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Abstract—We propose modeling of time-varying functions by
Gaussian processes based on random features and relying on
the sequential Monte Carlo methodology, also known as particle
filtering. The models make use of time-varying random features
and parameter variables to adapt to changes of the modeled
functions with time. The Gaussian processes are treated as
latent states and are estimated by using particle filtering, which
altogether allows for learning functions at each time instant. The
proposed models have the ability to search for optimal functions
in the dynamic space over time. The experimental results show
that the approach has better performance than existing state-of-
the-art methods based on ensemble of Gaussian processes both
in accuracy and stability.

Index Terms—Gaussian process, particle filtering, random
features, sequential learning

I. INTRODUCTION

Gaussian processes (GPs) have become a useful tool in
machine learning (ML), especially in measuring uncertainties
and improving robustness during the learning process [13].
The main limitation of GPs is their high requirement for
computations with scale. A number of approximations to GPs
have been put forth that reduce their computational complexity
from O(N3) to O(NM2), where N is the number of training
samples, M is the dimension of the summary of the training
set, and M << N [10, 11]. One family of approximations
is based on a random feature (RF) space, where the RF
space is determined from spectral frequencies [2, 7]. Examples
include the sparse trigonometric expansions for the Radial
Basis Function (RBF) covariance and the Rectified Linear
Unit (ReLU) functions for the ARC-COSINE covariance.
Two major components of the RF-based functions are their
random features and parameter vectors. We can view the
random features as being equivalent to basis functions and
the parameter vectors to be weights associated with the basis
functions.

Most of the existing literature, however, focuses on learning
parameter vectors, but leave the random features aside by pre-
selecting only one set of random features (i.e., one set of
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basis functions) [1, 9]. By contrast, in this paper we aim at
finding the optimal set of random features dynamically. Some
ensemble methods have been proposed to leverage different
candidate RFs but they suffer degeneration with outcomes that
only one candidate is left after several iterations [1, 8]. Further,
learners are expected to perform sequentially when the data
are received successively as is the case in many important
applications [3]. This motivates a sequential learning approach
dealing with cases where the processing of the received data
have to be completed often before the next data are received.
Also, in many practical settings, the optimal function is not
deterministic but changes over time with unknown dynamics.
In a number of fields like in robotics and computational
finance, the cumulative changes of the unknown functions over
time are significant, even though they may slowly change from
one instant to the next [12, 14]. Thus, it is clear that such
scenarios would require a methodology that would be capable
of tracking functions as they change with time.

To overcome the limitations of the existing methods, in this
paper, we propose a sequential time-varying RF-based GPs.
The methodology is motivated by particle filtering that treats
the functions as particles. From the theory of particle filtering
(PF) [4], we know that the time-varying random features and
parameters can be learnt jointly and sequentially. In this paper,
we use PF on a model where the states of the model are GPs.
Compared with benchmark methods, our approach searches for
the optimal set of spectral frequencies over time and avoids
degeneration and thereby it stabilizes the learning process.

The main contributions of this paper are as follows:
• proposal of a novel sequential scheme for estimation of

time-varying random features (rather than time-invariant
ones as in the existing literature), and

• relaxing the Gaussian likelihood assumption and using
the Monte Carlo approach to enable learning with general
likelihoods such as in problems of classification.

II. BACKGROUND

In this section, we provide a brief review of PF and random
Fourier feature-based GPs.
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A. Particle Filtering

In PF, we aim at tracking a hidden process xt ∈ Rdx of a
state-space model given by

transition probability : p(xt|xt−1), (1)
likelihood of xt : p(yt|xt), (2)

where t is a discrete time index, and yt ∈ R is an observation
process. The main objective is to obtain the filtering probabil-
ity density function (pdf) p(xt|y1:t) from p(xt−1|y1:t−1).

