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Abstract—In this paper, we study linear filters to process signals defined
on simplicial complexes, i.e., signals defined on nodes, edges, triangles,
etc. of a simplicial complex, thereby generalizing filtering operations for
graph signals. We propose a finite impulse response filter based on the
Hodge Laplacian, and demonstrate how this filter can be designed to
amplify or attenuate certain spectral components of simplicial signals.
Specifically, we discuss how, unlike in the case of node signals, the Fourier
transform in the context of edge signals can be understood in terms of
two orthogonal subspaces corresponding to the gradient-flow signals and
curl-flow signals arising from the Hodge decomposition. By assigning
different filter coefficients to the associated terms of the Hodge Laplacian,
we develop a subspace-varying filter which enables more nuanced control
over these signal types. Numerical experiments are conducted to show
the potential of simplicial filters for sub-component extraction, denoising
and model approximation.

Index Terms—Hodge decomposition, Hodge Laplacian, simplicial com-
plexes, simplicial filters, Topological signal processing.

I. INTRODUCTION

Graph signal processing (GSP) has emerged over the last years as a
powerful tool to deal with high-dimensional signals defined on non-
Euclidean domains [1], [2]. Using the perspective of GSP, notions
like the Fourier transform, filters, and signal sampling have been
extended to the domain of graphs [3], [4], [5]. These definitions can
also be leveraged to understand graph neural networks [6]. GSP not
only provides a generalization of signal processing for time series
and images, but specifies an explicit model for the underlying signal
dependencies in terms of a graph.

By construction, graphs model dependencies between node data
via edges, which encode pairwise relations between nodes. In certain
scenarios, however, we may be interested in specifying multi-way
relationships between subsets of nodes. For instance, in a coau-
thorship network, we want to describe collaborations between more
than two authors [7]. Similarly, in a social network, we want to
capture the connections between groups of friends rather than two
people [8]. To deal with such settings, researchers have introduced
hypergraph signal processing as one paradigm, in which we model
group relationships through hyperedges [9], [10], [11]. Other works
[12], [13] use the Volterra model to describe higher-order relations.

In parallel, topological signal processing (TSP) has been proposed
to analyze signals defined over topological spaces, especially in
the form of simplicial complexes composed of nodes, edges, and
triangles, etc. [11], [14], [15]. Important examples of such signals
defined on simplices include flow signals over edges, like traffic flows
in a transportation network or data flows in a communication network.
Edge flows have also been considered in the context of statistical
ranking or to process currency exchange market rates [16]. To process
such flow signals, a number of procedures have been developed. For
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instance, [11], [17] consider the problem of flow denoising by solving
a regularized optimization problem, which is equivalent to a low-
pass filter in the edge space. Similarly, flow interpolation and edge
sampling have been studied in [18], and random walks have been
extended from the node space to the edge space in [19]. There exist
even certain neural network architectures for data defined on the edge
space of a simplicial complex [20]. However, more explicit treatments
of linear filtering and filter design on simplicial complexes, have so
far not been provided in the literature. In this paper, we thus define,
design and analyze finite impulse response (FIR) filters for simplicial
complexes, as fundamental building blocks for signal processing on
simplicial complexes.

Contribution and paper outline. We re-examine the Fourier trans-
form for simplicial complexes (SCs) [11], [14], [17], and define
two types of simplicial frequencies, measuring different properties
of signals. Using this perspective we propose an FIR filter for SCs,
which employs the Hodge Laplacian associated to the SC as a shift
operator, in lieu of the graph Laplacian used analogously for graph
signals. Focusing on the processing of edge flows, we study this
local shift operator, which enables us to implement convolutions of
flows on SCs locally with small computational complexity. Using
the Hodge decomposition associated to the space of edge flows, we
show the capability of such filters to modulate signals at different
frequencies. Further, by assigning individual filter coefficients to the
lower and upper adjacent coupling terms of the Hodge Laplacian, we
create a more expressive linear filter that can modulate gradient and
curl flows more precisely, leading to an improved filter performance.
We illustrate our results by several numerical experiments.

