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ABSTRACT

Most compressed sensing algorithms do not account for
the effect of saturation in noisy compressed measurements,
though saturation is an important consequence of the lim-
ited dynamic range of existing sensors. The few algorithms
that handle saturation effects either simply discard saturated
measurements, or impose additional constraints to ensure
consistency of the estimated signal with the saturated mea-
surements (based on a known saturation threshold) given
uniform-bounded noise. In this paper, we instead propose
a new data fidelity function which is directly based on en-
suring a certain form of consistency between the signal and
the saturated measurements, and can be expressed as the
negative logarithm of a certain carefully designed likelihood
function. Our estimator works even in the case of Gaussian
noise (which is potentially unbounded) in the measurements.
We prove that our data fidelity function is convex. More-
over, we show that it satisfies the condition of Restricted
Strong Convexity and thereby derive an upper bound on the
reconstruction error of the estimator. We also show that our
technique experimentally yields results superior to the state
of the art under a wide variety of experimental settings, for
compressive signal recovery from noisy and saturated mea-
surements.

Index Terms— Compressed sensing, Noisy and Satu-
rated measurements

1. INTRODUCTION

Compressed sensing (CS) aims to recover the true signalx∗ ∈
Rn from its ‘compressive measurements’ of the form y =
Ax∗ + η where A ∈ Rm×n with m � n is a sensing ma-
trix representing the forward model of the compressive de-
vice, and y ∈ Rm is a vector of (possibly noisy) compressive
measurements. The noise vector is η ∈ Rm. Although this
problem is ill-posed for most vectors in Rn, CS theory states
that it is well-posed and that the signal x∗ can be recovered
with high accuracy [4], if x∗ is a sparse (or weakly-sparse)
vector, andA obeys the so-called restricted isometry property
(RIP). A sensing matrix A is said to obey the RIP of order s,
if for any s-sparse vector x∗, we have ‖Ax∗‖22 ≈ ‖x∗‖22.
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Here, the degree of approximation is given by the so-called
s-order restricted isometry constant (RIC) of A. There exist
precise error bounds for the recovery of x∗ [4]. Moreover,
most of the algorithms for CS recovery are also efficient in
terms of computation speed, a well-known example being the
LASSO [6], which seeks to minimize the objective function
J(x) , ‖y −Ax‖22 + λ‖x‖1, given a regularization param-
eter λ.

However, the vast majority of the literature assumes a zero
mean i.i.d. Gaussian distribution (with known variance) as the
noise model. Many practical sensing systems, on the other
hand, innately enforce noise of other distributions. Almost
all sensors have a fixed (and usually known) dynamic range
[a, b], a < b. However the underlying signal may be such that
not all measurements Aix∗ (where Ai is the ith row of A)
can be accommodated within this range. Such measurements
then get ‘clipped’ to the value a if Aix∗ < a, or to the value
b if Aix∗ > b. This is called the ‘saturation effect’, and
is common in all sensing systems (not only the compressive
ones).

Problem statement: In this paper, we consider the fol-
lowing forward model for the measurements y for a compres-
sive device with dynamic range [−τ, τ ]:

∀i ∈ {1, 2, ...,m}, yi = C(Aix∗ + ηi;−τ, τ). (1)

Here the noise values are i.i.d., with ηi ∼ N (0, σ2) with
known standard deviation σ. Also C(q; a, b) is a saturation
operator defined as follows:

C(q; a, b) =


a if q < a,

b if q > b,

q if q ∈ [a, b].

(2)

If q < a, the value of q is clipped to a, which is called
‘negative saturation’. If q > b, the value of q is clipped to
b, which is called ‘positive saturation’. Given the forward
model in Eqn. 1 with known A and τ , we seek to recover a
sparse/weakly-sparse vector x from its compressive measure-
ments y.

1.1. Previous Work

There exists a moderate-sized literature on the problem of
CS recovery from saturated measurements, which we sum-
marize here. Right through this paper, we use S−, S+ to
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denote the sets that respectively consist of indices of neg-
atively and positively saturated measurements. Also, S de-
notes the set of indices of all measurements, and the set of in-
dices of non-saturated measurements is Sns , S−S+−S−.
We assume Sns, S+ and S− to be known beforehand. The
work in [7] proposes two types of estimators for CS recov-
ery from measurements with saturation effects and uniform
quantization (i.e., bounded) noise: (1) ‘saturation rejection’
(SR), which weeds out saturated measurements and performs
recovery only from the non-saturated measurements via the
estimator: min‖x‖1 s. t.