The standard PF is implemented as follows. Suppose that at
time t−1 the filtering density p(xt−1|y1:t−1) is approximated
by

pM (xt−1|y1:t−1) =
1

M

M∑
m=1

δ(xt−1 − x(m)
t−1), (3)

where the x(m)
t−1s are particles (samples) of xt−1 and δ(·) is the

Dirac delta function, and M is the number of particles. Then
we obtain p(xt|y1:t) from pM (xt−1|y1:t−1) as follows:

1) Generate the particles x(m)
t by

x(m)
t ∼ p(xt|x(m)

t−1), (4)

2) Compute the weights of the particles x(m)
t according to

w
(m)
t ∝ p(yt|x(m)

t ), (5)

The approximation of p(xt|y1:t) is then given by

pM (xt|y1:t) =

M∑
m=1

w
(m)
t δ(xt − x(m)

t ). (6)

3) Resample the particles using their weights w(m)
t .

B. Random Fourier Feature-based Gaussian Processes

Suppose we intend to estimate a function f having a GP
prior GP(0, k(x, x′)), with k(x, x′) being a kernel defining the
similarity of dx dimensional x and x′. For any set of inputs
X = [x1, . . . , xn]> in the domain, the function values f =
[f(x1), . . . , f(xn)]> are Gaussian distributed, i.e.,

p(f|X) = N (f|0,K), (7)

where the elements Kij = k(xi, xj) are the covariances over
all pairs in X. Specifically, a shift-invariant kernel k(·, ·) has
the form σ2

kk0(·, ·), where k0(·, ·) is a standardized kernel,
and σ2

k is the magnitude. The inverse Fourier transform of the
standardized kernel is

k0(x, x′) =

∫
π(v)eiv

>(x−x′)dv, (8)

where π(·) is the power spectral density (PSD) of the kernel.
Next we define a real 2J × 1 random feature (RF) vector as

φφφ(x) =
1√
J

[sin(x>v1), cos(x>v1), ..., sin(x>vJ), cos(x>vJ)]>,

(9)

where {vj}Jj=1 are vectors sampled from the PSD of the kernel
[7]. This enables us to approximate k0(x, x′) by

k̂0(x, x′) = φφφ>(x)φφφ(x′). (10)

Thus, the parametric approximation f̂ of f is defined by

f̂(·) = φφφ>(·)θθθ, (11)

where the 2J dimensional parameter vector θθθ has a Gaussian
prior N (θθθ|0, σ2

θI2J). As a result, the approximated GP prior
of a realization f̂ on any input X is given by

p(̂f|X) = N (̂f|0, K̂) (12)

where K̂ = σ2
θΦΦΦΦΦΦ>, and ΦΦΦ = [φφφ(x1), . . . ,φφφ(xn)]>. The

posterior of f̂ is determined by the posterior of θθθ. Section
III gives the approach to learn the posterior of θθθ based on PF.

III. SEQUENTIAL TIME-VARYING GAUSSIAN PROCESSES

A. Problem Formulation

Suppose the observations yt are expressed by

yt = ft(xt) + εt (13)

where the output yt ∈ R, the input xt ∈ Rdx , and where
εt ∈ R is an error (noise) that does not have to be Gaussian.
The unknown function ft has a GP prior GP(0, kt(x, x′)),
with kt(·, ·) being a shift-invariant kernel. Given a prior or a
starting point of hyper-parameters, we determine the random
feature vector φφφ(·) by (8) and (9). To handle a time-variant ft,
we propose that the parameter variable obeys a random walk.
According to (11), the system is approximated by

θθθt = θθθt−1 ◦ (1 + ηηηt), (14)

yt = f̂t(xt) + εt = φφφ(xt)>θθθt + εt (15)

where ηηηt ∈ R2J is white noise, 1 is a 2J×1 vector with all of
its elements equal to one, and a ◦ b represents the Hadamard
product. In other words, the transition process of f̂t is given
by

f̂t = f̂t−1 +φφφ>(θθθ ◦ ηηηt). (16)

Compared with the standard random walk θθθt = θθθt−1 +ηηηt, we
propose the proportional random walk in (14). If an entry of θθθt
has optimal value close to 0 (or less than the standard deviation
of ηηηt), the standard random walk would not stay around the
optimum. We wish to estimate the posterior of the parameter
vector θθθt sequentially. The prior of θθθ0 is N (0, σ2

