. [14])

mupdated
c = mc +

∆x̃−∆σ2mc,j

σ̃
2[k]
c,j σ̃

2[k−1]
c,j +∆σ2[Φc]jj

φc,j , (15)

Φupdated
c = Φc − ∆σ2

σ̃
2[k]
c,j σ̃

2[k−1]
c,j +∆σ2[Φc]jj

φc,jφ
>
c,j . (16)

B. Schedules

The rank-one update for the linear estimator concludes one
inner iteration. Subsequently, another element of the signal
vector is considered. There are many ways to choose, which
element is to be processed next.

First, we take a look at procedures, which loop through all
positions in the outer iteration. The most natural ordering is
to keep the order given in vector x, i.e., process positions
according to the sequence sJ = [1, 2, . . . , N ]. However, this
does not make use of the individual variances, i.e., the measure
for reliability of an individual estimate.

An alternative strategy is therefore to consider the values
of the variances before each outer iteration and change the
order accordingly. There are two deterministic possibilities;
processing the elements in order of ascending or descending
variances. Furthermore, a random order can be considered.
Intuitively, it is beneficial to process lower variances first,
because the update of a more reliable estimate for xj yields
more certainty for the estimates of other signal components.

C. Subset Update
The sequential processing enables evaluation of results before
a loop through all positions is complete. We consider this by
performing T < N inner iterations per outer iteration. For
a fixed number of outer iterations, this decreases complexity,
since the overall number of rank-one updates is reduced.

Since only a subset of the signal components is processed,
suitable choices for the subset need to be found. In order to
implement this, a subset J ⊆ {1, . . . , N} (with cardinality
|J | = T ) of positions is chosen before each outer iteration.
By ordering the index set J in a sequence sJ , this strategy
can be combined with the schedules defined above.

1) Suitable Strategies: As indicated by the state evolu-
tion analysis (see, e.g., [15]), a suitable algorithm needs to
make sure that the reliability in the estimate increases over
the iterations. In the sequential algorithm, the reliability is
characterized by individual variances. It is thus necessary, to
ensure that all individual variances decrease over the iterations,
which is done by processing the respective signal components.

This means, a higher variance indicates the need for pro-
cessing. Hence, it is useful to focus on positions with high
variances, i.e., choose J such that higher variances are pre-
ferred. One can use probabilistic or deterministic choices here.

For the probabilistic choice a distribution is constructed,
where the probability for a position j to be drawn is propor-
tional to its corresponding variance σ2

c,j . For this, the index set
J = {j1, . . . , jT } is successively built. Say, ` < T positions
have already been drawn, i.e., J (`) def

= {j1, . . . , j`}. Since it
is necessary to draw unique positions, these positions must be
left out from the distribution, i.e., we create probabilities for
the other positions by

Pr{j`+1 = j} =
σ2

c,j∑N

j=1,j /∈J (`) σ
2
c,j

. (17)

A deterministic choice is to order the positions according
to their variances and process only the T highest ones.
The opposite, choosing the lowest variances, leads to a bad
performance, since positions that have already been processed
will be chosen again and again, whereas there is a high chance
that some signal components are never processed.

Additionally, one can make sure that each position is
processed equally often, by tracking the number of processings
conducted for each position j with a counter cj . We denote
the set of positions with minimal counters by

Jc = {j | cj ≤ cj′ ∀j, j′ ∈ {1, . . . , N}} . (18)

In combination with this, also the choice of positions with
lowest variances becomes applicable.
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2) Complexity: Due to the matrix inversion, the complexity
of VAMPire is O(N3). Processing only T signal components
per outer iteration, during the same amount of iterations, the
sequential algorithm has complexity O(N2T ). Furthermore,
the additional operations for the choice of the index set J
and the sequence sJ (especially sorting, random drawing or
counter) can be implemented with complexity O(T 2). Hence,
the complexity is reduced for T < N and a fixed number of
(outer) iterations.

D. Sequential Algorithm

The complete procedure is given in Algorithm 1. A similar
algorithm has been stated in [14, App. D]; the difference lies
in the adapted update from [7] and the optimized scheduling.