The remainder of the paper is structured as follows. In Sec-
tion II we review simplicial complexes, simplicial signals, the Hodge
Laplacian and the Hodge decomposition. In Section III, we recall
the Fourier transform of simplicial signals and define two types
of simplicial frequencies. The FIR filter on SCs is proposed in
Section IV where simplicial signal shifting, spectral analysis and filter
design are investigated. Then the subspace-varying filter is proposed
with improved performance. We conduct experiments in synthetic
and real world networks in Section V before concluding the paper.

II. BACKGROUND

Simplicial complexes and signals. Given a finite set of vertices V ,
a k-simplex Sk is a subset of V with cardinality k+1. A subset of a
k-simplex with cardinality k is called a face. The number of faces of
a k-simplex is k + 1. A coface of a k-simplex is a (k + 1)-simplex
that includes this k-simplex. A node is a 0-simplex, an edge is a
1-simplex, and a triangle is a 2-simplex. For an edge, its incident
nodes are faces. The edges connecting a node with its neighbors, are
the cofaces of that node [14], [15].

A simplicial complex X is a set of simplices such that for any k-
simplex Sk in X , any subset of Sk must also be in X . We denote the
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Fig. 1. (a) An all-one flow defined on the edges of a simplicial complex (SC)
with three 2-simplices {1, 2, 3}, {1, 3, 4}, {5, 6, 7}. The flow magnitude is
displayed by the edge width. (b-c) One-step L1,` and L1,u shifted results
shown on edges only in red and green. A negative value indicates an opposite
relative direction and no link means zero flow on that edge. (b) In the shifting
by L1,`, edge (5, 6) (in red) locally collects the information from its one-
hop lower neighbors (in green) and combines with its own state. (c) In the
shifting by L1,u, edge (5, 6) (in red) locally collects the information from its
one-hop upper neighbors (in green) and combines with its own state. Thus,
by summing (b) and (c), the one-step L1 shifted result on edge (5, 6) is 3.

number of k-simplices in X by Nk. A graph is an SC with simplices
of maximal cardinality 2. Another example is shown in Fig. 1a, where
nodes are the 0-simplices, edges are the 1-simplices, and triangles
are the 2-simplices [11]. Note that every simplex is equipped with a
reference orientation, as indicated by arrows in Fig. 1a.

In a simplicial complex, we define a k-simplicial signal as a
mapping from the k-simplices to the real space RNk . For example,
RN0 is the graph signal space in GSP, and RN1 is the space of edge
flows. For an edge flow f = [f1, . . . , fN1 ]

> ∈ RN1 , the sign of
its entry denotes the direction of the flow [11], [15], relative to a
chosen (arbitrary) reference orientation. For example, the direction
of a random flow is shown by the edge arrows in Fig. 1b.

Incidence matrices for simplicial complexes. The relationships
between (k−1)- and k-simplices can be described via the incidence
matrix Bk. The rows of Bk are indexed by (k − 1)-simplices and
the columns by k-simplices. The matrix B1 is simply the node-edge
incidence matrix, and B2 is the edge-triangle incidence matrix. We
construct B2 as follows: if an edge is oriented along with its coface,
then the corresponding entry in B2 is 1; if it is anti-aligned, the entry
is −1; otherwise it is zero. For example, in Fig. 1a, edge {1, 2} is
aligned with triangle {1, 2, 3}, while edge {1, 3} is not.

The Hodge Laplacian and the Hodge decomposition. An algebraic
tool to analyze simplicial signals is the k-th Hodge Laplacian, given
by Lk = B>k Bk+Bk+1B

>
k+1, where we define the lower Laplacian

Lk,l , B>k Bk, and the upper Laplacian Lk,u , Bk+1B
>
k+1. The 0-

th Hodge Laplacian corresponds to the graph Laplacian L0 = B1B
>
1

used in GSP. While we consider unweighted Hodge Laplacians in this
paper, weighted variants also exist [19].