θI2J) or is
obtained from pre-training. Upon receiving yt and xt, the
posterior pdf of θθθt is computed by the PF approach. First
we sample M parameter vectors θθθ(m)

0 from the prior at time
0, where m = 1, ...,M . Then we proceed as explained in the
following two subsections.
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B. Prediction

Suppose we have sampled M parameter vectors θθθ(i)t−1 at
time t− 1. The predictive pdf of f̂(xt) can be obtained by

p(f̂t(xt)|y1:t−1, x1:t−1) =

∫
p(f̂t(xt)|θθθt−1)

× p(θθθt−1|y1:t−1, x1:t−1)dθθθt−1

≈ 1

M

M∑
m=1

δ
(
f̂t(xt)−φφφ(xt)>θθθ

(m)
t−1

)
.

Thus, the predictive pdf of yt is given by

p(yt|y1:t−1) =

∫
p(yt|f̂t(xt))p(f̂t(xt)|y1:t−1)df̂t(xt)

≈ 1

M

M∑
m=1

p
(
yt|φφφ(xt)>θθθ

(m)
t−1

)
, (17)

C. Filtering

We generate particles of the parameter vectors θθθ
(m)
t by

drawing ηηη
(m)
t and using (14). Upon receiving yt, we assign

the weights for each particle θθθ(m)
t by the formula

w
(m)
t ∝ p(yt|f̂ (m)

t ) = p(yt|θθθ(m)
t , xt). (18)

After normalizing the weights, the minimum mean square
estimate (MMSE) of θθθt is obtained by

θ̂θθt =

N∑
i=1

w
(i)
t θθθ

(i)
t . (19)

The approximation of the posterior of p(θθθt|yt) is

pM (θθθt|yt) ≈
M∑
m=1

w
(m)
t δ(θθθt − θθθ(m)

t ). (20)

Finally, we resample M new particles of θθθt from (20) and
use them for propagation to obtain θθθ

(m)
t+1. Our sequential PF

algorithm has complexity O(TJM).

IV. DYNAMIC RANDOM FEATURES

In this section, we consider dynamic random feature vari-
able φφφt(·) vectors rather than time-invariant ones. If the
hyper-parameters of a GP are time-varying, then the power
spectral density πt(v) of ft has time-varying parameters.
Accordingly, the corresponding random variables {vjt}Jj=1 of
f̂t are dynamic. We model the random variables vjt following
the random walk model

vjt = vjt−1 ◦ (1 + ζζζjt ), (21)

where ζζζjt is white noise. As a result, the random feature φφφt
and hence the RF-based GP f̂t varies with time nonlinearly
by

φφφt|vt = g(φφφt−1|vt−1) = φφφt−1| (vt−1 ◦ (1 + ζζζt)) ,

f̂t|φφφt = h(f̂t−1|φφφt−1) = g(φφφt−1|vt−1)θθθt.
(22)

In the initialization step, we sample K different sets
{vj0(k)}Jj=1 from the prior π0(v), where k = 1, . . . ,K.

Therefore the particles φφφ
(k)
0 and f̂

(k)
0 are determined by

{vj0(k)}Jj=1 and (22). For the kth particle f̂ (k)0 , we sample M
parameter vectors θθθ(k,m)

0 from the prior distribution of θθθ(k)0 ,
where m = 1, . . . ,M .

A. Prediction

Suppose that at time t− 1 we have sampled the GPs f̂ (k)t−1,
k = 1, 2, . . . ,K. The predictive pdf of f̂ (k)t (xt) by particle k
is obtined from

p(f̂
(k)
t (xt)|y1:t−1) =

∫
p(f̂

(k)
t (xt)|θθθ(k)t−1)

× p(θθθ(k)t−1|y1:t−1)dθθθ
(k)
t−1

≈ 1

M

M∑
m=1

δ
(
f̂
(k)
t (xt)−φφφ(k)t−1(xt)>θθθ

(k,m)
t−1

)
.