Algorithm 1: ms = seqVAMPire(y, A, σ2
n , σ

2
x , T )

1 x̃c = 0, σ̃2
c,j = σ2

x ∀j // Initialization
2 mc = x̃c + (A>A+

σ2
n
σ2
x
IN )−1A>(y −Ax̃c)

3 Φc = σ2
n (A>A+

σ2
n
σ2
x
IN )−1

4 while stopping criterion not met do
5 Choose index set J ⊆ {1, . . . , N} with |J | = T
6 Specify sequence sJ = [j1, j2, . . . , jT ] : ji ∈ J ∀i
7 for j ∈ sJ do
8 σ2

c,j = [Φc]jj , φc,j = [[Φc]1j , . . . , [Φc]Nj ]
>

9 σ̃2
s,j = (1/σ2

c,j − 1/σ̃2
c,j)
−1 // crossover

10 x̃s,j = σ̃2
s,j(mc,j/σ

2
c,j − x̃c,j/σ̃

2
c,j)

11 ms,j = Ex,s{xj | x̃s,j , σ̃
2
s,j} // NLE

12 σ2
s,j = Ex,s{(xj −ms,j)

2 | x̃s,j , σ̃
2
s,j}

13 σ2
j = Ex̃s{σ

2
s,j} // x̃s = xj + e, e ∼ N (0, σ̃2

s,j)

14 σ̃2
old = σ̃2

c,j , x̃old = x̃c,j

15 σ̃2
c,j = σ2

s,j + (
σ2
j

σ̃2
s,j
−σ2

j

(ms,j − x̃s,j))
2

16 x̃c,j =
σ2
j σ̃

2
s,j

σ̃2
s,j
−σ2

j

(ms,j/σ
2
j − x̃s,j/σ̃

2
s,j)

17 ∆σ2 = σ̃2
old − σ̃

2
c,j , ∆x̃ = σ̃2

oldx̃c,j − σ̃2
c,j x̃old

18 mc = mc +
∆x̃−∆σ2mc,j

σ̃2
c,j
σ̃2

old
+∆σ2[Φc]jj

φc,j

19 Φc = Φc − ∆σ2

σ̃2
c,j
σ̃2

old
+∆σ2[Φc]jj

φc,jφ
>
c,j

IV. NUMERICAL RESULTS

We cover the performance of the above introduced algorithm
by numerical simulations and compare it to VAMP and the
variant with individual variances, VAMPire.

Denoting the sparsity by s and the Dirac delta function by
δ(x), we use the prior pdf

fx(x) = s
2N δ(x+ 1) + N−s

N δ(x) + s
2N δ(x− 1) , (19)

which has zero-mean and a-priori variance σ2
x = s/N . The

formulas for the signal-constrained estimates ms,j and σ2
s,j

can be found in [17]. The sensing matrix A is i.i.d. Gaussian
distributed. In order to model the distribution of transmit pow-
ers, we implement an exponential power profile and amplify
the columns of A accordingly. The power profile is given by
rp = d(p−1)/(N−1) (p ∈ {1, . . . , N}); the assignment to the
jth column is obtained from a random permutation j = π(p).
The simulations are obtained for a factor d = 0.2. After

2 4 6 8 10
10−3

10−2

# of outer iterations −→

SE
R
−→

VAMP
VAMPire
seqVAMPire, random
seqVAMPire, sort σ2↘
seqVAMPire, sort σ2↗

Fig. 3. Convergence analysis for different schedules. Parameters: N = 100,
M = 50, s = 5, −10 log10(σ2

n ) =̂ 17 dB, T = N , 106 simulations.

applying the power profile (by A · diag(rπ(p))), the sensing
matrix is scaled such that it has Frobenius norm ||A||F =

√
N .

The signal-to-noise ratio is fixed to −10 log10(σ2
n) =̂ 17 dB

in all simulations. For numerical stability, especially in the
subtraction of the inverse variances in (9), we clip σ2

s,j to the
interval [10−8, 108] and the other variances to [10−12, 1012].

