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Abstract—The coronavirus disease (COVID-19) has rapidly
spread throughout the world and while pregnant women present
the same adverse outcome rates, they are underrepresented in
clinical research. We collected clinical data of 155 test-positive
COVID-19 pregnant women at Stony Brook University Hospital.
Many of these collected data are of multivariate categorical type,
where the number of possible outcomes grows exponentially as
the dimension of data increases. We modeled the data within
the unsupervised Bayesian framework and mapped them into
a lower dimensional space using latent Gaussian processes. The
latent features in the lower dimensional space were further used
for predicting if a pregnant woman would be admitted to a
hospital due to COVID-19 or would remain with mild symptoms.
We compared the prediction accuracy with the dummy/one-hot
encoding of categorical data and found that the latent Gaussian
process had better accuracy.

Index Terms—Categorical Latent Gaussian Process, Coron-
avirus Disease, Data mining

I. INTRODUCTION

The coronavirus disease 2019 (COVID-19) has become
an unprecedented public health crisis. Around the world,
many governments issued a call to researchers in machine
learning (ML) and artificial intelligence (AI) to address high-
priority questions related to COVID-19. This call was not
unusual because ML methods are finding many uses in medical
diagnosis applications. The ML field is rich with examples
where based on predictive models one can estimate disease
severity [1] and consequently, the state of a patient’s health
[2]–[4]. These models employ data-driven algorithms that can
extract features and discover complicated patterns that could
have not been recognized or interpreted by humans.

Pregnant women are a particularly important patient pop-
ulation to study due to their vulnerability to disease and the
often underrepresentation of the population in clinical research
[5]. Despite studies in this field [6]–[10], there has been
a relative sparsity of data in regards to COVID-19 and its
effect on pregnancy. Utilizing ML techniques to study this
population during the pandemic can help build pregnancy-
specific evidence to guide clinical recommendations [11].
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Much of the medical data are of multivariate categorical
type, and typically they represent patients’ demographics,
maternal comorbidities, pregnancy complications, and disease
symptoms. As a result, one has to work with long vectors of
categorical variables which in turn leads to a huge number
of possible realizations. This then creates very sparse spaces
when we deal with a limited number of data [12]. Besides, the
data include random errors and systematic biases, and some-
times they are missing [13]. By overcoming the challenges
that clinical data introduce, one can layout the grounds for
developing more accurate models and efficient algorithms for
inference.

The key to have successful predictive methods largely de-
pends on feature selection and data representation. A common
approach is to have a clinical doctor specify the variables and
label the clinical data to be used as training sets. Then the
ML method will find mappings and features from the data,
which subsequently will be tested on new data sets. Although
appropriate in many situations, a supervised definition of the
features contributes to losing an opportunity to learn latent
patterns and features [4]. In countering the subjectivity of
defining the features, an unsupervised learning approach can
be used to extract useful information from data. One other
advantage of unsupervised learning is that abstract features of
patients can often be represented in low-dimensional spaces
and thus, they can summarize efficiently the information
available in the data. This further allows for easy visualization
of the cohort of patients under consideration.

In the ML literature, categorical latent Gaussian processes
provide data efficient and powerful Bayesian framework for
learning latent functions or patterns [14]. In this paper, we
model the categorical data from pregnant women as generated
non-linearly from a latent space. More specifically, we map the
categorical variables including maternal comorbidities, preg-
nancy complications, ABO blood types, etc., into a continuous
lower dimensional space. Then we use these learned features
along with the remaining numerical data (maternal age, BMI,
etc.) to predict whether (a) the patient will develop severe
symptoms and will come back to the hospital due to COVID-
19, days after tested positive, or (b) the patient will remain
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Table I
LIST OF SYMBOLS AND NOTATIONS

N – Number of patients
D – Number of categorical variables
K – Number of possible outcomes
Q – Dimensionality of the latent space

xn – Latent value of the nth patient
yn – A D−dimensional observed vector
ynd – The dth element of yn that can take one of D

categorical values
fnd – Vector of probability weights of the dth cate-

gorical variable for the nth patient
Kd – Covariance matrix corresponding to the dth

categorical variables
κ – A kernel function
F – A sample function from GP(., .)
Z – Inducing input locations
U – Inducing variables

asymptomatic or symptomatic but with mild symptoms. We
compared the performance obtained by direct and non-linear
dimensionality reduction of the categorical data with the
methodology of one-hot encoding, which is commonly applied
in the machine learning circles when dealing with categorical
data.