∑
i∈Sns

(yi−Aix)2 ≤ ε2ns; and (2)
‘saturation consistency’ (SC), which imposes the added con-
straint in the SR estimator that ∀i ∈ S−,Aix ≤ −(τ − ∆)
and ∀i ∈ S+,Aix ≥ τ −∆, where ∆ denotes quantization
width. The SR method potentially ignores many useful mea-
surements (depending on the relation between τ and ‖x‖2),
and in the worst case the remaining part of the sensing ma-
trix may not obey the RIP due to an insufficient number of
measurements. The SC method is hard to adapt to saturation
effects with Gaussian noise, which is unbounded in nature.
The work in [8, 9] seeks to optimize the following cost func-
tion:

Jss(x) , λ(‖x‖1 + ‖r‖1) + ‖y − (Ax+ r)‖22
= λ‖x; r‖1 + ‖y − [A|I](x; r)‖22. (3)

When adapted to handle saturation, r would refer to the error
due to saturation effects. Also, (x; r) is the concatenation of
column vectors x, r; I is the n × n identity matrix; and the
‖r‖1 term promotes sparsity on the vector r. In this paper, we
term this approach ‘saturation sparsity’ (SS). Although [8, 9]
prove RIP of [A|I], that property is true only in an asymp-
totic sense as m → ∞ (with n → ∞ and m/n → 0). In the
realistic regime when m,n is small, we have observed that
such a technique has a tendency to estimate r to be a vector
of all zeroes, due to the penalty on ‖r‖1. Recent work in [13]
proposes a greedy approximation algorithm to minimize the
following cost function, designed to be resilient to measure-
ment outliers:

Jα(x) , ‖y −Ax‖pp + λ‖x‖0; 0 < p < 1. (4)

An approximation algorithm to minimize such a cost func-
tion is essential, as the `0 pseudo-norm otherwise renders this
problem to be NP-hard. Note that the approaches in [8, 9, 13]
were designed for general impulse noise and not for satura-
tion effects, and hence these methods do not use knowledge
of the saturation threshold τ . Very recent work in [5] pro-
vides theoretical bounds for the following interesting estima-
tor, termed ‘noise-cognizant `1-minimization’ (NCLM):

argminx,r‖x‖1 such that (i)C(Ax+ r;−τ, τ) = y, (5)

(ii)‖r‖2 ≤ γ1ε; (iii)‖x‖2 ≤ γ2µ
√
m.

The parameters γ1, γ2, µ need to be selected based on proper-
ties of the sensing matrix, ε is a bound on ‖y−Ax‖2, and the

vector r plays the same role as in Eqn. 3. Our method pre-
sented in this paper does not require the choice of parameters
γ1, γ2 or an upper bound on ‖x‖2. An algorithm that deals
with saturation in CS measurements explicitly is presented
in [12] along with a dictionary learning framework. They
propose a data fidelity term that is different from our prob-
abilistically motivated one. The difference in the behavior
of the two data fidelity terms will be prominent if y contains
saturated measurements which would have otherwise attained
very large magnitude in the absence of saturation. Moreover,
their work does not present any error bound analysis unlike
our work here.
The rest of this paper is organized as follows. The main ob-
jective function and its properties are presented in Sec. 2.
Several numerical results are presented and discussed in Sec.
3. We conclude in Sec. 4 with a discussion of avenues for
future work.

2. MAIN METHOD

In this section, we first present the cost function which we
seek to optimize, for CS recovery under saturated measure-
ments. Although we consider the signal x to be sparse in
the canonical basis, our method is easily extensible to a sig-
nal that in sparse/weakly sparse in any known orthonormal
basis (see Sec. 3). In the following, Φ(.) denotes the cumu-
lative distribution function (CDF) of a standard normal ran-
dom variable, and φ(.) denotes its probability density func-
tion (PDF).

