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Abstract—The iterative reweighted Lasso is an efficient frame-
work to recover a sparse signal from a noisy linear measurement.
Applying the statistical mechanical approach, we investigate the
performance of the iterative reweighted Lasso by evaluating
the mean squared error of the estimates. Regions where the
reweighting becomes effective are revealed. Our analysis allows
us to investigate property of functions that define the weight.

I. INTRODUCTION

The compressed sensing is a framework that is to find a
sparse solution to underdetermined linear systems [1]. The
iterative ℓ1 reweighting algorithms [2] have been paid attention
as methods to refine estimates in the field of compressed
sensing [3]-[15]. These algorithms are to solve the ℓ1 min-
imization problems while the shape of the ℓ1 ball is changed,
and can outperform the ℓ1 minimization without reweighting.
The reweighting methods were applied to Lasso [16], and its
convergence property has been already analyzed [17]. In this
paper, we focus on the iterative reweighted Lasso discussed by
Fosson [17], and investigate its performance by evaluating the
mean squared error of the estimates in the iterative process
theoretically. We also discuss the property of functions that
determine the weight within the numerical analysis of our
theoretical results.

II. PRELIMINARIES

A. Problem Settings
Let x0 ∈ RN be an unknown sparse vector to be estimated.

We consider the following linear measurement system:

y = Ax0 + n, (1)

where y ∈ RP , A ∈ RP×N , and n ∈ RP denote a
measurement, a measurement matrix, and a noise vector,
respectively. In the framework of compressed sensing, the
main problem is to infer x0 for a given measurement y and a
given measurement matrix A. We here suppose that each entry
of the measurement matrix A = (ai,j) follows the normal
distribution with mean zero and variance 1/N independently,
i.e., ai,j

i.i.d.∼ N (0, 1/N), and each entry of the noise vector
n = (nµ) also follows the normal distribution with mean 0
and variance σ2

0 , i.e., nµ
i.i.d.∼ N (0, σ2

0).

B. ℓ1 minimization and Lasso
In the noiseless case, the following ℓ1 minimization [1]

is commonly applied to infer the original vector: x̂ =
argminx∈RN ∥x∥1 s.t. y = Ax. On the other hand, when
the measurement is noisy, the least absolute shrinkage and

selection operator (Lasso) [16] is widely employed for this
estimation problem:

x̂ = argmin
x∈RN

(∥y −Ax∥22 + λ∥x∥1), (2)

where λ ∈ R+ denotes the amplitude of the regularization
term.

C. Iterative Reweighted ℓ1 minimization
We first briefly summarize the iterative reweighted ℓ1 min-

imization (IRL1) proposed by Candès et al. [2]. In the ℓ1
minimization, the estimates is given as a vector at which the
minimum ℓ1 ball touches a feasible set {x : y = Ax}. The
weighted ℓ1 minimization is a method to resolve a minimiza-
tion problem by changing the shape of the ℓ1 ball based on the
estimate x̂1 = argminx ∥x∥1 s.t. y = Ax. The weighted ℓ1-
norm is defined by ∥w⊤x∥1 for x ∈ RN , where w ∈ RN is
a given weight vector. By defining the weight vector w using
x̂1 properly, the weighted ℓ1 ball can be sharply pinched at
the original vector to be estimated x0. If the first estimate
x̂1 is good enough, the estimate given by the weighted ℓ1
minimization i.e., x̂2 = argminx ∥w⊤x∥1 s.t. y = Ax can be
expected to improve. The iterative reweighted ℓ1 minimization
is a method that repeats this process.

At the t-th iteration, the weight is determined using a
function wt, which is referred to as the weight function. It
is commonly chosen as

wt(x) = (|x|+ ϵ)−1, (3)

for all t, where ϵ ∈ R+ is a constant to avoid that the
weight diverges [2]. The weight function wt is entrywise
applied to a vector, i.e., wt(x) = (wt(x1), · · · , wt(xN ))⊤ for
x = (x1, · · · , xN )⊤.

D. Iterative Reweighted Lasso
Next, we explain the iterative reweighted Lasso (IRLasso)

discussed by Fosson [17]. In this paper, we focus on this
IRLasso. The reweighting scheme can be also applied to
Lasso, which is for noisy measurements, in the same way
as IRL1. The algorithm of the IRLasso is summarized in
Algorithm 1. Here, 1m×n denotes an m× n all-1 matrix.

