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Abstract—Blind image deconvolution consists of in-
ferring an image from its blurry and noisy version when
the blur is unknown. To solve this highly ill-posed in-
verse problem, Expectation Maximization (EM)-based
algorithms can be adopted. In several previous stud-
ies, Variational Bayes (VB) approaches were deployed
to approximate the intractable conditional probability
distribution of the image that appears in the E-step of
the traditional EM algorithm. In this paper, we propose
to use an Expectation Propagation (EP) algorithm to
derive an alternative approximation of the conditional
probability distribution. The simulations conducted
show that the resulting EP-EM approach can provide
more reliable approximations, reflected by better image
estimates and more reliable uncertainty maps than VB-
EM for a comparable computational time.

Index Terms—image restoration, blind image de-
convolution, Expectation-Propagation, approximate
Bayesian inference.

I. Introduction
In many imaging applications such as commercial pho-

tography, microscopy and remote sensing, images can be
degraded during the observation process by blur, noise,
and other degradations due to imperfections in the sensing
system. Image deconvolution techniques aim to recover
the underlying, usually sharper, image from its blurry
and noisy observations. Non-blind image deconvolution
algorithms assume that the blur is known or can be
estimated prior to the deconvolution process. However,
this assumption might not hold in practice or can produce
reconstruction artefacts. Conversely, Blind Image Decon-
volution (BID) seeks to recover a sharp image without
knowing the blur in advance, leading to one of the most
challenging problems in the image processing community.
The image degradation model for linear shift-invariant
blurring effects can be written as [1], [2]

y = x ∗ h + w = Hx + w, (1)

where y ∈ RN is the observed blurry image composed
of size N pixels, x ∈ RN is the original sharp image
and h ∈ Rk is a blur kernel whose support k (i.e. the
number of pixels affected by the intensity of a given
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pixel in the original image) is small compared to the
image size. The matrix H represents the block-circulant
matrix constructed from the kernel h, ∗ is the convolution
operator and the observation noise w is usually assumed
to be i.i.d. Gaussian noise with known variance σ2.
Many methods have been proposed to address the BID

problem and reviews of the major approaches can be
found in [1]–[5]. The work herein adopts an approximate
Bayesian approach and an Expectation Maximization
(EM)-based algorithm to solve the BID problem. The
proposed approach consists of estimating h via Marginal
Maximum A Posteriori (MMAP) estimation, and the es-
timated blur is then used to estimate x via conditional
MMSE estimation. This estimation strategy can be im-
plemented efficiently using an EM-based algorithm [6].
The main limitation of the traditional EM is that the
conditional probability distribution of the image given
the observed data and kernel parameters, required in the
E-step, is usually intractable. While Variational Bayes
(VB) methods have been widely deployed in the literature
to approximate the conditional probability distribution
of interest (variational EM), in this paper we propose
to use an Expectation Propagation (EP) algorithm to
approximate this conditional probability distribution and
show that it can provide more reliable marginal variances
than VB.
The remainder of the paper is structured as follows. In

Section II, we formulate the BID problem as a Bayesian
inverse problem and describe several estimation strategies
available. The EP algorithm adopted for approximate
Bayesian inference is presented in Section III. Simulation
and results are presented in Section IV. Conclusions are
finally reported in Section V.

II. Bayesian estimation
The BID problem consists of inferring the original image

and the blur kernel given the blurred image. In this
context, the observation model (1) defines the likelihood

y| x,h ∼ N (y|Hx, σ2I). (2)

The BID problem is severely ill-posed in the sense that
there exist an infinite set of (x,h) that can explain the
observed data. To discard unwanted solutions, Bayesian
methods incorporate prior information about the original
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image and the blur as prior distributions, i.e. p(x) and
p(h). This yields the following joint distribution

p(x,h,y) = p(y| x,h) p(x) p(h). (3)