2.1. Cost function and its properties

Our cost function Jour(x) is given below:

Jour(x) = λ‖x‖1 + L(y,Ax; τ), (6)

where

L(y,Ax; τ) ,
1

2

∑
i∈Sns

(yi −Aix
σ

)2

−
∑
i∈S+

log
(

1−Φ((τ−Aix)/σ)
)
−
∑
i∈S−

log
(

Φ((−τ−Aix)/σ)
)
.

The first term in L(y,Ax; τ) is due to the Gaussian noise
in the unsaturated measurements; the second (third) term
encourages the values of Aix, i.e., the members of S+

(likewise S−) to be much greater than τ (likewise much
less than −τ ). To understand the behaviour of the second
term of L(y,Ax; τ), consider a measurement yi such that
i ∈ S+. Referring to Eqn. 1, we have P (yi ≥ τ) = P (ηi ≥
τ − Aix) = 1 − Φ((τ − Aix)/σ). The last equality is
due to the Gaussian nature of ηi. Given such a measure-
ment, we seek to find x such that Aix > τ , which will push
τ − Aix toward −∞, i.e., push Φ((τ − Aix)/σ) toward
0, and thus reduce the cost function. A similar argument
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can be made for the third term involving S−. Consider that
P (yi < −τ) = P (ηi < −τ −Aix) = Φ((−τ −Aix)/σ).
We seek to find x, which will tend to push −τ − Aix to-
ward +∞, i.e., push Φ((−τ−Aix)/σ) toward 1, and thereby
reduce the cost function. Assuming independence of the mea-
surements, note that L(y,Ax; τ) is essentially the negative
log of the following likelihood function:

L̃(y,Ax; τ) ,
∏
i∈Sns

e−(yi−Aix)2/(2σ2)

σ
√

2π
(7)

∏
i∈S+

[1− Φ((τ −Aix)/σ)]
∏
i∈S−

Φ((−τ −Aix)/σ).

We henceforth term our technique ‘likelihood maximization’
or LM. The tendency to push Φ((τ −Aix)/σ) toward 0 or to
push Φ((−τ −Aix)/σ) toward 1, is counter-balanced by the
sparsity-promoting term ‖x‖1, with λ deciding the relative
weightage.

2.2. Theoretical Analysis

We now state an important property of L(y,Ax; τ), proved
in the supplemental material [1].
Theorem 1: L(y,Ax; τ) is a convex function of x.�
For further theoretical analysis, we present an overview of
the broad framework in [10] and then adapt it meticulously
for the analysis of our estimator in Eqn. 6. At first, we state
definitions/results L1, D1 and T1 from [10]. We then use
them to prove our results: Theorems 2, 3, 4. In the following,
we denote the true (unknown) signal as x∗. We also use the
notation m1 , |Sns|,m2 , |S+|,m3 , |S−|.
Lemma L1: (Lemma 1 of [10]): Let x̂λ be the optimum
of a convex cost function Lg(y;Ax) + λ‖x‖1 with a reg-
ularization parameter λ ≥ 2‖∇Lg(y;Ax∗)‖∞. Then the
error vector ∆ , x̂λ − x∗ belongs to the set C(G;x∗) ,
{∆|‖(x∗− x̂λ)Gc‖1 ≤ 3‖(x∗− x̂λ)G‖1, where G is the set
of indices of the s non-zero elements of x, Gc is its comple-
ment and ∀i ∈ G, xG(i) = xi > 0;∀i /∈ G, xG(i) = 0. �
Definition D1: A loss function L is said to obey the re-
stricted strong convexity (RSC) property with curvature
κL > 0 and tolerance function τL(x∗) if the Bregman di-
vergence δLg(∆,x∗) , Lg(y;Ax̂λ) − Lg(y;Ax∗) −
∇Lg(y;Ax∗)t(∆) (the error between the loss function value
at x̂λ and its first order Taylor series expansion about x∗)
satisfies δLg(∆,x∗) ≥ κL‖∆‖22 − τ2