Then the predictive pdf of yt from particle k is given by

p(yt|y1:t−1, x1:t−1, xt, k) =

∫
p(yt|f̂ (k)t (xt))

× p(f̂ (k)t (xt)|y1:t−1)df̂
(k)
t (xt)

≈ 1

M

M∑
m=1

p
(
yt|φφφ(k)t−1(xt)>θθθ

(k,m)
t−1

)
.

Consequently, we have the predictive pdf of yt by all the GPs

p(yt|y1:t−1, x1:t−1, xt) (23)

=

K∑
k=1

p(k|y1:t−1, x1:t−1)× p(yt|y1:t−1, x1:t−1, xt, k)

≈
K∑
k=1

p(k|y1:t−1, x1:t−1)×
M∑
m=1

w
(m)
t−1p(yt|φφφ

(k)
t−1(xt)>θθθ

(k,m)
t−1 ).

B. Filtering

Before yt arrives, we sample f̂
(k)
t ,φφφ

(k)
t , θθθ

(k,m)
t using

f̂
(k)
t−1,φφφ

(k)
t−1, θθθ

(k,m)
t−1 via (14), (21) and (22). The PF approach

assigns the weight for each approximated GP f̂
(k)
t by the

likelihood

w
(k)
t ∝ p(yt|f̂ (k)t ) =

1

M

M∑
i=1

p
(
yt|φφφ(k)t (xt)>θθθ

(k,m)
t

)
. (24)

The estimated GP at time instant t is given by

f̂t =

K∑
k=1

w
(k)
t f̂

(k)
t . (25)

Next we resample K GPs f̂ (k) from (25). After resampling the
GPs, the parameter vector θθθ(k,m)

t is attached to the newly re-
sampled GPs f̂ (k)t , which are updated as shown in Section III.
Our dynamic random feature has complexity of O(TJMK),
and is presented by Algorithm 1.
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Algorithm 1: Dynamic Random Feature

for k = 1 to K do
Sample vm0 (k) from π0(v);
Construct random feature φφφ(k)0 (·) via (9);
Initialize the f̂ (k)0 and their weights as
w

(k)
0 = 1/K;

for i = 1 to N do
Sample θθθ(k,i)0 ∼ p(θθθ0);
Initialize the weight of θθθ(k,i)0 as w(k,i)

0 = 1/N ;

for t = 1 to T do
Prediction:
Predict yt via (23);
Transition:
Sample f̂ (k)t , θθθ

(k,j)
t from (14), (21) and (22);

GP Filtering:
Assign a weight to the candidate GP f̂

(k)
t by (24);

Estimate the GP f̂t by (25);
Resample the GPs f̂ (k)t based on their weights.
Parameter Variable Filtering:
for k = 1 to K do

Assign weights to the particles θθθ(k,i)t by (18);

Estimate the parameter vector θ̂θθ
(k)

t by (19);
Resample new particles θθθ(k,i)t from (20).

V. EXPERIMENTS

We compare the proposed sequential time-varying GP with
dynamic random features and an online ensemble GP (O-EGP)
[8] using the normalized mean square error (nMSE) defined
as

nMSET : =
1

Tσ2
y

T∑
t=1

(yt − ŷt)2, (26)

where σ2
y is the sample variance of the output y1:T , and ŷt

is the predicted output at time t. O-EGP is an online method
based on a Bayesian update, which preselects the sets of basis
functions φφφ and assumes that the observations have Gaussian
likelihoods. Both time-invariant and time-varying functions are
tested.

A. Synthetic test with a time-invariant function

The data were generated as in [6], where

yt =
xt
25

+
2xt · cos(xt)

1 + x2t
+ εt, (27)

where εt ∼ N (0, 0.1). In total we generated 2000 input-
output pairs, where the inputs were randomly selected from the
interval [-10,10]. We took the first 1000 pairs as a training set
and the other half as a testing set. We employed the radial basis
function (RBF) kernel, which has a power spectral density

π(v) =
√

2πl2 exp−2π
2l2v2 , (28)

where the length scale l was learnt during training. Our model
was set to have K = 1000 particle GPs f̂ (k)t , for each particle
GP f̂

(k)
t M = 1000 particles of parameter variables θθθ(k,m)

t ,
and J = 50 spectral frequencies.

