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Abstract—This paper combines a variational denoising ap-
proach with a dimensionality reduction of multivariate time series
by dynamical component analysis (DyCA), a dimensionality re-
duction method for high-dimensional dynamical signals governed
by a low-dimensional system of ordinary differential equations
(ODEs). While DyCA has been successfully applied to these types
of signals in the past, it has not been robust to noise or incomplete
data. The proposed approach simultaneously denoises the given
time series and reduces the dimensionality of the data using
DyCA while retaining the most important dynamic structures.

Index Terms—multivariate signal analysis, dimensionality re-
duction, dynamical component analysis, variational denoising,
Roessler attractor, EEG

I. INTRODUCTION

In the processing of real-world signals, one often
encounters the problem of data being contaminated with
additive Gaussian noise or missing entries in the data. In
multivariate signal processing, this can occur when sensors
are defective or when, due to time constraints, fewer data
points can be sampled during the measurement than would
actually be necessary for the evaluation of the data. The task
of reconstructing the original multivariate signal from data
with missing entries or noisy data is further compounded by
another challenge common in multivariate signal processing:
dimensionality reduction.

In this paper, we focus on multivariate signals exhibiting a
certain kind of underlying deterministic dynamics which can
be described by a system of linear and nonlinear ordinary
differential equations. It has been recognized that the recently
introduced dimensionality reduction method dynamical
component analysis (DyCA) is well suited to handle the
before-mentioned type of multivariate signals [1], [2], [3]. In
this context, it also outperforms conventional dimensionality
reduction methods such as principal component analysis
(PCA) [4] and independent component analysis (ICA) [5], [6].
DyCA finds the most important underlying dynamic structures
with respect to the linear part of the system of ordinary
differential equations (ODEs) by projecting the data onto a
low-dimensional subspace and solving a least-squares problem

This work was supported by the German Federal Ministry of Education
and Research (BMBF, Funding number: 05M20WBA)

that is equivalent to a generalized eigenvalue problem.

Although DyCA can reduce the dimension of deterministic
dynamic data, the method is not robust to even low levels
of noise or missing data entries, which has recently been
shown in [7]. Common multivariate denoising methods
are e.g. multivariate wavelet denoising [8], [9] or methods
based on (multivariate) empirical and variational mode
decomposition [10], [11], [12] that can be understood as
multivariate extensions of their corresponding univariate
version. In contrast to the above-mentioned methods working
in the frequency domain, our approach is based on the time
domain. In this paper we combine a variational regularized
L2-denoising and reconstruction problem that is well-known
in signal and image processing with the least-squares
DyCA minimization problem for dimensionality reduction.
This results in a coordinate-descent like approach that
simultaneously reconstructs and denoises the data in one step
and computes DyCA projection vectors in a second step.
The advantage of this approach is the mutual improvement
of the two procedures. On the one hand, DyCA benefits
from non-noisy and complete data. On the other hand, the
signal reconstruction can be improved by the consideration
of the underlying dynamics, coupling the searched unknowns
through the system of ODEs. The idea is inspired by [13],
where the authors integrated an optical flow term into an
image reconstruction problem.

The paper is structured as follows. In sections II and III we
provide the basic theory of dynamical component analysis and
derive a joint variational signal denoising and dimensionality
reduction approach using DyCA. In section IV the proposed
method is tested on simulated Roessler attractor data and real
world epileptic EEG data and compared with other common
denoising methods. The results will be discussed in section V.

II. DYNAMICAL COMPONENT ANALYSIS (DYCA)

In this section we will provide a brief introduction to
dynamical component analysis which is discussed in detail
in [1]. Let q(t) ∈ RN be a multivariate time series with
t = t1, t2, . . . , tT , T ≥ N . It is assumed that, under
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ideal circumstances, the signal q(t) can be decomposed into
components

q(t) =

n∑
i=1

xi(t)wi (1)

with linearly independent vectors wi ∈ RN and n ≤ N ,
whereas the deterministic amplitudes xi(t) obey a set of linear
and nonlinear ordinary differential equations

ẋi(t) =

n∑
k=1

ai,kxk(t) for i = 1, ...,m (2)