III. ANALYSIS

We analyze typical performance of IRLasso using the statis-
tical mechanical approach, which is an asymptotic method that
quantites of interest are obtained by evaluating a state that the
free energy density that corresponds to a given cost function
is minimized [18], [19]. IRL1 has been already analyzed [9],
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Algorithm 1 Iterative Reweighted Lasso (IRLasso)
Input: Measurement vector y ∈ RP , measurement matrix

A ∈ RP×N , the amplitude of the regularization term
λ ∈ R+, the number of iterations T , and a sequence of
weight functions w1, · · · , wT .

Output: Estimate x̂T ∈ RN .
1: Set w1(x̂0) = 1N×1.
2: for t = 1 to T do
3: Solve x̂t = argmin

xt∈RN

(∥y−Axt∥22+λ∥wt(x̂t−1)
⊤xt∥1).

4: end for
5: return x̂T .

and we follow their analysis. Since this analysis is one of
asymptotics, we take the large system limit where P,N →∞
while the ratio α is kept finite to keep the problem nontrivial.
The ratio α = P/N is referred to as the compression rate.

According to the method of the statistical mechanics, we
first define a cost function in IRLasso, which is called the
Hamiltonian:

Ht(xt|y, A,xt−1) = ∥y −Axt∥22 + λ∥wt(xt−1)
⊤xt∥1. (4)

The Boltamann distribution of this system is

pt(xt|y, A,xt−1) = Z−1
t exp[−βtHt(xt|y, A,xt−1)], (5)

where βt (> 0) denotes a parameter that is called the inverse
temperature, and Zt denotes a normalization constant that is
defined by

Zt =

∫
RN

exp[−βtHt(xt|y, A,xt−1)]dxt, (6)

which is referred to as the partition function. In the limit where
βt →∞, the Boltzmann distribution pt takes a non-zero values
only at the points that the Hamiltonian takes its minimum
value. It should be noted that the Hamiltonian depends on
the estimates of the previous iteration via the weight in the
weighted ℓ1-norm. Therefore, the expectation must be taken
over the estimates of all previous iterations x1, · · · ,xT−1 to
evaluate fT that is the free energy density of the system at the
T -th iteration. When the limits β1 →∞, · · · , βT−1 →∞ are
taken in this order, the Boltzmann distributions p1, · · · , pT−1

concentrate. Then, the free energy density fT can be obtained
as

fT = lim
βT→∞

· · · lim
β1→∞

lim
N→∞

−1
βTN

EA,x0,x1,··· ,xt−1,n[lnZT ]

= lim
βT→∞

· · · lim
β1→∞

lim
N→∞

−1
βTN

EA,x0,n[lnZ
T
1 − lnZT−1

1 ],

(7)

where ZT
1 =

∏T
t=1 Zt which is the partition function of the

joint system of x1, · · · ,xT .
Applying the replica method [18], [19], [20], [21], i.e.,

limN→∞
1
N EA,x0,n [lnZT

1 ] = limn→0
1
n limN→∞

1
N lnEA,x0,n[(Z

T
1 )

n], we can evaluate the quantity

(βTN)−1EA,x0,n[lnZ
T
1 ] which appers in (7). This quantity

can be written as

1

βTN
lnEA,x0,n[(Z

T
1 )

n]

=
1

βTN
lnEx0

{∫
RnNT

( n∏
a=1

T∏
t=1

dxa
t e

−βtλ∥wt(x
a
t−1)

⊤xt∥1

)

× EA,n

[
exp

(
−

n∑
a=1

T∑
t=1

βt∥Axa
t − y∥22

)]}
. (8)

To calculate this quantity (8), we introduce the following
parameters:

r = N−1x⊤
0 x0 ∈ R1, (9)

ma = N−1Xa⊤
T x0 ∈ RT×1, (10)

P a = N−1Xa⊤
T Xa

T ∈ RT×T , (11)

Qa,b = N−1Xa⊤
T Xb

T ∈ RT×T (a ̸= b), (12)

where we here defined Xa
T = (xa

1 , · · · ,xa
T ) ∈ RN×T . For

example, for a function g, we can rewrite g(N−1x⊤
0 x0) to∫

R δ(x⊤
0 x0 − Nr)g(r)dr. In (8), all parameters r, ma, P a,

and Qa,b can be used in a same way. Let

ua
T,µ =

√
β ◦ {aµ(X

a
T − x011×T ) + nµ11×T } ∈ R1×T, (13)

where we use the notation
√
β = (

√
β1, · · · ,

√
βT ) ∈ R1×T ,

and ◦ denotes the Hadamard product, i.e, an entrywise product.
Here, aµ ∈ RN×1 is the µ-th row vector of the measurement
matrix A. Letting uT,µ = (u1

T,µ, · · · ,un
T,µ) ∈ R1×nT , the ℓ2-

norm term that is appeared in the second exponential function
in (8) can be represented as

∑n
a=1

∑T
t=1 βt∥Axa

t − y∥22 =∑P
µ=1 uT,µu

⊤
T,µ.