The remainder of this paper is organized as follows. In the
next section, we explain the categorical latent Gaussian model
first introduced in [14]. Then we introduce an alternative
pipeline that deals with categorical data. We test the pro-
posed approach first on synthesized data and then on original
COVID-19 data.

II. BACKGROUND ON GPLVM

Gaussian process latent variable models (GPLVMs) are
Bayesian nonparametric frameworks that allow for unsuper-
vised learning [15]. GPLVMs can be seen as multi-output
Gaussian process regressions when the inputs are unobserved.
To be more specific, let fn ∈ RK be the n-th observed data
vector of dimension K, n = 1, 2, . . . , N . Further, let these
data be associated with inputs xn ∈ RQ through K different
functions. If we assume that these functions are independent,
then for fn we can write

p (fn(xn)) =

K∏
k=1

p (fnk(xn)) , (1)

where fnk(xn) represents the kth dimension of fn(xn) and

p (fnk(xn)) = N (fnk; 0, k(xn,x
′
n)) , (2)

where the notation N (fnk; 0, k(xn,x
′
n)) means that the ran-

dom variable fnk(xn) is Gaussian with mean zero and vari-
ance defined by the covariance function k(xn,x

′
n). In order

to automatically learn the dimensionality of the latent space,
we will use the concept known as Automatic Relevance
Determination (ARD) with the kernel

κ (xn,x
′
n) = σ2

f exp

(
−1

2

Q∑
q=1

αq

(
xn,q − x′n,q

)2)
. (3)

In GPLVMs, X ∈ RN×Q is a matrix of latent variables, and
therefore we assign it a prior density. A typical approach is to
use the standard Gaussian distribution, and thus we have

p(X) =

N∏
n=1

N (xn;0, IQ) , (4)

where the xn’s are the rows of X . By defining the matrix of
observations F ∈ RN×K , where the rows represent the mul-
tiple outputs fn, we wish to compute the marginal likelihood
of the data:

p(F ) =

∫
p(F |X)p(X)dX. (5)

The authors in [15] developed a variational Bayesian ap-
proach for the marginalization of the latent variables, X ,
allowing them to optimize the resulting lower bound on the
marginal likelihood with respect to the hyperparameters. They
further used the lower bound for model comparison and
automatic selection of the latent dimensionality.

III. MULTIVARIATE DISCRETE GPLVM

A. Generative Model

We consider now the discrete version of GPLVM where for
each input xn, we observe a discrete variable yn that can take
values 1, ...,K, with probabilities

p (yn = k) =
exp (fnk)∑K

k′=1 exp (fnk′)
. (6)

In the multivariate case, we have yn ∈ RD. Next, we
consider a generative model for a dataset Y ∈ RN×D with N
observations and D categorical variables. We denote the d-th
variable in the n-th observation by ynd. Now we express (6)
as

p (ynd = k) =
exp (fndk)∑K

k′=1 exp (fndk′)
, (7)

where fndk is function of the input variable xn ∈ RQ, i.e.,
fndk = Fdk (xn) . Next, we summarize the generative model
(the indices below have the following meaning: n refers to
observation, d to the dimension of the output, m to an inducing
point (defined below), and k to category),

xnq
iid∼ N

(
0, σ2

x

)
, (8)

Fdk
iid∼ GP (0, kd(·, ·)) , (9)

fndk = Fdk (xn) , (10)
umdk = Fdk (zm) , (11)

p(ynd = k) =
exp (fndk)∑K

k′=1 exp (fndk′)
, (12)

where xnq and Fdk are latent variables with prior distribu-
tions given by (8) and (9), respectively, with GP signifying
Gaussian process (GP). Further, the zms are inducing inputs,
m = 1, 2, . . . ,M , and the umdks are inducing outputs whose
role is explained further below. We note that we assume a
Gaussian distribution prior with standard deviation σ2

x for
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xnk, and a GP prior for each of the functions F . We reit-
erate that for each vector of latent function values fdk, we
introduce a separate set of M variational inducing variables
udk, evaluated at a set of inducing input locations from
the set Z = {z1, z2, . . . ,zM}. It is assumed that all udks
are computed at the same inducing locations. The inducing
variables are function points drawn from the GP prior and lie
in the same latent space as F variables (Fig. 1). The pictorial
description of the generative model is displayed in Fig. 2.