A. Prior models
a) Image prior models: The most common prior mod-

els are Gaussian prior models which are used to promote
smoothness [7], [8] as they naturally lead to simple in-
ference schemes in the presence of Gaussian noise. Given
the fact that most natural images can be sparsely rep-
resented in some domain, sparsity-inducing models have
also been considered in the BID literature. The authors
in [9] proposed to use a mixture of Gaussians model to
approximate the distribution of the gradient magnitude
and promote sparsity. Other sparsity-promoting priors
were also used, such as the Student-t prior [10] and the `p
prior [11]. It is worth noting that a general representation
for sparse priors was proposed in [12] using super Gaussian
distributions. Another traditional choice for promoting
spatial correlation between neighboring pixels are Markov
random fields (MRFs). The total-variation (TV), which
promotes piece-wise constant images, is a popular example
of MRF prior. TV was frequently used in BID in the aim
to preserve edges while reducing noise in flat regions [13],
[14]. The `1-norm based TV prior can be defined as

p1(x) ∝ exp−λ TV(x), (4)

with TV(x) =
∑N
i=1 |∆h

i x| + |∆v
ix|, and where ∆h

i x
and ∆v

ix denote the horizontal and vertical first order
differences corresponding to the left and top neighbors of
pixel i. The hyperparameter λ ≥ 0 controls the amount of
prior smoothness.
In this work, the `1-based TV prior is adopted as the

image prior model along with an image non-negativity con-
straint (if appropriate) to satisfy physical constraints. Us-
ing the non-differentiable TV prior makes the computation
of the E-step in the EM algorithm intractable. However, we
show in the following section that approximate Bayesian
methods such as VB and EP can lead to closed-form
update. By including the non-negativity constraint, the
image prior model used here becomes p(x) ∝ p1(x) p2(x),
with p2(x) ∝ ιRN+ (x) is the indicator function of the non-
negative orthant in RN .

b) Blur model: The BID literature contains many
specific blur models. For instance, the authors in [15]
proposed a Dirichlet blur model that offers flexibility in
incorporating vague or precise knowledge about the blur.
To estimate motion blur, the authors in [16] promoted
sparsity of the kernel in a curvelet dictionary. In this
work, we restrict ourselves to the use of a flat prior for
the blur with non-negativity and unit-norm constraints.
These constraints have shown to give good estimate of
the blur given the fact that usually k � N [1], [12]. The
resulting prior reduces to p(h) ∝ ιC(x), with C = {h|h ∈
Rk+and 1Tk h = 1}, where 1k stands for the vector of size

k with all coefficients equal to 1, and T stands for the
transpose operator.

B. Estimation strategies
Using the joint probability distribution (3), our goal is to

infer the unknown variables (x,h) given the observations
y. This can be achieved in different ways. Stochastic
sampling methods such as Markov chain Monte Carlo
(MCMC) generate a sequence of samples from the joint
posterior distribution p(x,h|y) [17]. These samples can
then be used to approximate the joint MMSE estimator
of (x,h). Hyperparameters such as σ2 can also be included
via an augmented posterior distribution [2]. However,
such methods usually require many samples to accurately
explore the posterior distribution which makes them very
intensive for high dimensional problems.
The joint MAP estimator of (x,h) can be approximated

via alternating optimization, which consists of maximizing
the posterior distribution with respect to each unknown
while holding the other one fixed. MAP approaches are
computationally very efficient but they do not allow un-
certainty quantification for assessing the reliability of the
estimated solution.
A third approach consists of estimating h via MMAP

estimation, i.e., by maximizing p(h|y) =
∫

p(x,h|y) dx.
The resulting estimated blur ĥMMAP can then be used
to estimate x via MMSE or MAP estimation using
p(x|y, ĥMMAP ). This estimation strategy can be imple-
mented using MCMC [18] or EM-based algorithms [6]
whose basic principle is recalled below.
The standard EM algorithm consists of two steps, the

expectation step (E-step) and the maximization step (M-
step), which are repeated until convergence.
• E-step: F (h,h(t−1)) = Ep(x|y,h(t−1)) [ln (p(x,h|y))]
• M-step: h(t) = argmaxh∈Rk F (h,h(t−1))

