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Abstract—This paper deals with nonlinear matrix completion
problem, which is a problem of estimating missing entries in
a given matrix, where its column vectors belong to a low
dimensional manifold. Authors have proposed the method which
assumes that a low dimensional manifold can be approximated
locally as a low dimensional linear subspace and iteratively solves
low-rank matrix completion problems for submatrices generated
by using the k-means clustering for several values of k and
restores missing entries. To reduce the computational time, this
paper a faster solving technique by alternating optimization
using the gradient method for the low-rank submatrix completion
problem. Numerical examples show that the proposed algorithm
achieves better performance than other algorithms.

Index Terms—nonlinear matrix completion, matrix rank min-
imization, compressed sensing

I. INTRODUCTION

This paper deals with matrix completion problem, which is
a problem of restoring missing entries in a given matrix. The
low-rank matrix completion problem has various applications
in the field of signal processing, including collaborative filter-
ing [1], low-order model fitting and system identification [2],
image inpainting [3], and human-motion recovery [4], all of
which are formulated as signal-recovery or estimation prob-
lems. Several methods of estimating missing entries have been
studied, and most of them solve matrix completion problems
by assuming that column or row vectors of a matrix belong
to a low dimensional linear subspace and formulating them as
matrix rank minimization problems [5]–[8]. However, in most
practical applications, the column vectors of a matrix belong
to an low dimensional manifold, these classical methods do
not achieve high performance.

To achieve higher recovery performance for real applica-
tions, authors have proposed some algorithms for the nonlinear
matrix completion problem. One of the methods is based on
the assumption that a local neighborhood of each vector on
the manifold can be approximated as a low dimensional linear
subspace [9]. This approach iteratively solves low-rank matrix
completion problems for submatrices consisting of neighbor
column vectors of the matrix and achieves higher recovery
performance. However, it takes a lot of computing time to

estimate missing entries because submatrices are generated
for all column vectors using their neighbors and because
each matrix completion problem is solved repeatedly until
converge. To provide a faster algorithm based on the locally
low-rank approach, authors have proposed a new locally low-
rank approach, which iteratively solves low-rank submatrix
completion problems generated by using the k-means cluster-
ing for several values of k [10]. To further reduce the computa-
tional time, this paper reformulates the submatrix completion
problem used in [10] and propose a faster solving technique by
alternating optimization using the gradient method. Numerical
examples show that the proposed algorithm solves nonlinear
matrix completion problems better than a classical low-rank
approach and takes less computing time than the locally low-
rank approach.

II. MATRIX COMPLETION AND LOW-RANK
APPROACH

A. LINEAR MATRIX COMPLETION

This section introduces the nonlinear matrix completion and
its solution.

Firstly, this paper describes a general linear matrix com-
pletion problem. The matrix completion problem is a problem
which estimate missing entries of a matrixX ∈ RM×N . Many
classical methods assume that the column (or row) vectors of
the matrix belong to a low dimensional linear subspace and
solve the following matrix rank minimization problem,

Minimize rank(X)
subject to PΩ(X) = PΩ(Xtrue)

, (1)

where Ω denotes a given index set, PΩ : RM×N 7→ RM×N
denotes a linear operator that projects all entries except sub-
scripts included in the set Ω to 0, and Xtrue denotes a true
matrix to be recovered. Instead of ranks, a variety of objective
functions are used since the problem (1) is known as NP-hard.
This paper introduces a truncated nuclear norm minimization
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approach, which relaxes the objective function of (1) by the
truncated nuclear norm of X as follows,

Minimize ‖X‖∗,r
subject to PΩ(X) = PΩ(Xtrue)

, (2)

where ‖X‖∗,r with given constant r denotes the truncated
nuclear norm defined by

‖X‖∗,r =

M∑
i=r+1

σi (3)

with respect to the i-th greatest singular value σi of X . This
problem can be solved by iterative partial matrix shrinkage
algorithm (IPMS) [7] which iterates the following update
schemes until converge,

Step 1 Z ← T r,λ(X)
Step 2 X ← P c

Ω(Z) + PΩ(Xtrue),

where T r,λ(X) denotes a partial soft thresholding operator,
which shrinks i-th greatest singular values by λ, that is,
replaces σi by max(0, σi − λ) for i = r + 1, r + 2, · · · ,M .
The update scheme achieves the best performance when the
parameter r satisfies r = rank(Xtrue). Although the best
parameter r is usually unknown, a heuristic algorithm to search
for r has been proposed in [7].

However, in most practical applications, the column vectors
of a matrix do not belong to a low dimensional linear subspace.
Therefore, the classical methods which estimate the low-rank
matrix do not achieve high performance.

