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Abstract—Starting the end of 2019, COVID-19 has developed
into a global pandemic demonstrating a wide range of different
dynamics temporally and spatially due to different strategies
taken by different countries over time. It is vital to systematically
investigate how policies affect the spread of COVID-19 pandemic.
In this paper, we propose a statistical signal processing frame-
work to evaluate the effectiveness of containment and closure
policy on the epidemic dynamics and provide case studies on
four countries: United States, United Kingdom, Italy, and Turkey.
Particularly, we propose to use unscented Kalman filter to
estimate the time-varying reproduction number of each country.
Then by using causality analysis and change point detection, we
show that the time-series of policy stringency Granger-causes the
time-series of reproduction number in the cases of United States
and Italy with 3 to 13 and 17 days delay respectively.

Index Terms—epidemic models, unscented Kalman filter,
Granger causality test, change point detection

I. INTRODUCTION

First identified in Wuhan, China in December 2019, the
coronavirus disease (COVID-19) has led to a global pandemic.
Causing more than 2.4 million deaths over the past 14 months
worldwide, the pandemic has and will continue to cause
unprecedented economic recession globally in the near future
[1]. Since the start of the COVID-19 outbreak, governments
around the globe have implemented a wide range of con-
tainment policies in response to it, such as social distancing,
curfews, school and business closures with various stringency
[2]. Despite the success of controlling the spread of virus in
some countries, the global pandemic is still far from being
under control. In order to help government agencies to improve
their policy decision making, it is important to evaluate the
effect of the past policies on controlling the spread of the
disease in a quantitative way, i.e. whether the implementation
or lifting of policies accounts for a causal factor of changes
in the epidemic dynamics and how long it takes for policy
changes to take into effect.

In this paper, we study the problem of evaluating the
effect of containment and closure policy stringency on epi-
demic spread for a given country. This problem involves
three challenging components: 1) accurate tracking of the
dynamics of COVID-19 pandemic spread from available data,
2) identifying the causal effect of policy stringency changes,
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and 3) evaluating the policy effectiveness as well as the
response time. Modelling the spread of epidemics has been
studied in the literature starting with the work of Kermack and
McKendrick [3]. Many widely used compartmental models
have been developed, such as SIR and SEIR [4], [5]. There are
more advanced models like SEIRD [6] and SEIAHRD [7] that
also consider an additional Deceased state in comparison with
SEIR, however this may introduce additional noise due to the
data collection delay for the deceased. More recently, tracking-
based algorithms are also used to model the pandemic spread,
e.g. in [8], Kalman filter (KF) is used to make short-term
prediction of daily new cases in Wuhan, China. The model can
forecast the daily cases three days in advance which benefits
resource allocation. In [9], extended Kalman filter (EKF) is
used to track the number of positive, recovered and deceased
cases. Meanwhile, the problem regarding what policy would be
most effective in controlling the COVID-19 pandemic is also
explored by researchers with either deterministic model-based
or data-driven approach. [10] develops a modified SEIR model
with extra parameters for social distancing, age stratification,
and lockdown to evaluate the effectiveness of vertical con-
finement and release in Brazil. [11] also measures the impact
of non-pharmaceutical interventions (NPIs) on the spread
of COVID-19 by introducing a modified SEIR model and
tracks model parameters with ensemble adjustment Kalman
filter. The impact of different combinations of intervention
policies are compared in [12] using a stochastic age-structured
transmission model. It concludes that intensive interventions
with lockdown periods is needed in United Kingdom. As for
data-driven approaches, machine learning techniques such as
random forests are utilized by [13] to assess the influence
of government interventions on mitigating COVID-19 and
[14] leverages a Bayesian hierarchical model to link NPIs
implementation dates to national case and death counts for
effectiveness estimation.