It has been shown for different imaging problems that
estimating the blur kernel first, via MMAP estimation,
often delivers better images than joint MMSE. This can
be explained by the fact that typically p(h|y) has its
maximum at a good value for h, while its mass spreads
across a wider range of h and hence ĥMMSE can be sub-
optimal [18]. In many cases however, the standard EM
algorithm cannot be applied directly because the expecta-
tion involved in the E-step is intractable, e.g., when the
likelihood and p(x) are not conjugate. To overcome this
shortcoming, VB methods replace the conditional distribu-
tion p(x|y,h(t−1)) by a tractable approximate distribution
q(x) (usually Gaussian, denoted by x ∼ N (x|mx,Cx)),
which makes the expectation tractable. The resulting Vari-
ational EM (VEM) algorithm leads to the following steps
• E-step: F (h,h(t−1)) = Eq(x) [ln (p(x,h|y))]
• M-step: h(t) = argmin

h∈Rk
‖y −mx ∗ h‖2 + h†Dxh

subject to
{

1Tk h = 1,
h ∈ Rk+,

(5)
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where the matrix Dx ∈ Rk×k represents the covariance of
all
√
k×
√
k windows in x. Using VB [1], the approximate

density q(x) is obtained by minimizing the the Kull-
back–Leibler (KL) divergence between the approximate
and the exact distribution, i.e., KL(q(x)||p(x|y,h(t−1))).
Conversely, here we propose to use EP [19] to build q(x).
The details of EP, which targets the reverse KL divergence
KL(p(x|y,h(t−1))||q(x)), are presented in the following
section.

III. Expectation Propagation
A. General principle
EP [19] approximates the probability distribution

p(x|y,h(t−1)) by a simpler Gaussian distribution q(x)
such that x ∼ N (x|mx,Cx) (with y known). Using the
block-formulation of EP, the joint probability distribution
p(x,y|h(t−1)) can be factorized into three different factors
f0, f1, f2 such that

p(x,y|h(t−1)) ∝
2∏
i=0

fi(x), (6)

where f0(x) ∝ p(y|x,h(t−1)), f1(x) ∝ p1(x) and f2(x) ∝
p2(x). EP approximates each fi(x) by a simpler Gaussian
distribution f̃i(x),x ∼ N (x|mi,Ci) such that

q(x) ∝
2∏
i=0

f̃i(x). (7)

At each iteration of EP, the approximation factors f̃i(x)
are refined sequentially by minimizing the KL divergence
between the tilted distribution q̃i(x) = fi(x) q\i(x) and
q(x) for i = 0, 1, 2, where q\i(x), x ∼ N (x|m\i,C\i) is
the i-th cavity distribution, i.e. the product of all but the
i-th approximation factor, and is given by

q\i(x) ∝ q(x)/f̃i(x). (8)

The solution to the KL minimization problem is found
by matching the moments of the tilted distribution q̃i(x)
to the EP approximation q(x). Then the corresponding
approximation factor f̃i(x) is refined using q(x)/q\i(x).
While EP is not guaranteed to converge in general and
might oscillate [19], damping strategies can be imple-
mented [20] to mitigate convergence issues.

A computationally attractive implementation of EP can
be achieved by considering diagonal approximate covari-
ance matrices while moment matching, i.e., Ci = diag(vi)
and Cx = diag(vx). Note that this approximation implies
that the images pixels are assumed a posteriori indepen-
dent in q(x), as in VB.