Figure 1. Latent weights and inducing variables.

Figure 2. A graphical representation of the generative model.

B. Inference

The marginal log-likelihood is intractable because of the
covariance function of the GP and the nonlinear Softmax
likelihood in (12). We consider a variational approximation
to the posterior distribution of X,F and U ∈ RM×D×K

factorized as,

q(X,F ,U) = q(X)q(U)p(F |X,U). (13)

By applying Jensen’s inequality, we can write a lower bound
of the log-evidence (ELBO) as

log p(Y ) = log

∫
p(X)p(U)p(F |X,U)p(Y |F )dXdFdU

≥ −KL(q(X)‖p(X))−KL(q(U)‖p(U))

+

N∑
n=1

D∑
d=1

∫
q (xn) q (Ud) p (fnd|xn,Ud)

· log p (ynd|fnd) dxndfndUd := L, (14)

where,

p (fnd|xn,Ud) =

K∏
k=1

N (fndk;k
>
d,nMK−1d,MMudk,

kd,nn − k>d,nMK−1d,MMkd,Mn). (15)

The lower bound is still intractable because of the softmax
likelihood, log p (ynd | fnd). Therefore, we will compute the
lower bound L and its derivatives with the Monte Carlo
method. We draw samples of xn,Ud ∈ RM×K (see Fig. 1)
and fnd from q (xn) , q (Ud) , and p (fnd | xn,Ud), respec-
tively, and estimate L with the sample average. We consider
mean field variational approximation of the latent points q(X)
and a joint Gaussian distribution for q(U) as,

q(U) =

D∏
d=1

K∏
k=1

N (udk;µdk,Σd) , (16)

q(X) =
N∏

n=1

Q∏
q=1

N
(
xnq;mnq, σ

2
nq

)
, (17)

where the covariance matrix Σd is shared for the same cate-
gorical variable d. The KL divergence in L can be computed
analytically with the given variational distributions. We need to
optimize the hyperparameters of each GP (parameters of Kd),
parameters of the variational random variables udk, µdk, Σd,
mean mnq and variance σ2

nq of the latent inputs.

IV. EXPERIMENTS AND RESULTS

A. 1-D Input and Output

Consider the categorical variable y that can take values 001,
010, and 100 (or blue, red, and green). The input variable x
comes from a space of patients. Further, let three functions
F11,F12, and F13 model the fndks that are used for computing
the probability of each category (the first index of the functions
refers to the dimension, which in this example equals to one).
For instance, F11(xn) is proportional to the probability of y
for patient n with input xn being 001. Similarly, we define
fn12 and fn13 for the categories 010 and 100, respectively.

We perform the inference using the introduced method
(Fig. 3 (a)) and compare it with the one-hot encoding of the
categorical variables (Fig. 3 (b)). We observe that by the one-
hot encoding and then applying GPLVM, the structure of the
latent space is distorted. The first two dimensions of x are
shown in Fig. 4 (c). Although a one-dimensional manifold is
detected, the points at the boundary of the two clusters are
obviously distorted.

B. COVID-19 Data

We used data collected at SBUH of 155 test-positive
COVID-19 pregnant women. The dataset is composed of
categorical variables including patients’ symptoms, maternal
comorbidities, pregnancy complications, race, employer type,
insurance, known sick contact, and ABO blood type. It also
has numerical data including age, BMI, gravidity, parity, and
admission lab values. The list of categorical and numerical
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Numerical
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Categorical

Features

Mapped Latent Features
(Discrete-GPLVM) ML Classifier

(a) Embedding the categorical variables into lower dimension space.

Original
Numerical
Features

Original
Categorical

Features
ML Classifier

One-Hot
Encoding

Mapped Latent
Features

(GPLVM)

(b) One-hot encoding of the categorical variables before dimensionality
reduction.