However, due to the complexity of the time-varying dynam-
ics under multiple influences, to the best of our knowledge,
there hasn’t been a study that retrospectively investigate how
containment and closure policy stringency affect the pandemic
spread. To this end, we develop an algorithmic framework
(shown in Fig. 1) to track the spread of COVID-19 pandemic
and analyze the causal effect between policy stringency and
pandemic spread. We first propose using unscented Kalman
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Fig. 1. Propsed Framework. PS: Policy Stringency. R0: Reproduction
Number.

filter (UKF) [15] to track and estimate the time-varying
reproduction number R0. UKF uses a deterministic sampling
approach that has advantages of more accurate state prediction,
easier implementation, and better computational efficiency
compared to aforementioned EKF-based methods. R0, defined
as the number of people that one infected person will pass on
a virus to on average, is widely used in COVID-19 studies
representing the trend of the pandemic. Granger causality test
[16] is then conducted on four countries to investigate the
relationship between reproduction number and stringency of
containment and closure policy. Furthermore, change point
detection is performed to identify the response delay of R0

to the change of containment and closure policy stringency.

II. METHODS

A. Susceptible-Exposed-Infectious-Recovered (SEIR) Model

Fig. 2 illustrates the structure of SEIR model. Suscepti-
ble state (S) represents the number of individuals who are
able to contract the disease. Exposed state (E) represents
the number of individuals who have been infected but are
not yet infectious. Infectious state (I) represents the number
of individuals who are capable of transmitting the disease.
Recovered state (R) represents the number of individuals who
have become immune. Transmission rate (β = β0t) is the
average number of contacts per person at each time step
(t), multiplied by the probability of disease transmission in a
contact (β0). Reciprocal of incubation rate (1/α) is the mean
latent period with “days” as unit. In this paper, α is fixed
at 1/5.2 according to [17]. Reciprocal of recovery rate (1/γ)
is the mean infectious period also with “days” as unit. And
reproduction number R0 = β/γ. Normally, larger value of R0

means harder control of pandemic. Furthermore, SEIR model
has the following assumptions:

1) Population N of a country is fully partitioned into
susceptible, exposed, infectious, and recovered state, and
is treated as a constant, i.e., N = S + E + I +R.

2) The transmission, incubation, and recovery rate are the
same for individuals.

3) People contact each other randomly.

Fig. 2. SEIR Model

With the above assumptions, SEIR model can be described
by ordinary differential equations as follows:

dS/dt = −βIS/N dE/dt = βIS/N − αE
dI/dt = αE − γI dR/dt = γI

(1)

B. Unscented Kalman Filtering with SEIR Model

Unscented Kalman filter (UKF) is used to track the states
S, E, I , R, and parameters β, γ. This involves a discrete-time
nonlinear dynamic system,

Xt = f(Xt−1) + vt (2)

Yt = h(Xt) + nt (3)

where Xt = [St, Et, It, Rt, βt, γt] represents the unobserved
states of the system at time step t, and Yt is the observed
measurement, i.e., total cases at time step t. The process noise
vt drives the dynamic system, and the measurement noise is
given by nt. In our case, the system dynamic model f is
the SEIR model as shown in (1). And h = E + I + R is
the measurement function. UKF approximates the probability
distribution of an unobserved state by selecting a minimal set
of sample points such that their mean and covariance are the
same as the true probability distribution. These sample points
are called sigma points and are symmetrically distributed
around the mean. To be specific, 2n+1 sigma points Xt−1|t−1
are selected according to:

Xl,t−1|t−1 =


X̂t−1|t−1 l = 0

X̂t−1|t−1 − σl
t−1 l = 1, . . . , n

X̂t−1|t−1 + σl
t−1 l = n+ 1, . . . , 2n

(4)

Then, each sigma point will be propagated through the system
model, i.e., apply (2) to Xt−1|t−1 to get Xt|t−1. Next, the
mean and covariance of the transformed points are used to
calculate the new state estimation X̂t|t−1. Measurement Yt|t−1
is calculated by applying (3) to Xt|t−1 and then is used
to update the state estimation X̂t|t−1 to get X̂t|t, which is
the state estimation at time t given observations up to and
including at time t. Here, we assume that the state update is
linear with Gaussian noise. Algorithm 1 illustrates the basic
procedures. Details of UKF can be found in [15].