The performance in terms of nMSE is plotted in Fig.
1(a). The proposed dynamic sequential GP model (D-SGP)
outperformed the competing O-EGP by around 6% reduction
of nMSE after convergence. Moreover, in our experiments
the O-EGP always encountered degeneration in the number
of candidate GPs (i.e., the sets of φφφ). At the end, there was
always one GP that had a weight practically equal to one.
(cf. Fig. 2(a)). By contrast, our approach did not experience
degeneration because of the constant number of GP particles
via transition provided by (22).

(a) (b)

Fig. 1. Log scale nMSE plots on syntehtic data generated by (a) a time-
invariant function, and (b) a time-varying function.

(a) (b)

Fig. 2. Number of candidate GPs of O-EGP under (a) a time-invariant
function, and (b) a time-varying function.

B. Synthetic test with a time-varying function

In this experiment, we generated synthetic signals that were
used in [5] and that represented a superposition of a sinusoid
and chirp signals embedded in zero mean white Gaussian
noise. More specifically, the synthesized observations were
obtained by

yt = cos(ω1t) + cos(ω2(t)t) + cos(ω3(t)t) + εt, (29)

where ω1 = 2π
4·512 , ω2(t) = 2πt

2·5122 , ω3(t) = 2π(512−t)
2·5122 , εt ∼

N (0, 0.01), and where t = 0, . . . , 511. We used the first 256
signal samples for training, and the remaining samples for
testing. In light of the data size, our model was set to have K =

100 GP particles f̂ (k)t , M = 1000 particles of the parameter
vector θθθ(k,m)

t , and J = 10 spectral frequencies.
The performance is presented in Fig. 1(b). Our model

achieved over 8% reduction in nMSE compared with the
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benchmark O-EGP model. The degeneration problem of O-
EGP persisted in this experiment as well (cf. Fig. 2(b)).

C. Real data with non-Gaussian likelihood

The bike sharing data set comes from the UCI machine
learning repository,1 which is time-varying and with non-
Gaussian likelihoods. The outputs are the counts of casual
users (hourly) in a city and are, thus, integers. The inputs
are five-dimensional, including temperature in Celsius, feeling
temperature in Celsius, humidity, wind speed, and hour. The
former four variables are normalized while the hour variable
is an integer that takes values from 0 to 23. A natural model
of the conditional distribution of outputs is the Poisson dis-
tribution. Consequently, we assign the conditional probability
mass function p(yt|α̂t) as a Poisson distribution,

P (yt|α̂t) =
α̂ytt e

−α̂t

yt!
. (30)

In order to compute the particle weights, we estimated α̂t
with f̂

(m)
t (xt) or f̂ (k)t (xt) in Eq. (18) or (24), respectively.

As benchmarks, O-EGP and D-SGP with Gaussian likelihoods
were both applied. We chose the first 120 samples as a training
set and the following 360 samples as a testing set, since the
period was 120 hours. The setting of this Poisson model was
set to be K = 100,M = 100, and J = 10 for O-EGP and
D-SGP with Gaussian and Poisson likelihoods.

The nMSE plot for all three models is shown in Fig. 3(a). D-
SGP with a Poisson likelihood (D-SGP-Poisson) outperformed
both D-SGP with a Gaussian likelihood (D-SGP-Gaussian)
and O-EGP. In Fig. 3(b), we show the percentage of nMSE
reduction. Our proposed method achieved over 40% and
15% reduction compared to O-EGP and D-SGP-Gaussian,
respectively. The 15% gap between D-SGP-Poisson and D-
SGP-Gaussian benefits from the flexibility of the likelihood
function in the proposed model.

(a) (b)

Fig. 3. (a) Log scale nMSE plots on the bike sharing data, and (b) Percentage
of nMse reduction.

VI. CONCLUSIONS

In this paper, we proposed sequential RF-based GP learners
that can infer both time-varying random features and parameter
variables with any computable likelihood. The learners are
based on GPs and PF, where the GPs are treated as latent

1https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

states. The experimental results illustrate good performance
with synthesized and real data for both time-invariant and
time-varying functions.
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