B. NONLINEAR MATRIX COMPLETION

In recent years, several methods which assume that the
column vector of the matrix belong to a low dimensional
manifold have been proposed. This paper introduces our
approach based on the idea which local area of each vector
on the manifold can be approximated by a low dimensional
linear subspace.

Let us define the diagonal matrix D(i) ∈ {0, 1}N×N for
i = 1, · · · , N . [9] assumes that the submatrix XD(i) can
be approximated by a low-rank matrix if the j-th diagonal
element D(i)

j,j is defined by

D
(i)
j,j =

{
1 if xj is nearest neighbor of xi
0 otherwise , (4)

where xi denotes i-th column vector ofX . Thus, the nonlinear
matrix completion problem is formulated by the following
local matrix completion problem,

Minimize
N∑
i=1

‖XD(i)‖∗,r

subject to PΩ(X) = PΩ(Xtrue)

. (5)

[9] has proposed an algorithm using the IPMS algorithm, and
the algorithm iterates the following update scheme for each i,

Step 1 Obtain D(i) by (4)
Step 2 Z ← T r,λ(XD(i))

Step 3 Y ← ZD(i) +X(I −D(i))
Step 4 X ← P c

Ω(Y ) + PΩ(Xtrue),

where I denotes the identity matrix and the nearest neighbor
is provided w.r.t. Euclidean distance in Step 1.

However, this algorithm requires N singular value decom-
positions (SVDs) in one iteration and requires significant com-
puting time. To reduce the number of submatrix completion
problems, [10] has proposed a new algorithm, which applies
the k-means clustering method to xi w.r.t. Euclidean distance
and gives k submatrix completion problems of k clusters. [10]
defines diagonal matrix D(i) whose j-th diagonal entries D(i)

j,j

is defined by

D
(i)
j,j =

{
1 if xj is a member of the i-th clustering
0 otherwise ,

(6)

and then considers a relaxed submatrix completion problem
with (6) as follows,

Minimize
k∑
i=1

‖XD(i)‖∗,r

subject to PΩ(X) = PΩ(Xtrue)

. (7)

Since the algorithm for (7) requires k SVDs in one iteration,
the computational time cost can be significantly reduced
when k � N . However, the algorithm corresponds with
a low-rank approach based on the assumption that column
vectors belong to multiple low dimensional linear subspaces,
that is, a manifold is approximated by piece-wise linear
subspaces, and the recovery accuracy decreases. To achieve
high recovery accuracy, [10] has proposed multiple k-means
clustering based algorithm, which uses k-means clustering for
k ∈ {k1, k2, ..., kK}, where ki denotes the number of members
in the i-th cluster. Based on the idea, the submatrix completion
problem is formulated as follows,

Minimize
K∑
l=1

kl∑
i=1

‖XD(l,i)‖∗,r

subject to PΩ(X) = PΩ(Xtrue)

, (8)

where D(l,i) is defined by

D
(l,i)
j,j =

 1
if xj is a member of the i-th cluster
of the l-th clustering (k = kl)

0 otherwise
,

(9)

A solution of this problem is obtained by the same update
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Algorithm 1 Multiple k-means clustering based locally low-
rank algorithm.
Require: X(0), {kl}Kl=1, δ, αmin, ηα, ε, tmax

1: X ←X(0), t← 0, α← 1
2: repeat
3: Xold ←X, t← t+ 1, α← max(α/ηα, αmin)
4: for l = 1 to K do
5: Apply the kl-means clustering to {xi}Ni=1, obtain kl

clusters, and construct D(l,i)

6: for i = 1 to kl do
7: [U , σ1, σ2, · · · , σM ,V ]← SVD(XD(l,i))
8: r̂ ← argmin

r
σr s.t. σr ≥ ασ1

9: λ← δσr̂
10: Z(l,i) ← T r̂,λ(XD(l,i))

11: Y ← Z(l,i)D(l,i) +X(I −D(l,i))
12: X ← P c

Ω(Y ) + PΩ(X(0))
13: end for
14: end for
15: until ‖Xold −X‖F /‖X‖F < ε or tmax < t
Ensure: X .

scheme for (5) replacing D(i) with D(l,i). Finally, this papar
shows the multiple k-means clustering based locally low-rank
algorithm as shown in Algorithm 1, where X is partially
shrunk according to submatrix completion problems (8) after
applying kl-means clustering for l ∈ {1, 2, ...,K} and con-
structing {D(l,i)}Kl=1. This algorithm requires

∑K
l=1 kl SVDs

in one iteration.

III. ACCELERATION FOR MULTIPLE k-MEANS
CLUSTERING BASED LOCALLY LOW-RANK

APPROACH

The major computational cost of Algorithm 1 is derived
from computing the SVD. To reduce the cost, this paper refor-
mulates (8) using substitute objective function and proposes an
algorithm based on alternating optimization using the gradient
method instead of SVD.