Figure 3. Model Pipeline

Table II
LIST OF COVID-19 PATIENTS VARIABLES

Input Variables Type

Maternal age (year) Numerical
BMI (kg/m2) Numerical
Gravidity Numerical
Parity Numerical
Admission Lab Values Numerical

Thermodynamic Symptoms Categorical
Lower Respiratory Symptoms Categorical
HEENT Symptoms Categorical
GI symptoms Categorical
Hemodynamic Symptoms Categorical
Cardiovascular Symptoms Categorical
Musculoskeletal Symptoms Categorical
Race Categorical
Employer type Categorical
Insurance Categorical
Known sick contact type Categorical
Maternal comorbidities Categorical
Pregnancy complications Categorical
ABO blood type Categorical

Symptoms at time of diagnosis Binary (Yes/No)
Admitted to hospital for COVID-19 Binary (Yes/No)
Admitted to ICU Binary (Yes/No)

variables is summarized in Table II. The cohort consisted of
60 asymptomatic cases, 81 moderate symptomatic, and 14
severely ill patients who were admitted to hospital for COVID-
19. Of the latter 14 patients, four were admitted to ICU.

We first reduced the dimension of categorical data by
mapping them into a lower-dimension space using discrete-
GPLVM. Next, we used the extracted latent features combined
with numerical variables for the supervised task of binary
classification. Then we converted the categorical variables to
one-hot features and then applied GPLVM. For classification
we employed Random Forest, Naı̈ve Bayes, AdaBoost, k-
Nearest Neighbours (kNN), Support Vector Machine (SVM),
and Logistic Regression. We compared the performances of
the methods by Area Under the ROC Curve (AUC), Classifi-
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(a) Generative model for a single categorical variable y.

Input x (Patient space)
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1
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(b) Learned latent variables with Discrete-GPLVM
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(c) Learned latent space of x with One-Hot Encoding-GPLVM.

Figure 4. Synthetic Example

cation Accuracy (CA), F1, Precision, and Recall, where

CA =
TP + TN

TP + TN + FP + FN
, (18)

with TP representing True Positive, TN True Negative, FP
False Positive, and FN False Negative predictions,

Recall =
TP

TP + FN
, (19)

Precision =
TP

TP + FP
, (20)

and
F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
. (21)

The results are summarized in Tables III and IV.
The results suggests that the performance of almost all

classifiers improved by using the discrete GPLVM. The best
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Table III
DISCRETE-GPLVM

Model AUC CA F1 Precision Recall

Random Forest 0.842 0.787 0.788 0.789 0.787
Naı̈ve Bayes 0.781 0.639 0.631 0.751 0.639
AdaBoost 0.715 0.723 0.724 0.728 0.723
kNN 0.674 0.671 0.655 0.661 0.671
SVM 0.670 0.600 0.604 0.613 0.600
Logistic Regression 0.601 0.619 0.611 0.608 0.619

Table IV
ONE-HOT ENCODING-GPLVM

Model AUC CA F1 Precision Recall

Random Forest 0.770 0.729 0.729 0.729 0.729
SVM 0.702 0.677 0.642 0.678 0.677
Naı̈ve Bayes 0.689 0.568 0.550 0.692 0.568
kNN 0.677 0.665 0.647 0.653 0.665
AdaBoost 0.671 0.684 0.685 0.687 0.684
Logistic Regression 0.607 0.606 0.601 0.598 0.606

performance of all classifiers was achieved by Random Forest.
It appears that with dimensionality reduction using discrete
GPLVM we compress information better than with GPLVM
carried out by one-hot encoding.

We also mapped the data for the task of visualization of
the cohort. Figure 5 shows the visualization of the patients
using discrete-GPLVM by setting the latent dimension to
Q = 2. We observe that the latent features of the symptomatic
patients or patients with mild symptoms (blue circles) are well
clustered and somewhat separated from the patients who were
hospitalized or who were admitted to ICU (red circles and red
crosses).

−20 −10 0 10
Q1

−5

0

5

10

15

Q
2

Admitted to Hospital for COVID-19
Admitted to ICU

Figure 5. Visualization of the patients. Blue circles represent asymptomatic
patients or patients with mild symptoms, red circles represent patients who
were hospitalized and red crosses are patients who were admitted to ICU.

V. CONCLUSION

In this paper, we modeled multivariate categorical data using
Gaussian process latent variable models to predict if a pregnant
women would be admitted to the hospital due to COVID-19.

In our approach, we used a data-efficient Bayesian framework
for reducing the dimension of high-dimensional categorical
data. Our tests with synthetic data showed that the method is
capable of finding latent structures of the data. Further, the
results on test-positive COVID-19 pregnant women suggest
that the method discovered latent structures that were useful
for further classification of the data.
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