All rows aµ of the measurement matrix A are independent
each other. In the large-system limit where P,N →∞ while
α = P/N is kept finite, the vector uT,µ follows an nT -
dimensional multivariate Normal distribution with mean 0 and
covariance matrix Σ by the central limit theorem: uT,µ ∼
N (0,Σ). The covariance matrix Σ ∈ RnT×nT consists of
n × n blocks, and its (a, b)-block Σa,b = EA,n[u

a⊤
T,µu

b
T,µ] ∈

RT×T can be obtained by

Σa,b =

{
B ◦ (P a−Ma−Ma⊤+R+S0), a = b,
B ◦ (Qa,b−Ma−Ma⊤+R+S0), a ̸= b,

(14)

where B =
√
β
⊤√

β, Ma = ma11×T , R = r1T×T , and
S0 = σ2

01T×T . For sufficiently large P and N , the second
expectation in (8) can be evaluated as

EA,n[exp(−
∑n

a=1

∑T
t=1 βt∥Axa

t − y∥22)]
= EuT,1,··· ,uT,P

[exp(−
∑P

µ=1 uT,µu
⊤
T,µ)]

= (Eu∼N (0,Σ)[e
−uu⊤

])P = |I + 2Σ|−P/2, (15)

by applying the Gaussian integral.
To proceed further, we assume the replica symmetry that

means that the parameters do not depend on the replica
index a, i.e., ma = m, P a = P , Qa,b = Q for ∀a, b ∈
{1, · · · , n}. Using (15), the replica symmetric assumption,
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and the saddle-point method [22], the quantity (8) becomes
limN→∞(−βTN)−1 lnEA,x0,n[(Z

T
1 )

n] = extrΘ̌(A+B), with

A =(−βTN)−1 ln |I + 2Σ|−P/2, (16)

B =(−βTN)−1 lnEx0

[∫ (∏
a

∏
t

dxa
t e

−βtλ∥wt(x
a
t−1)

⊤xt∥1

)
δ(x⊤

0 x0−Nr)
{∏

a

δ(Xa⊤
T x0−Nma)δ(Xa⊤

T Xa
T−NP a)

}
{∏

a

∏
b ̸=a

δ(Xa⊤
T Xb

T−NQa,b)

}]
, (17)

where extr denotes the extremization operator, and we put
Θ̌ = {r,m, P,Q} for abbreviation. For any matrices X =
(xi,j) and C = (ci,j), we define the Dirac delta function as
δ(X − C) =

∏
i,j δ(xi,j − ci,j).

First, we calculate the term A. Using (14) and the replica
symmetric assumption, we have

A =α(2βT )
−1 ln{|I+2B◦(P−Q)|n−1

|I+2B◦(P−Q)+2nB◦(Q−M−M⊤+R+S0)|},(18)

where M = m11×T . We next evaluate the term B. Us-
ing the Fourier integral form of the Dirac delta function
δ(x) = (2πi)−1

∫∞i

−∞i
dx̂ex̂x, the Dirac delta functions in (17)

becomes

δ(x⊤
0 x0 −Nr) =

∫
dr̂
2πie

r̂(x⊤
0 x0−Nr),

δ(Xa⊤
T x0 −Nma) =

∏
t

∫ dm̂a
t

2πi e
m̂a

t (x
a⊤
t x0−Nma

t ),

δ(Xa⊤
T Xa

T−NP a) =
∏

s

∏
t

∫ dP̂a
s,t

2πi eP̂
a
s,t(x

a⊤
s xa

t −NPa
s,t),

δ(Xa⊤
T Xb

T−NQa,b) =
∏

s

∏
t

∫ dQ̂a,b
s,t

2πi eQ̂
a,b
s,t (x

a⊤
s xb

t−NQa,b
s,t ),

where ma = (ma
t ), P

a = (P a
s,t), and Qa,b = (Qa,b

s,t ). Using
these equations, the replica symmetric assumption, and the
saddle-point method [22], the term B becomes

B =−1
βT

extr ˜̌Θ(−r̃r −2nm̃
⊤m−ntrP̃⊤P −n(n−1)trQ̃⊤Q

+ lnEx0{(
∏

a

∫
dx̄a

T ) exp[−
∑

a

∑
t βt|wt(x

a
t−1)x

a
t |

+ r̃x2
0 + 2

∑
a x̄

a⊤
T m̃x0 +

∑
a x̄

a⊤
T P̃ x̄a

T

+
∑

a

∑
b̸=a x̄

a⊤
T Q̃x̄b

T ]}), (19)

where we put ˜̌Θ = {r̃, m̃, P̃ , Q̃} and x̄a
T = (xa

1 , · · · , xa
T )