Firstly, this paper considers the standard linear matrix
completion problem. If the rank of X is low, there exists
a low rank matrix W ∈ RM×M such that X = WX is
satisfied. Based on the idea, [8] has formulated the low-rank
matrix completion problem as follows,

Minimize ‖W ‖2F
subject to X = WX,PΩ(X) = PΩ(Xtrue)

, (10)

where ‖ · ‖F denotes the Frobenius norm. In order to provide
an update scheme, (11) is relaxed as follows,

Minimize ‖(I −W )X‖2F + γ‖W ‖2F
subject to PΩ(X) = PΩ(Xtrue)

, (11)

where γ > 0 is given constant. Thus, this paper reformulates
the problem (8) by substituting an objective function as

follows,

Minimize
K∑
l=1

kl∑
i=1

fγ(W (l,i),XD(l,i))

subject to PΩ(X) = PΩ(Xtrue)

, (12)

where fγ is defined by

fγ(W (l,i),XD(l,i)) = ‖(I −W (l,i))XD(l,i)‖2F + γ‖W (l,i)‖2F
(13)

Since this problem is the bi-convex quadratic problem for X
and W (l,i), the solution of this problem can be obtained by
an alternating optimization for X and W (l,i) for each (l, i).
To reduce the computational time cost, this paper proposes
an algorithm using the gradient descent method although the
optimal solution W (l,i) can be solved using SVD.

Let us focus on computing W (l,i) with fixed X . We have

∇W (l,i) =
1

2

∂

∂W (l,i)
fγ(W (l,i),XD(l,i))

= γW (l,i) +W (l,i)XD(l,i)XT −XD(l,i)XT ,
(14)

and consider the step length µ for this gradient. Because
fγ(W (l,i)−µ∇W (l,i) ,XD(l,i)) is a convex quadratic function
of µ for given W (l,i) and X and because it holds that

1

2

∂

∂µ
fγ(W (l,i) − µ∇W (l,i) ,XD(l,i))

= µ
(
‖∇W (l,i)XD(l,i)‖2F + γ‖∇W (l,i)‖2F

)
+ trace(XD(l,i)XT∇T

W (l,i)(W
(l,i) − I) + γ∇T

W (l,i)W
(l,i)),

the step length minimizing fγ(W (l,i)−µ∇W (l,i) ,XD(l,i)) is
obtained as follows,

µ =
trace(XD(l,i)XT∇T

W (l,i)(W
(l,i) − I) + γ∇T

W (l,i))(
‖∇W (l,i)XD(l,i)‖2F + γ‖∇W (l,i)‖2F

) .

(15)

In the same way, the gradient for X with fixed W (l,i) is
obtained

∇X =
1

2

∂

∂X
fγ(W (l,i),XD(l,i))

= (I −W (l,i))T (I −W (l,i))XD(l,i), (16)

and the step length τ minimizing fγ(W (l,i), (X −
τ∇X)D(l,i)) is obtained as follows,

τ =
trace((I −W (l,i))T (I −W (l,i))∇XD(l,i)XT )

‖(I −W (l,i))∇XD(l,i)‖2F
. (17)

1947



Algorithm 2 Multiple k-means clustering based locally low-
rank algorithm using gradient descent.

Require: X(0), {kl}Kl=1, γmax, γmin, ηγ , ε, tmax
1: X ←X(0), t← 0, γ ← γmax
2: W (l,i) ← 0
3: repeat
4: Xold ←X, t← t+ 1, γ ← max(γ/ηγ , γmin)
5: for l = 1 to K do
6: Apply the kl-means clustering to {xi}Ni=1, obtain kl

clusters, and construct D(l,i)

7: for i = 1 to kl do
8: ∇W (l,i) ← (14)
9: µ← (15)

10: W (l,i) ←W (l,i) − µ∇W (l,i)

11: ∇X ← (16)
12: τ ← (17)
13: X ← P c

Ω(X − τ∇X) + PΩ(X(0))
14: end for
15: end for
16: until ‖Xold −X‖F /‖X‖F < ε or tmax < t
Ensure: X .

Finally, this papar shows the algorithm for (2) using the
gradient descent as shown in Algorithm 2. In Algorithm 2,
this paper utilizes a heuristic technique similar to [6] to give
the the parameter γ which achieves the best performance.