L(x∗) for every vector
∆ ∈ C(G;x∗). �
Intuitively, a loss function that obeys RSC is sharply curved
around x∗, so that any difference in the loss function
|Lg(y;Ax∗) − Lg(y;Ax̂λ)| will imply a proportional es-
timation error ‖x∗ − x̂λ‖1 for all error vectors x̂λ − x∗ ∈
C(G;x∗). This property is an important sufficient condition
for the loss function to obey (in relation to the regularizer),
to allow for establishment of performance upper bounds. We
refer the reader to [10] for more details.
Theorem T1: (Theorem 1 of [10]) If Lg is convex, dif-
ferentiable and obeys RSC property with curvature κL and

tolerance τ2
L(x∗), if x̂λ is as defined in Lemma L1 with

λ ≥ 2‖∇L(y;Ax∗)‖∞, and if x∗ is an s-sparse vector, then

we have: ‖x̂λ − x∗‖22 ≤
9λ2s

κ2
L

+
2λτ2

L(x)

κL
.�

We now state the following theorems pertaining to the cost
function in Eqn. 6 and prove them in [1]:
Theorem 2: L(y,Ax∗; τ) from Eqn. 6 follows RSC with
curvature κL = γ

2σ2 and tolerance function τ2
L(x∗) = 0,

where γ is the restricted eigenvalue constant (REC) forA. �
Here, we use the structure of δLg(∆,x∗) defined in D1 to
find the values of curvature and tolerance function for our
cost function.
Theorem 3: For our noise model and with additional con-
straints on the signal that ∀i, α ≤ xi ≤ β, we have the lower

bound ‖∇L‖∞ ≥
√
% log(n)

σ
√
m

(√
m3 +C1

√
m1 +m2

)
with

probability 1 − 2 exp− 1
2 (%− 2) log(n) where C1 is a con-

stant depending only on α and β, and % > 2 is a constant. �
We develop this lower bound for ‖∇L‖∞ so that we can
apply T1 to find the upper bound on the reconstruction error
in Theorem 4, our main result.
Theorem 4: Let x̂λ be the minimizer of the cost function
in Eqn. 6 with regularization parameter λ ≥ 2‖∇L‖∞
and with the signal constraints from Thm. 3. Let x∗

be the true s-sparse signal which gave rise to the com-
pressive measurements in y. Then we have the follow-
ing upper bound with the same probability as in Thm. 3:

‖x̂λ − x∗‖22 ≤
144s log(n)σ2%

γ2m
(
√
m3 +C1

√
m1 +m2)2.�

Observations related to the upper bound: The upper bound
in Theorem 4 (the main theoretical result of this paper) is di-
rectly proportional to s log(n) which is equivalent to the
proven upper bound in LASSO reconstruction [6, chapter
11] for Gaussian noise without saturation effects. So, the
tightness of the upper bound on the reconstruction error of
our cost function is relatively close to that of LASSO recon-
struction. The bound is directly proportional to σ2 as well as
s = ‖x∗‖0 and inversely proportional to γ = REC(A; s),
all of which is very intuitive and similar to the analysis in
[11, 6] with simpler noise models. The bound also becomes
looser with increase in the number of saturated measure-
ments m1,m2. If there are no saturated measurements, i.e.,
m1 = m2 = 0, then the bound reduces to the normal LASSO
bound [6], except that here we consider A with unit column
norm as against column norm of m in [6]. The bound also
increases with m3. However, it turns out that the constant
factor C1 for the O(

√
m1 +m2) term in the bounds, is very

large. This is because it contains other factors of the form
φ(z)
Φ(z) or φ(z)

1−Φ(z) where z stands for either α or β (see suppl.
mat. [1]), which are both large in absolute value for large
|α|, |β|. Hence the O(

√
m1 +m2) term dominates over the

O(
√
m3) term, which is intuitive. We have made no attempts

to optimize the constant factors in these bounds, but we note
that they follow the overall empirical trends observed for our
estimator, as seen in Sec. 3.
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3. EXPERIMENTAL RESULTS