⊤.
In the reference [9], it has been shown that the off-diagonal

entries of P−Q and Q̃−P̃ asymptotically vanish relatively to
its diagonal ones as β1 →∞, · · · , βT →∞. As a result, this
property causes that the order parameter matrices P , P̃ , Q,
and Q̃ can be regarded as diagonal ones asymptotically, i.e.,
even if we treat that P , P̃ , Q, and Q̃ are diagonal, we can
obtain the same result. Although this property must be shown,
in this analysis we just assume that the matrices P , P̃ , Q, and
Q̃ are diagonal.

To evaluate the operator extr, we need to solve the saddle-
point equations. Some parameters diverges to infinity as βt →
∞. To avoid this divergence, the terms that includes βt in
A and B must be O(βt). Thus, we introduce the variable

transformations: m̂t = 2m̃t/βt, P̂tt = 2(Q̃tt − P̃tt)/βt,
χtt = βt(Ptt −Qtt), and χ̂tt = 2Q̃tt/β

2
t , which gives

limN→∞(−βTN)−1Ex0
[lnZT

1 ]

= limn→0 n
−1 limN→∞(−βTN)−1 lnEx0 [(Z

T
1 )

n]

= 1
βT

extrΘ(
∑T

t=1{βtα
σ2
0+(r−2mt+Ptt)

1+2χtt
+βtm̂tmt−βt

P̂ttPtt

2

+ βt
χ̂ttχtt

2 + α
2 ln(1+2χtt)}− 1

βT
Ex0

[
∫
RT Dz ln{

∫
RT dx̄T

exp[− 1
2

∑T
t=1 βtP̂ttx

2
t +

∑T
t=1 βt(zt

√
χ̂tt + x0m̂t)xt

−
∑T

t=1 βtλ|wt(xt−1)xt|]}]), (20)

where Θ = {m, P, χ, m̂, P̂ , χ̂} and x̄T = (x1, · · · , xT )
⊤.

Substituting (20) into (7), we can calculate the free energy
density fT . Taking the limit β1 → ∞, · · · , βT → ∞ in this
order, the integrals on x1, · · · , xT converges to corresponding
minimization problems. All of them except the integrals on
xT are cancelled in the free energy density fT , and the
past estimates affect the free energy density only via the
weight of the weighted ℓ1-norm. Finally, we arrive at the
free energy density of the estimate at the T -th iteration:
fT = extrΘT

FT (ΘT ) with

FT (ΘT )

= α
σ2
0 + (r − 2mT + PTT )

1 + 2χTT
+ m̂TmT −

P̂TTPTT

2

+
χ̂TTχTT

2
+ Ex0

[∫
Dzmin

xT

(
1

2
P̂TTx

2
T −

{
zT

√
χ̂TT

+ m̂Tx0

}
xT + λ|wT (x

∗
T−1(zT−1))xT |

)]
, (21)

where Dz =
∏T

t=1 Dzt, Dzt = (2π)−1/2e−z2
t /2dzt, and ΘT

= {mT , PTT , χTT , m̂T , P̂TT , χ̂TT }. The mean-squred error
of the estimate at the T -th iteration can be evaluated by
MSE = r−2mT +PTT , where mT and PTT are solutions to
the saddle-point equations, i.e., ∂FT

∂mT
= ∂FT

∂PTT
= ∂FT

∂χTT
= ∂FT

∂m̂T

= ∂FT

∂P̂TT
= ∂FT

∂χ̂TT
= 0, which are the stationary point equations.

The function x∗
t (zt) in (21) corresponds to the estimate at the

t-th iteration. It can be obtained by

x∗
t (zt) = argmin

xt∈R

(
1

2
P̂ttx

2
t −

{
zt
√

χ̂tt + m̂tx0

}
xt

+ λ|wt(x̂
∗
t−1(zt−1))xt|

)
. (22)

Since this equation has a recursive form, we have to solve
x∗
1(z1), · · · , x∗

T (zT ) in this order. According to Algorithm 1,
w1(x

∗
0(z0)) = 1 must hold. Therefore, we do not need to

calculate x∗
0(z0).