IV. NUMERICAL EXAMPLE

This section presents several numerical examples for the
nonlinear matrix completion. In this section, each i-th column
vector of Xtrue ∈ RM×N is generated by the following
mapping function ψp : Rr 7→ R(r+p

p ) defined as

ψp(y) = (yα)|α|≤p ∈ R(r+p
p ), (18)

where α = [α1 · · · αr] denotes a multi-index of non-
negative integers, yα is defined as yα = yα1

1 · · · yαr
r ,

|α| = α1 + · · · + αr. The matrix Xtrue is generated by
Up

[
ψp(y1),ψp(y2), · · · ,ψp(yN )

]
using Up ∈ RM×(r+p

p )

and Y = [y1 y2 · · · yN ] ∈ Rr×N generated by an
i.i.d. continuous uniform distribution whose supports are
[−0.5, 0.5] and [−1, 1], the elements of Y are normalized as
max |(Y )i,j | = 1. The index set Ω is generated using the
Bernoulli distribution with the given probability q = 0.3, for
which an index (i, j) belongs to Ω. This paper uses relative
recovery error as

RE [%] =
‖Xtrue −X‖F
‖Xtrue‖F

× 100

to evaluate each algorithm. All numerical experiments were
run in MATLAB 2020a on a PC with an AMD Ryzen 7 3700X
3.6 GHz CPU, 16GB of RAM, and no swap memory.

TABLE I
THE AVERAGE COMPUTATIONAL TIME COST (SECOND) OF THE

ALGORITHMS

Algorithm IPMS Algorithm 1 Algorithm 2

8.4 [s] 161.4[s] 88.4[s]

Fig. 1. Average RE of Algorithm 2 with γmax ∈ {10−1, · · · , 104} for 10
trials with p = 5, r = 4 for (18)

Fig. 2. Average RE for 10 trials with p = 3 for (18)

Fig. 3. Average RE for 10 trials with p = 5 for (18)
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Fig. 4. Average RE for 10 trials with p = 7 for (18)

This paper applies the low-rank matrix-completion algo-
rithm IPMS [7], the nonlinear matrix completion method Al-
gorithm 1 [10]) and Algorithm 2 (proposed method) to several
matrix completion problems with M = 100, N = 4, 000,
and p = 3, 5, 7 for (18). A maximum iteration number of
tmax = 1, 000 is used for IPMS, Algorithm 1, and Algorithm
2. The parameters for IPMS and Algorithm 1 are given as
ηα = 10

4
tmax , δ = 10−2, K = 3, and (k1, k2, k3) =

[20, 30, 40], which are used for a numerical example in [10].
In Algorithm 2, the parameters in common with Algorithm
1 are used as same as those, and the other parameters are
given as γmax = 101 and ηγ = 10

5
tmax . The parameter

γmax = 101 in Algorithm 2 achieves the best performance
in the result for p = 5, r = 4 (Fig. 1). The results are shown
in Fig. 2-4 for r ∈ {2, 3, 4, 5, 6}. As can be seen, estimation
accuracy of Algorithm 2 is almost same as that of Algorithm
1 for r = 2, 3, 4. The average computational time costs for all
experiments are shown in Table I. This result indicates that
Algorithm 2 is about 1.8 times faster.

Furthermore, this paper evaluates Algorithm 2 on the motion
capture data, which consists of time-series trajectories of
human motions such as running and jumping. This paper
uses the trial #6 of subject #56 of the CMU motion capture
dataset. The data has measurements from M = 62 sensors at
6784 time instants, which the data matrix is known as high
rank matrix. In this experiment, the sequence is downsampled
by factor 2, which the data matrix has M = 62 rows and
N = 3392 columns. Then, the elements of the data matrix
were randomly observed with the ratio q = 0.3, and this
paper applied the matrix completion algorithms with the same
parameters which is used in the previous simulation result.
The average computational time costs and recovery errors for
10 trials are shown in Table II. Similar to results on synthetic
data, the estimation accuracies of Algorithm 1 and 2 are better
than that of IPMS, and the computational time of Algorithm
2 is less than half that of Algorithm 1.

V. CONCLUSION

This paper deals with nonlinear matrix completion problem,
which is a problem of restoring missing entries in a given
matrix, where its column vectors belong to a low dimensional

TABLE II
THE AVERAGE COMPUTATIONAL TIME COST (SECOND) AND RECOVERY

ERROR OF THE ALGORITHMSFOR CMU DATASET

Algorithm IPMS Algorithm 1 Algorithm 2

Time cost 4.7 [s] 97.5[s] 45.4[s]
RE 33.1 [%] 14.2[%] 17.4[%]

manifold. Although the conventional locally low-rank algo-
rithm has a good recovery performance for this problem, it
requires a lot of computing time. To reduce computational
cost, this paper proposes an acceleration technique which
iteratively solves low-rank submatrix completion problems
using gradient descent instead of singular value decomposi-
tion. Numerical examples show that the proposed algorithm
is about 1.8 times faster and has almost the same recovery
performance comparing with the original locally low-rank
algorithm. Because the convergence of the proposed algorithm
is not guaranteed, further analysis of the algorithm would be
required.
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