As performance measure the average (over the number of
realizations) symbol error ratio (SER), i.e., the relative number
of incorrectly recovered symbols SER = |{ms,j 6= xj}|/N is
considered. After reconstruction, the known sparsity is used
by taking the s (in magnitude) largest ms,j values, quantizing
them to sgn(ms,j) and setting all others to 0, cf. [17]. The
convergence is shown by plotting the SER over the number of
outer iterations. We compare the following schedules:
• random: sJ = [π(1), . . . , π(N)],
• sort σ2↘: order of descending variances,
• sort σ2↗: order of ascending variances.

The result is shown in Fig. 3. One can see, that the sequential
algorithms converge faster than the other two, which can
be explained by the fact that throughout the loop over the
positions, the signal component to be processed benefits from
the knowledge that was gained from previously processed
positions. The processing in the order of ascending variances
has most benefit in convergence speed and steady-state error.
This can be explained by the fact that the update of a more
reliable estimate for xj yields more certainty for the estimates
of other signal components.

In the following, the opposite is examined. We set T = 1, so
that after each processed signal component, we evaluate and
choose a new position j to process. The choice of a schedule
sJ is hence superfluous. We compare the following strategies:
• minv: choose j = argminj′∈Jc

σ2
c,j′ with Jc from (18),

• maxv: choose j = argmaxj′∈Jc
σ2

c,j′ with Jc from (18),
• rv: draw position from {1, . . . , N} randomly with prob-

ability given by (17),
and combinations thereof. The combinations are realized by
switching strategies after every processed signal component.
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100 150 200 250 300 350 400 450 500
10−3

10−2

# of inner iterations −→

SE
R
−→

VAMP
VAMPire
seq, minv
seq, maxv
seq, rv
seq, minv, maxv
seq, minv, rv

Fig. 4. Convergence analysis for different index choices. Parameters: N =
100, M = 50, s = 5, −10 log10(σ2

n ) =̂ 17 dB, T = 1, 106 simulations.

The convergence over inner iterations is shown in Fig. 4. As
a comparison, we plot the evaluation of the parallel algorithms
at multiples of signal dimension N . The counters in the first
two strategies ensure that all signal components are processed
once between consecutive multiples of N . This forces the
processing order to loop through all positions between these
multiples. The choice of the highest variance (maxv) from
the (per loop) non-processed signal components shows a fast
convergence at the beginning of such a loop, since those
positions require processing at most. Towards the end of
the cycle, the performance flattens out, since only positions
with relatively high variances are processed. This leads to a
staircase behavior. The opposite strategy, choosing the lowest
variance (minv) behaves contrarily. At the beginning of a
loop almost no change is visible. Towards the end, a sudden
drop appears, since at that point the positions, which require
processing most, are considered. Because the lower variances
were processed first in this strategy, which gives additional
reliability to subsequently processed positions, the drop at the
end of the loop surpasses the performance of the strategy with
high variances first (maxv). The random approach does not
make use of the counters and therefore converges smoothly,
but since it is not ensured that every position is processed
regularly, the performance is worse.

Combining opposing strategies, it is possible to achieve
both, a fast convergence and well performance at convergence.
By alternatingly choosing high and low variances, the conver-
gence property of high variance preference is obtained, while
achieving better performance at the end of a cycle through all
signal components, however the staircase behavior stays. On
the other hand, the combination of the probabilistic approach
with low variance preference converges smooth and overall
well.

V. CONCLUSION

A sequential version of a VAMP algorithm with individual
variances was introduced and assessed. The sequential pro-
cessing offers a variety of possibilities to adjust the neces-

sary effort to attain a desired performance level. Strategies
for schedules were presented and discussed. The algorithm
shows a faster convergence than parallel algorithms and offers
evaluation of subsets of the signal vector. It was shown by nu-
merical simulations that with suitable schedules the algorithm
performs already very well for only relatively few processed
signal components, thereby avoiding the higher complexity
caused by the usage of individual variances.
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