IV. RESULTS

Using (21) and (22), we can evaluate our theoretical MSE of
the estimate of IRLasso at the T -th iteration. It is shown that
the order parameters r, mT , and PTT are given as values that
minimizes the free energy density averaged over A, x0, and
n, i.e., r = Ex0(∥x0∥22), mT = EA,x0,n(x

⊤
T x0), and PTT =

EA,x0,n(x
⊤
T xT ). We then have MSE at the T -th iteration as

MSE(T ) = EA,x0,n(∥x0 − xT ∥22) = r − 2mT + PTT .
Since we need information of the estimate at the (t− 1)-th

iteration to calculate MSE of the estimate at the t-th iteration,
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(a) t = 1. Left: theory. Right: simulation. N = 1000. Average over 10 trials.
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Fig. 1. MSE at the first and the second iterations. Horizontal axis: signal density ρ. Vertical axis: compression rate α.

the result has a recursive form. The calculation to obtain MSE
of the estimate at the T -th iteration is as follows: 1) Set t = 0;
2) t ← t + 1; 3) Calculate mt, Ptt, χtt, m̂t, P̂tt, and χ̂tt by
solving the saddle-point equations; 4) If t < T , go back to the
step 2; 5) Calculate MSE(T ) = r−2mT +PTT , which is the
result.

Figure 1 shows comparisons between our theory and numer-
ical simulations. As a distribution of the original vector to be
estimated x0, the Bernoulli-Gauss distribution px0

(x) = (1−
ρ)δ(x) + ρ(2π)−1/2e−x2/2 is applied here. The parameter ρ
is referred to as the signal density. Note that r = Ex0

[x2
0] = ρ

holds in this case. The horizontal axis is the signal density
ρ, and the vertical axis is the compression rate α. We set
wt(x) = (|x| + 0.1)−1 for all t as the weight function. The
other parameters are λ = 0.1, σ2

0 = 0.1, and T = 2. We can
confirm that the theoretical results are in good agreement with
the numerical simulations.

In the region where MSE is small enough, the estimate
at the first iteration is very close to the original vector
x0. Therefore, the weight for the second iteration can be
appropriately chosen. As a result, the estimate at the second
iteration is improved. On the other hand, in the region where
MSE is not so small, the weight for the second iteration cannot
be appropriately prepared, which causes that the estimate at
the second iteration becomes worse than the result of the ℓ1
minimization without the reweighting.

V. DISCUSSION

Let us consider property of the optimal weight function.
Using the result of our analysis, we can consider the weight
function that minimizes the typical MSE. Since the weight
functions are continuous, it might be hard to optimize a
sequence of the weight functions w1, · · · , wT . Instead, we
treat the case where the form of the weight function is fixed
to wt(x) = (|x|+ϵ)−a ∀t only, and consider how to optimize
the parameters a and ϵ as the first step. The distribution of the
original vector is set to the Bernoulli-Gauss distribution.

We first discuss the dependency on a. The other parameters
are ϵ = 0.1, λ = 0.001, and σ2

0 = 0. Figure 2 (a) shows the
dependency of MSE on a for a fixed ϵ in the case where the
estimate at the first iteration is used to determine the weight.
It can be confirmed that a = 1, which is commonly used, is
not optimal, where when the parameter a gives the minimum
MSE, it is called optimal. We confirmed that the optimal value
of a depends on the parameters such as the compression rate α
and the signal density ρ. Figure 2 (b) shows the dependency of
MSE on a for a fixed ϵ in the case where the original vector to
be estimated x0 is used to determine the weight. The weight
defined by the original vector x0 can most sharply pinch the
weighted ℓ1 ball at x0. We can evaluate MSE of this scheme
theoretically in the same way to the calculation for T = 1.
Since the estimate is close to the original vector in the region
where MSE is small enough, the optimal a is almost same.
However, when MSE is not small, there is a difference between
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Fig. 2. MSE for wt(x) = (|x|+ ϵ)−a. ϵ = 0.1, α = 0.9, and ρ ∈ {0.1, 0.2, · · · , 0.9} (in order from the bottom). Circles: optimal a.

them.
We have also evaluated the dependency on ϵ and have

confirmed that the optimal value of ϵ also depends on the
parameters. It should be noted that this analysis must be
adopted to other types of measurement matrices, e.g., the
rotation invariant matrices [23] and matrices with non-zero-
mean entries [24], [25].

VI. SUMMARY

We analyzed the mean squared error of the estimates of
the iterative reweighted Lasso by the replica analysis which
is one of the statistical mechanical approach. Regions where
the reweighting becomes effective were revealed. We showed
that the weight function wt(x) = (|x|+0.1)−1 is not optimal,
and the optimal weight function depended on the parameters
such as the compression rate and the signal density. Our theory
can give property of suitable weight functions. To obtain the
optimal weight function is one of our future works.
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