Hodge Laplacians admit a Hodge decomposition, by which the
simplicial signal space can be decomposed into three orthogonal
subspaces RNk = im(B>k )⊕ im(Bk+1)⊕ ker(Lk), where ⊕ is the
direct sum of vector spaces and im(·) and ker(·) are the image and
kernel spaces of a matrix. For k = 1, these subspaces carry the
following interpretations [14], [19].

Gradient space. The incidence matrix B1 acts as the divergence
operator mapping an edge flow f into a node signal B1f , which
computes the net flow of each node. Its adjoint B>1 can differentiate
a node signal v along the edges to induce an edge flow B>1 v, i.e.,
the gradient operation. Thus, any flow fG ∈ im(B>1 ) can be written
as the gradient of a node signal v, i.e., fG = B>1 v. We call fG a
gradient flow. The subspace im(B>1 ) is defined as the gradient space.

Curl space. The incidence matrix B2 can induce an edge flow
from a triangle signal t by B2t. Its adjoint B>2 is known as the curl
operator. By applying it to an edge flow f as B>2 f , we can compute
the flow circulating along the triangles. Thus, any flow fC ∈ im(B2)
can be induced by a triangle flow t as fC = B2t. We call fC a curl
flow. The subspace im(B2) is defined as the curl space.

Harmonic space. The remaining space ker(L1) is known as the
harmonic space. Any flow fH ∈ ker(L1) is divergence and curl free,
i.e., it is flow conservative. That is, the net flow at every node is zero
and the flow circulating along the triangles is also zero.

Since B1B2 = 0, any gradient flow fG satisfies B>2 fG = 0, i.e., it
does not include any circular flows along triangles and is accordingly
called curl-free. The space orthogonal to the gradient space, i.e.,
ker(B1) = im(B2) ⊕ ker(L1), is called the cycle space. Any flow
f in this space fulfills B1f = 0, and is thus called divergence-free.
Note that the cycle space consists of both the curl space and the
harmonic space discussed above.

III. SIMPLICIAL FOURIER TRANSFORM

In this section, we recall the Fourier transform of simplicial signals
[11], [14] and define two types of simplicial frequencies.

Simplicial Fourier transform. The k-th Hodge Laplacian has the
spectral decomposition Lk = UkΛkU>k , where the matrix Uk =
[uk,1, . . . ,uk,Nk ] collects the eigenvectors and the diagonal matrix
Λk = diag(λk,1, . . . , λk,Nk ) the corresponding eigenvalues. Given
a signal xk ∈ RNk defined on the k-simplices, its embedding by
the simplicial Fourier Transform (SFT) is x̃k = U>k xk, i.e., the
projection of xk on Uk. The inverse SFT is xk = Ukx̃k [14]. The
STF of L0 corresponds to the graph Fourier transform [3].

The eigenvectors of L1 span the three subspaces that appeared
in the Hodge decomposition [11]: (i) the gradient space im(B>1 ) is
spanned by a set of eigenvectors UG of L1,l with positive eigenvalue;
(ii) the curl space im(B2) is spanned by a set of eigenvectors UC of
L1,u with positive eigenvalue; and (iii) the harmonic space ker(L1) =
ker(L1,l)∩ker(L1,u) is spanned by the eigenvectors UH of L1 with
zero eigenvalue. Moreover, the gradient and curl space span the image
of L1, i.e., UG ⊕ UC = im(L1). This correspondence between
eigenvectors of the Hodge Laplacian and the Hodge decomposition
exists in general. However, we focus on the edge space in this paper.