The update of the approximation factors f̃i(x) depends
on computing the moments of the corresponding tilted dis-
tributions q̃i(x), where q̃0(x) ∝ exp−

1
2σ2 ‖y−Hx‖2

2 q\0(x),
q̃1(x) ∝ exp−λTV(x) q\1(x) and q̃2(x) ∝ ιRN+ (x)q\2(x).
Considering that the covariances of q\i(x) are kept di-
agonal, the marginal means and variances of q̃i(x) can

Strategy (I) Strategy (II) Strategy (III)

C̃x Expensive-C̃x Fast-C̃x RBMC-C̃x

Dxxx Expensive-Dxxx Fast-Dx RBMC-Dx

TABLE I: Acronyms of the different computation and
approximations strategies presented in Section III-B for
the covariance matrix C̃x and the covariance matrix Dx.

be obtained in closed form [20], [21]. The update of f̃0 is
briefly recalled in the next paragraph. The update of f̃1
is not detailed here to due space constraints but can be
derived using the MRF properties of f1.

B. Covariance matrix computation and approximations
The bottleneck of EP arises during the update of f̃0,

when matching the moments of q̃0(x) and q(x). The
updated moments of q(x) are given by

C−1
x = C−1

\0 + σ−2HTH, (9)

mnew
x = Cx(C−1

\0 m\0 + σ−2HTy), (10)

vnew
x = diag(C̃x), (11)

where C\0 = diag(v\0). Although we are only interested in
the diagonal of C̃x to update vnew

x (11), this requires the
costly inversion of matrix C−1

x ∈ RN×N . This inversion
problem is common in all Bayesian approximation meth-
ods such as VB (see Eq.24 in [1]). In addition, the covari-
ance matrix C̃x is used to compute the matrix Dx, which
is required in the M-step, Dx(i, j) =

∑N
n=1 C̃x(i+n, j+n)

[1]. Different strategies can be adopted in EP and VB to
compute C̃x:
• Strategy (I): C̃x is a full matrix computed as the

inverse of C−1
xxx .

• Strategy (II): C̃x is a diagonal matrix whose diagonal
is the inverse of the diagonal of C−1

xxx .
• Strategy (III): C̃x is a diagonal matrix whose diagonal

is approximated using an efficient covariance approx-
imation method, dubbed Rao–Blackwellized Monte
Carlo (RMBC) [22].

While EP uses only the diagonal of C̃xxx while iterating (11),
we can use (9) at the last iteration such the off-diagonal
terms can be incorporated in Dxxx in the M-step. A similar
strategy can be used for VB (Eq.24 in [1]). This allows
running EP and VB with a certain covariance approxima-
tion while estimating the kernel with a different covari-
ance approximation. We present in TABLE I the adopted
acronyms of the different computation and approximations
strategies for the covariance matrices C̃x and Dx.

IV. Simulations and results
In this section, we showcase the performance of the pro-

posed approach on simulations utilizing the Cameraman
image, with a peak value normalized to 1. Simulations
conducted on different test images are provided in [23]
(available at https://researchportal.hw.ac.uk/en/persons/
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yoann-altmann). The original image is degraded with a
linear motion blur of length 5 and angle 40◦, and corrupted
with i.i.d. Gaussian noise with variance σ2 = 0.0025,
corresponding to SNR = 20 dB. We start by evaluating
the performance of EP in terms of reconstruction quality
and computational time assuming the kernel is known.
EP with TV prior and non-negativity constraint, denoted
by EP (TV+), is compared to EP (TV) (i.e. no non-
negativity constraint is imposed) and VB with TV prior,
denoted by VB (TV) [1]. We also report the results of
the proximal MCMC algorithm [24] with TV prior and
non-negativity constraint, denoted by MCMC (TV+), and
with only TV prior, MCMC (TV). The regularization
parameter associated with the TV prior is set to λ = 6.7
in all the methods. For EP and VB, the covariance matrix
C̃x is approximated as the inverse of the diagonal of
C−1

x . The MCMC chain is of length 2 × 105 samples
including a 1000-sample burn-in period. Fig. 1, (b)-(f)
displays the deconvolution results (MMSE estimators)
obtained by different methods with image size N = 1282