C. Granger Causality Test

Granger causality test is utilized to check the causal rela-
tionship between policy stringency and reproduction number.
Here, we borrow the notion of “stringency index” from [2]
(further explained in section III-A), which is an index that
quantitatively reflects the strictness of containment and closure
policies. A higher value means a stricter policy and vice
versa. Granger causality test is a statistical hypothesis test
for investigating the ability of one time series to forecast
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Algorithm 1 Unscented Kalman Filter with SEIR Model
Input: SEIR model, measurement function, time series of

total cases Y
Output: Estimated state X = [S, E, I , R, β, γ]

1: Let L be the length of measurement Y
2: for t = 1 : L do
3: Select 2n+ 1 sigma points Xt−1|t−1 according to (4)
4: Compute Xt|t−1 by applying SEIR model in (2) to

Xt−1|t−1
5: Compute the predicted state X̂t|t−1 (and the error

covariance matrix): X̂t|t−1 = 1
2n+1

∑2n
l=0Xl,t|t−1

6: Compute Yt|t−1 by applying (3) to Xt|t−1
7: Compute the predicted observation Ŷt|t−1: Ŷt|t−1 =

1
2n+1

∑2n
l=0 Yl,t|t−1

8: Compute the residual et = Yt − Ŷt|t−1
9: Update the Kalman gain matrix Kt

10: Update the estimate of the state vector (and the error
covariance matrix): X̂t|t = X̂t|t−1 + Ktet i.e., state
estimation at time t given observations up to and
including at time t

11: end for
12: return Estimated state X = [S, E, I , R, β, γ]

another, which is frequently used in the economics, finance,
and medical fields [16]. Given two sets of time-series data
x and y, we say x Granger-causes y if the past information
of x could help forecast the future of y, over and above
previous y information. Then, there is “information flow” from
x to y [18]. Mathematically, we first define the univariate
autoregressive model (Model1):

yt =

K∑
k=1

γkyt−k + et (5)

Then, we define the bivariate autoregressive model (Model2):

yt =

K∑
k=1

γkyt−k +

K∑
k=1

βkxt−k + εt (6)

where yt is the reproduction number, and xt is the stringency
index at time t and k is the number of lags. et and εt
are white noises with zero mean and variances σ2

Model1 and
σ2
Model2 respectively. The Granger causality is calculated as
log(σ2

Model1/σ
2
Model2). Based on (6), the null hypothesis is

defined as H0: β1 = ... = βk = 0. If H0 is true, stringency
index does not Granger-cause reproduction number [19].

We first check the “information flow” from stringency index
to reproduction number, then test in the other direction. The
procedures are as follows:

1) Assuming null hypothesis (H0) is true.
2) Computing the parameter F test to access the statistical

significance of Granger causality.
3) Comparing p-value to critical value 0.05.

If p-value is greater than 0.05, the null hypothesis is rejected
and vice versa.

TABLE I
R2 SCORE OF TWO DIFFERENT APPROACHES

Country EKF with SEIR UKF with SEIR
Italy 0.7401 0.8180

Turkey 0.9373 0.9511
United States 0.6995 0.7530

United Kingdom 0.5016 0.8903

D. Change Point Detection

If a country’s stringency index Granger-causes the reproduc-
tion number, we will go further to detect the change points of
stringency index and reproduction number estimated by UKF.
The classical sequential approach, Binary Segmentation [20],
is utilized to find the change points, as it does not require the
number of change points in advance and is easy to implement.
The first change point is detected in the complete input signal,
then the series is split around this change point, and then the
operation is repeated on the two resulting sub-signals. After
detecting the change points, we are able to investigate the
delay for the change of stringency index actually taken into
effect. We define the delay T (days) as follows:

T = RNj − SIi s.t. SIi ≤ RNj < SIi+1 (7)

where SIi denotes the date of the i-th stringency index change
point and RNj denotes the date of the first reproduction
number change point after SIi. We assume that the delay
T must be shorter than the time between two consecutive
stringency index change points. Definition (7) is illustrated
in the zoomed-in picture in Fig. 4.

III. EXPERIMENTS AND RESULTS

A. Datasets and Preprocessing

The data of Italy, Turkey, United States and United King-
dom, for UKF estimation, is from [21]. We use the “total
cases” column as the input data in the simulation. In order
to evaluate the effectiveness of UKF estimation, the “repro-
duction number” column is taken as ground truth values.
Furthermore, stringency index is obtained from [22]. In this
dataset, each containment and closure policy is assigned a
numerical value according to their stringency at each day and
together forms the stringency index1. Since Granger causality
test requires the two input time-series to be stationary, we first
calculate the natural logarithm and take the forward difference
on both stringency index and reproduction number. Then,
augmented Dickey–Fuller test (ADF) [23] is conducted to
make sure that both preprocessed series are stationary [24].