ẋi(t) = fi(x1(t), ..., xn(t)) for i = m+ 1, ..., n (3)

with m ≥ n
2 . In terms of matrix notation we can rewrite (1)

as
Q =WX, (4)

with Q ∈ RN×T , W ∈ RN×n, and X ∈ Rn×T . As an
additional condition we must assume that the data matrix Q
and its time derivative Q̇ are of full rank N . This is usually
the case, as in practice the data often exhibits at least small
amounts of noise. DyCA now aims at computing a generalized
left inverse W− ∈ Rn×N of W , i.e. W−W = In, such that

X =W−Q. (5)

The assumption of linearly independent vectors wi leads
directly to the fact that the rows {u>1 , ..., u>n } of W− are
linearly independent as well. Hence, the amplitudes xi(t) can
be calculated by the scalar product

xi(t) = u>i q(t) = q(t)>ui (6)

with time derivative ẋi(t) = q̇(t)>ui. DyCA estimates these
vectors ui first and approximates the corresponding modes wi
in a second step. Therefore we define vi :=

∑n
k=1 ai,kuk for

i = 1, ...,m and write (2) as follows:

q̇(t)>ui =

n∑
k=1

ai,kq(t)
>uk = q(t)>vi (7)

To obtain estimations for the vectors ui, vi we define the error
functions

D(ui, vi) :=
1
T

∑T
j=1 ‖q̇(tj)>ui − q(tj)>vi‖2
1
T

∑T
j=1 ‖q̇(tj)>ui‖2

(8)

and compute approximation vectors ũi, ṽi, i = 1, ...,m
as a solution of the least squares problem
argminui,vi

∑m
i=1D(ui, vi) subject to u1, ..., um being

linearly independent. After some basic computations
which can be found in [1] and defining C0 := 1

TQQ
>,

C1 := 1
T Q̇Q

>, and C2 := 1
T Q̇Q̇

>, (8) reduces to the solution
of a generalized eigenvalue problem

C1C
−1
0 C>1 u = λC2u (9)

with ṽi = C−10 C>1 ũi for the corresponding eigenvectors ũi.
For the generalized eigenvalues λi we obtain

min
ui,vi∈RN

D(ui, vi) = 1− λi (10)

i.e. the linear approximation of (8) is well suited for λi ≈ 1.
Choosing a minimal subset of vectors ũi, ṽi such that ñ =
dim(span{ũ1, ..., ũm̃, ṽ1, ..., ṽm̃}) then yields an estimate W̃−

for the matrix W−. An estimate W̃ of W can be computed
as W̃ = 1

TQX̃
>C−1

X̃
with CX̃ = 1

T X̃X̃
>. All in all, the

complete DyCA algorithm can be found in [1]. Taking a
closer look at equation (2) at this point, one might notice that
applying a linear transformation to the linear part of the ODE
system keeps the structure of the data invariant. This degree of
freedom leads to an ambiguity in the choice of the estimates
for the matrix W and the amplitudes xi(t), resulting in rotated
DyCA trajectories compared to the original data.

III. A JOINT SIGNAL DENOISING AND DIMENSIONALITY
REDUCTION MODEL

Dynamical component analysis as derived in the previous
section is not robust to additive noise so far, working only
for low noise levels around 35dB [7]. To provide a solution to
this matter we revisit the idea of [13], and consider a measured
signal s(t) with

s(t) =

n∑
i=1

xi(t)wi + n(t) (11)

where we assume n(t) to be Gaussian random noise and seek
to reconstruct the original signal q(t) =

∑n
i=1 xi(t)wi out of

s(t) = q(t) + n(t). (12)

For this purpose, we expand a standard variational regularized
L2-denoising problem by additional DyCA minimization
terms and therefore solve a minimization problem of the
general form

argmin
q,ui,vi∈RN

1

T

T∑
j=1

[
1

2
‖q(tj)− s(tj)‖22 +

β

2
‖∂tq(tj)‖22

+
γ

2

m∑
i=1

‖∂tq(tj)>ui − q(tj)>vi‖22
]

(13)

subject to ui being linearly independent and ∂tq being an
alternative operator notation for the time derivative q̇ of q. To
facilitate later computations, we assumed the denominator of
the DyCA minimization problem to be equal to one which
is equivalent to minimizing (8). For reasons of simplicity
and due to the summands of the DyCA term being all of
the same nature, we neglect the index i in the following. We
would like to point out that this approach is also suitable for
the reconstruction of the searched signal from incomplete data.