pixels. The figure clearly shows comparable mean images
for all the methods. Interestingly, the images of marginal
variances of EP (TV+) and EP (TV) (Fig. 1, (b) and (d),
second row) are very close to those obtained with MCMC
(Fig. 1 (c) and (e), second row), confirming the improved
reliability of the estimated variances of EP over VB here.
In addition, the computational time of EP is around 4
orders of magnitudes lower than that for MCMC. We also
notice that VB (TV) seems to under-estimate the variance
(Fig. 1, (f), second row). In addition, incorporating the
non-negativity constraint in the prior image model tends
to decrease the uncertainty in the low-intensity regions
(see Fig. 1, (b) and (c), second row).

We then assess the performance of EP when the kernel
is unknown. The proposed BID approach EP-EM with
TV prior and non-negativity constraint, EP-EM (TV+),
and with only TV prior, EP-EM (TV) is compared to
VB-EM with TV prior, denoted by VB-EM (TV) [1].
Tests are carried out with different image sizes N =
{642, 1282, 2562, 5122}. Fig. 2 shows the image PNSR
and compute time scores corresponding to running EP-
EM (TV+), EP-EM (TV) and VB-EM (TV) with the
different covariance computation strategies explained in
Section III-B. Fig. 2, first row shows a comparable com-
putational time between EP-EM (TV+) and VB-EM (TV)
for all strategies while EP-EM (TV) takes more time to
converge in some scenarios (see Fig. 2, (c)). Fig. 2, the
second row suggests that running EP and VB with Fast-
C̃x and RBMC-C̃x gives PSNR values very close to those
obtained when running with Expensive-C̃x. However, the
computational time can be drastically reduced as shown
in Fig. 2, first row. Finally, we notice that both EP-EM
(TV+) and EP-EM (TV) maintain better PSNR scores
(around 1 dB enhancement) for all image sizes. This
supports the observation that VB can be less accurate
than EP for some applications as stated in [20].

V. Conclusions

In this paper, we presented a blind deconvolution
method leveraging EP within an EM-based algorithm. As
opposed to other works in the literature where the VEM
was deployed to approximate the intractable E-step of the
EM algorithm, we propose the use of the EP algorithm
as better approximate method. We showed using con-
trolled simulation that the proposed EP-EM algorithm can
provide better supervised and blind deconvolution results
reflected by higher PSNR and more reliable uncertainty
maps than VB-EM for a comparable computational time,
when using the same original model. Future work will
include a more detailed analysis of the EP-EM for different
blur sizes and more complex image prior models.
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(a) Original image

(g) Observed image

(b) EP (TV+)
PSNR = 24.8 dB
time = 0.78 sec

(c) MCMC (TV+)
PSNR = 24.9 dB
time = 44.89 min

(d) EP (TV)
PSNR = 24.72 dB
time = 0.57 sec

(e) MCMC (TV)
PSNR = 24.77 dB
time = 43.9 min

(f) VB (TV)
PSNR = 24.8 dB
time = 0.55 sec

Fig. 1: Supervised deconvolution: original (a) and degraded (g) Cameraman image. (b)-(f) deconvolution mean images
(top) and variance images (bottom) obtained with the differnt approaches.

(a) Time(sec), Fast-C̃x

(d) PSNR(dB), Fast-C̃x

(b) Time(sec), RBMC-C̃x

(e) PSNR(dB), RBMC-C̃x

(c) Time(sec), Expensive-C̃x

(f) PSNR(dB), Expensive-C̃x

Fig. 2: Blind deconvolution: computational time (top) and image PSNR (bottom) as a function of the image size. The
different panels show the performance of running EP and VB with different types of C̃x covariance approximations.
Each panel displays the results of estimating the kernel with different types of Dx covariance approximations: solid
lines using Fast-Dx, dashed lines using RBMC-Dx, and dotted lines using Expensive-Dx.
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