Here we report results on CS recovery using our technique
LM in comparison to the following existing approaches de-
scribed in Sec. 1.1: (i) Saturation rejection (SR) from [7];
(ii) Saturation Consistency (SC) from [7] with the follow-
ing constraint set designed to (approximately) handle Gaus-
sian measurement noise: ∀i ∈ S−,Aix ≤ −τ + 3σ and
∀i ∈ S+,Aix ≥ τ − 3σ; (iii) Saturation Sparsity (SS)
from [9]; (iv) Saturation Ignorance (SI), a technique which
recovers x pretending there was no saturation in y; and (v)
NCLM from [5]. For all techniques including LM, we assume
knowledge of τ and thereby that of sets S+, S−. For LM, we
did not impose the constraints α ≤ xi ≤ β from Thm. 3, due
to negligible impact on the results.
Experiment description: All our experiments were per-
formed on signals of dimension n = 256 that were sparse
in the 1D-DCT (discrete cosine transform) basis. The sup-
ports of the DCT coefficient vectors were chosen randomly,
and each signal had a different support. The elements of the
sensing matrix A were drawn i.i.d. from N (0, 1/m) so that
A would obey RIP with high probability [4]. Gaussian noise
was added to the measurements, followed by application of
the saturation operator C. We define ζ ,

∑m
i=1 |Aix|/m,

the average absolute value of noiseless unsaturated measure-
ments. Keeping all other parameters fixed, we studied the
variation in the performance of these six techniques with re-
gard to change in the following factors, keeping other factors
constant: (A) number of measurements m; (B) signal spar-
sity s expressed as fraction fsp ∈ [0, 1] of signal dimension
n; (C) noise standard deviation σ expressed as a fraction
fσ ∈ [0, 1] of ζ; and (D) the percentage fsat ∈ [0, 1] of the
m measurements that were saturated. For the measurements
experiment (i.e., (A)), m was varied in {30, 40, 50, ..., 250}
with s = 25, fsat = 0.15, fσ = 0.1. For the sparsity experi-
ment (i.e., (B)), fsp was varied in {0.05, 0.1, 0.15, 0.2} with
m = 150, fsat = 0.15, fσ = 0.1. For the noise experiment
(i.e., (C)), we varied fσ in {0.01, 0.02, 0.04, ..., 0.2} with
m = 150, fsp = 25/256, fsat = 0.15. For the saturation
experiment (i.e., (D)), fs was varied in {0, 5, 10, ..., 50}/150
with m = 150, fsp = 25/256, fσ = 0.1. The perfor-
mance was measured using relative root-mean squared error
(RRMSE) (defined as ‖x− x̂‖2/‖x‖2 where x̂ is an estimate
of the signal x), computed over reconstructions from 10 noise
trials.
Parameter settings: For the proposed LM technique and for

SS, the regularization parameter λ was chosen using cross-
validation on a set of unsaturated measurements, following
the method in [14]. The size of the cross-validation set was
0.3 times the number of measurements used for reconstruc-
tion. For SR and SC, we set εns = σ

√
|Sns|. For SI, we

used the estimator min‖x‖1 s. t. ‖y − Ax‖2 ≤ σ
√
m. For

NCLM, the bound on ‖x‖2 was set to be the `2-norm of the
true signal (omnisciently), and that on ‖r‖2 was set to be a
statistical estimate of the magnitude of the pre-saturated noise
vector. The well-known FISTA algorithm [2] was used for

Fig. 1. Comparison of NCLM and LM for s = 15,m =
150, n = 256, fsat = 0.35, fsig = 0.1.

LM, whereas CVX was used for SS, SC, SR and SI.
Discussion: The results of these experiments are summarized
in Fig. 2, and show that the proposed LM technique consis-
tently outperforms the competing methods numerically. This
behaviour is particularly observable for high fsat or fσ . We
observed that SC outperformed SR for high fsat or fσ . We
also note that our technique performed better than NCLM (our
closest competitor) in the regime of high fσ and high fsat, as
can be seen from Fig. 1. In Fig. 2, we also plot a scaled form
of the upper bound on the reconstruction error from Theorem
4, to show that the empirical results for LM obey the broad
trends predicted by Theorem 4.

4. CONCLUSION

We have presented a principled likelihood-based method for
compressive signal recovery under Gaussian noise combined
with saturation effects. We have proved the convexity of our
estimator, derived an upper bound on its reconstruction error,
and shown that it numerically outperforms competing meth-
ods. The recent work in [3] handles compressive inversion
with Poisson-Gaussian-uniform quantization noise, a very re-
alistic noise model for measurements in imaging systems. Ex-
tending the numerical simulations as well as the convexity
proofs to handle saturation effects in conjunction with such a
noise model is a potential avenue for future work. Another
useful avenue of research would be to derive lower bounds on
the reconstruction error for the presented penalized estimator.
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