In analogy to [13] and to simplify the later numerical
implementation, we use an alternating coordinate-descent like
approach for (13) changing between minimization with respect
to q in one step and u and v in a second step while fixing
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the other variables. The alternating minimization approach of
model (13) then reads:

qk+1 = argmin
q

1

T

T∑
j=1

1

2
‖q(tj)− s(tj)‖22 +

β

2
‖∂tq(tj)‖22

+
γ

2
‖(uk)>∂tq(tj)− (vk)>q(tj)‖22

uk+1, vk+1 = argmin
u,v

γ

2T

T∑
j=1

‖u>∂tqk+1(tj)− v>qk+1(tj)‖22

While the second subproblem can be solved by the standard
DyCA method as introduced in section II, we seek a solu-
tion for the first subproblem by using the Chambolle-Pock
algorithm [14]. In the following we shall focus on the first
subproblem which we reformulate to

qk+1 = argmin
q

F (Kq) +G(q) (14)

with suitable operators F , K, and G. For reasons of readability
we neglect the dependence of q on the time tj . Since the data
term does not contain any operator acting on q, we assign it
to G and write

G(q) :=
1

T

T∑
j=1

1

2
‖q − s‖22. (15)

Both of the other terms contain an operator acting on q which
is the gradient or time derivative ∂t for the regularization term
and ((uk)>∂t − (vk)>) for the DyCA term. Thus, we write

F (Kq) =
1

T

T∑
j=1

β

2
‖∂tq‖22 +

γ

2
‖(uk)>∂tq − (vk)>q‖22 (16)

with an underlying operator

Kq =

(
∂t

(uk)>∂t − (vk)>

)
q. (17)

The adjoint operator K∗ of K can be computed as
K∗y = −∂ty1 −

(
(uk)>∂t − (vk)>

)
y2, and the convex

conjugate F ∗ of F as F ∗(y) = 1
T

∑T
j=1

1
2β ‖y1‖

2
2 +

1
2γ ‖y2‖

2
2.

We are now able to apply the Chambolle-Pock algorithm and
receive the following iteration scheme:

ỹl+1 = yl + σKql

yl+1
1 = argmin

y1

 1

T

T∑
j=1

‖y1 − ỹl+1
1 ‖2

2σ
+

1

2β
‖y1‖22


yl+1
2 = argmin

y2

 1

T

T∑
j=1

‖y2 − ỹl+1
2 ‖2

2σ
+

1

2γ
‖y2‖22


q̃l+1 = ql − τK∗yl+1

ql+1 = argmin
q

 1

T

T∑
j=1

‖q − q̃l+1‖2

2τ
+

1

2
‖q − s‖22


ql+1 = ql+1 + θ(ql+1 − ql)

The proximal mappings for y1, y2 can be specified directly:

yl+1
1 =

β

β + σ
ỹl+1
1 , yl+1

2 =
γ

γ + σ
ỹl+1
2 (18)

The explicit form of the proximal mapping of G(q) can be
computed as

ql+1 =
q̃l+1 + τs

1 + τ
. (19)

Fig. 1. DyCA trajectories computed from (a) Rössler attractor data, (b)
with 1dB additive noise after application of standard DyCA, (c) DyCA after
multivariate wavelet denoising, (d) DyCA after standard L2-denoising, and
(e) DyCA after the joint L2-denoising and dimensionality reduction approach
according to (13). The color bar indicates the time evolution.

IV. APPLICATION AND RESULTS

After the theoretical groundwork in the last sections, we
now examine the derived method on practical examples. Here
we consider both, the Rössler attractor [15] as a simulated
signal and epileptic EEG data as a real world example. We
compare the original data sets with the trajectories obtained
after applying DyCA on the noisy and incomplete data, on
multivariate wavelet denoised data [8], [9], on data obtained
by a standard L2-denoising, and with the trajectories of our
joint variational approach with DyCA term as in (13).
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Fig. 2. DyCA Rössler trajectories computed from (a) multivariate wavelet denoised data, (b) standard L2-denoised data, and (c) data after joint denoising
and dimensionality reduction approach each with 10dB additive noise and (I) 30% missing entries, (II) 60% missing entries, and (III) 90% missing entries

A. Rössler Attractor

The well-known Rössler attractor [15] is a strange attractor
defined by a system of two linear and one nonlinear ordinary
differential equations

ẋ1 = −x2 − x3
ẋ2 = x1 + ax2 (20)
ẋ3 = b− cx3 + x1x2

with a = 0.15, b = 0.2, and c = 10. This is a synthetic signal
example, where we do not simulate incompleteness of the
data in a first run, but apply white noise with a signal-to-noise
ratio of 1dB. Figure 1 shows the computed trajectories of the
data using the first two DyCA eigenvalues λ1, λ2 with the
corresponding DyCA projection vectors u1, u2 and v1. For
our tests we found that the choice of β = 0.015, γ = 1 and
σ = τ = 4 · 10−4 provide the best results.