B. Estimation Results by Unscented Kalman Filter

Fig. 3 compares the UKF estimated reproduction number
from April 19 to October 28, March 23 to December 18,
April 04 to December 18, March 25 to December 18, with
the ground truth value and a baseline method using EKF for

1Detailed information about stringency index calculation can
be found at https://www.bsg.ox.ac.uk/research/research-projects/
coronavirus-government-response-tracker

1967



TABLE II
RESULTS OF GRANGER CAUSALITY TEST

Country Directiona P-value

Turkey A to B 0.4149
B to A 0.6458

United Kingdom A to B 0.6457
B to A 0.1642

United States A to B 0.0001
B to A 0.0918

Italy A to B 0.0217
B to A 0.1816

aA: Stringency Index B: Reproduction Number.

Turkey, United Kingdom, United States, and Italy respectively.
Table I shows the performance evaluation of two approaches
in terms of R2 score. Although UKF and EKF are both
capable of capturing the general trend of ground truth value,
according to R2 score, UKF (shown in bold) outperforms
EKF by 0.0138, 0.3887, 0.0535, and 0.0779 for the aforemen-
tioned four countries respectively. Notably, the results of UKF
estimations for Turkey and United Kingdom stand out with
better R2 score apparently, but the estimations of the other
two countries are both fluctuating around the ground truth
values. This phenomenon could be explained by the collection
of data. For Italy, there are some missing data for particular
dates, and in the case of United States, due to the time it
takes to report testing information, the data might not represent
the most current counts for the most recent three days. These
factors may lead to the inconsistency between UKF estimation
and the ground truth value [21].

C. Results of Granger Causality Test

Table II shows the results obtained by the Granger causality
test. P-value in bold indicates pass of Granger causality
test, meaning one of the two time-series Granger-causes the
other one. It can be observed that in United States and
Italy, stringency index Granger-causes reproduction number.
In United Kingdom and Turkey, however, stringency index
does not Granger-cause reproduction number, suggesting that
containment and closure policies taken by the British and
Turkish government seem to have little influence on the trend
of COVID-19 pandemic.

D. Results of Change Point Detection

For the two countries showing Granger causality, change
point detection algorithm is used to find the dates on which
stringency index and reproduction number undergo signifi-
cant change respectively (shown in Fig. 4). We observe that
when containment and closure policy stringency changes,
there exists some delay in its corresponding effect on the
pandemic spread, possibly due to the slow reaction of the
society. Since a lower value of stringency index suggests a
looser policy, an inappropriate policy stringency change may
result in significant growth of reproduction number. From the
perspective of pandemic control, an effective policy change
should lead to a decreasing or stable trend of the reproduction
number.

For United States, the decrease in stringency index on June
14 and September 10 both resulted in the rise in reproduction
number. Especially, the inappropriate stringency index change
on September 10 led to a second increase in the reproduction
number on October 7. Nonetheless, the decline in stringency
index on June 19 did have positive effect on the control of
pandemic, which was revealed by the decrease in reproduction
number with 13-day delay. And after October 12, the changes
of stringency index had minimal effect since no change point
of reproduction number was detected. Overall, the delay is
around 3 to 13 days.

For Italy, the changes of stringency index from June 13 to
October 21 had negative impact on controlling the pandemic,
especially the relaxation of stringency on September 13 led
to dramatically increase in reproduction number with 17-day
delay. In order to control the spreading, stricter policies were
implemented on October 21 and November 5 and took into
effect on October 31 and November 14 with 9 and 10-day
delay. Overall, the delay is around 3 to 17 days.

IV. CONCLUSION

In this paper, we introduce a novel framework to track the
spread of COVID-19 pandemic and evaluate the causal effect
of containment and closure policy stringency based on the
estimated dynamics. Substantial experiments are conducted on
four countries include Italy, United Kingdom, United States,
and Turkey. By leveraging unscented Kalman filter, we show
that the estimated reproduction number is well-aligned with
the ground truth value in terms of R2 score. Next, containment
and closure policy stringency is proved to Granger-cause
reproduction number (R0) in the cases of Italy and United
States. Experimental results of change point detection also
show that there exists several days of delay for the change of
policy stringency to take into effect on reproduction number.
In the future, the potential of using UKF to forecast R0 will
be investigated.
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