By displaying the resulting trajectories, it is visible that
the joint L2-denoising and dimensionality reduction approach
outperforms all the other methods. In compliance with (10)
the eigenvalues of the joint approach are λ1 = 0.9998 and
λ2 = 0.9993 while the other eigenvalues are close to zero.
None of the other denoising methods exhibits eigenvalues
close to one. To examine the behavior of the algorithm in case
of incomplete data, we add 10dB additive noise to the Rössler
attractor data and vary the incompleteness level from 30%

over 60% up to 90%. Figure 2 shows that even at a moderate
incompleteness level of 30%, the joint approach (13) provides
smoother trajectories than the multivariate wavelet denoising
and the standard L2-denoising approach. If the degree of
incompleteness is increased to 90%, only the joint approach
can detect the trajectory, although it is not as smooth as before.
However, keeping in mind that we work with merely 10% of
the data and that the standard DyCA is solely applicable to
complete data with a noise level greater than 35dB, this is can
be interpreted as a satisfactory result.

B. Epileptic EEG Data

In the past, DyCA has already been successfully applied
to epileptic EEG data [2], [3]. There, the authors support the
suggestion of [16] and [17] that epileptic seizure EEG data
exhibits Shilnikov chaos and can be described by

ẋ1 = x2

ẋ2 = x3 (21)
ẋ3 = f(x1, x2, x3)

with f being a nonlinear smooth function. The epileptic
seizure data was recorded with 25 sensors. After simulating
an incompleteness level of 50%, we apply the above
mentioned denoising methods before computing the DyCA
trajectories and projecting the data onto a 3-dimensional
subspace. Figure 3 visualizes the results using the two largest
eigenvalues λ1 and λ2 as well as the corresponding DyCA
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projection vectors u1, u2, and v1. For the epileptic EEG
data we used the parameters β = 0.000125, γ = 1, and
σ = τ = 4 · 10−4.

Also in this case our joint approach achieves better results
than the other denoising and reconstruction methods. In par-
ticular, the trajectory of the multivariate wavelet denoised data
loses its three-dimensionality. The first two DyCA eigenvalues
are given as λ1 = 1.0000, λ2 = 1.0000 while the eigenvalues
of the other methods are λ1 = 0.7305, λ2 = 0.6622 for
DyCA applied on the noisy data, λ1 = 0.6905, λ2 = 0.6227
for the multivariate wavelet denoised data, and λ1 = 0.7700,
λ2 = 0.6709 for the L2-regularization denoised data.

Fig. 3. DyCA trajectories computed from (a) EEG attractor, (b) data with
50% missing entries after application of standard DyCA, (c) DyCA after
multivariate wavelet denoising, (d) DyCA after standard L2-denoising, and
(e) DyCA after the joint L2-denoising and dimensionality reduction approach
according to (13). The color bar indicates the time evolution.

V. CONCLUSION

In this paper an algorithm was derived that overcomes
the problem of non-robustness of DyCA to additive noise or
missing data entries. By an iterative scheme consisting of the
primal-dual Chambolle-Pock algorithm [14] on the one hand
and the standard dynamical component analysis algorithm [1]
on the other hand, it is now possible to apply DyCA to noisy
and incomplete data sets and to simultaneously reconstruct the
signal and compute DyCA projection vectors. Simulated and
real world data examples are discussed in this paper and show
that the joint approach allows to denoise the data and reduce

the dimensionality from 10 and 25 to 3 while preserving
the main characteristics of the underlying dynamics. For
signals that match the assumptions of DyCA, the joint
model outperforms other conventional denoising methods like
multivariate wavelet denoising or a standard L2 regularization.

Future research will be done applying the presented algo-
rithm on other data sets. Furthermore, data will be examined
that are affected not only by additive noise or missing data
entries, but rather by an underlying mathematical operator such
as the Fourier transform or the Radon transform. In addition to
the already known tasks of data denoising, data completion and
dimensionality reduction, the signal must first be reconstructed
from the available operator data. The approach presented in
this paper can be easily expanded to such a scenario.
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