Finally, since the eigenvalues of Lk are all non-negative they can
be naturally interpreted in terms of a frequency. However, unlike in
the case of graphs [3] there are two types of eigenvectors for Lk.
For k = 1, we thus distinguish the following types of frequencies:

Gradient frequencies. For an eigenvector uG of L1 in the gradient
space span(B>1 ), the corresponding eigenvalue is λG = u>GL1uG =
‖B1uG‖22, which is an `2-norm divergence measure for uG. Thus,
the eigenvectors in UG corresponding to a large eigenvalue λG have
a large quadratic measure of the divergence. If the SFT of an edge
flow has a large projection on such eigenvectors, we say it has a
high gradient frequency. We call the eigenvalues λG associated to
the gradient space UG gradient frequencies.

Curl frequencies. For an eigenvector uC in the curl space
span(B2), its corresponding eigenvalue can be written as λC =
u>CL1uC = ‖B>2 uC‖22, which is an `2-norm curl measure for uC .
Thus, eigenvectors corresponding to a large λC have a large curl
quadratic measure. We call the eigenvalues λC associated to the curl
space curl frequencies.

Harmonic frequencies. Finally, we call the zero eigenvalues har-
monic frequencies. The multiplicity of zero frequencies is equal to
the number of 1-dim holes (cycles) in a SC [15]. If an edge flow is
contained in the harmonic space, we say it is a harmonic flow.
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For convenience, we collect gradient frequencies in the set
QG = {λG,1, . . . , λG,NG}, curl frequencies in the set QC =
{λC,1, . . . , λC,NC} and harmonic frequencies (which are just zeros)
in the set QH . Thus, given any edge flow f ∈ RN1 , we can use
the SFT to define three embeddings by projecting f onto each of
the subspaces defined by the Hodge decomposition: i) the gradient
embedding: f̃G = U>Gf ; ii) the curl embedding: f̃C = U>Cf ;
iii) the harmonic embedding: f̃H = U>Hf . If we can control these
embeddings for any edge flow, we can achieve the desired filtering.

Example 1. Consider an edge flow containing mainly gradient
embeddings with high frequency, i.e., induced by a potential on the
nodes (Fig. 2a). If this edge flow is corrupted by white noise, the
filtering proposed in [17], will not provide a good estimate (Fig. 2d)
of the true flow as it penalizes both high gradient and curl frequencies.
Similar to the filter (Fig. 2c) regularized by f>L1f proposed in [11].
We will see that our simplicial filters can solve such problem.

Remark. In GSP, graph frequencies measure the signal smoothness
over the graph, while simplicial frequencies measure two types of
signal properties, which make filtering in the spectral domain more
involved. For k = 1, the gradient frequency measures the net flow
passing through the nodes, while the curl frequency measures the
flow circulating along the triangles. The harmonic (zero) frequencies
indicate the solenoidal and irrotational properties, i.e., the flow
conservation [14], [11]. Specifically, observe that a gradient frequency
can be larger or smaller than a curl frequency as both frequencies
correspond to different, orthogonal features of an edge flow. Thus,
a low- or high-pass filtering without reference to these type of
frequencies thus mix different features of an edge-flow signal. Filters
in simplicial signal spaces thus generally would be expected to tune
gradient, curl and harmonic components as required by the user.

IV. SIMPLICIAL FIR FILTER

As alluded to above, a linear filter of a flow signal amounts to a
map that modulates the gradient, curl and harmonic embeddings of
any flow. Such a filter may, e.g., extract the gradient component, or
remove the harmonic component of a flow. While the filter will be
dependent on the simplicial complex, it should be independent of the
simplicial signals it is applied to. To achieve this, we propose the
following linear simplicial FIR filter:

H1 =

L−1∑
l=0

hlL
l
1 =

L−1∑
l=0

hl(B
>
1 B1 + B2B

>
2 )

l, (1)

where L is the filter length, and h = [h0, . . . , hL−1]
> stacks the filter

coefficients. Note that the filter has an analogous form to graph filters
[3], [4], and can be extended to the k-simplicial space by using Lk.
To understand the effect of applying the filter (1) to an input signal,
we first define the neighborhood set for k-simplices.

Simplicial neighborhood. For the i-th k-simplex Sk
i in a SC, we

define its lower neighborhood Nl,i as the set of k-simplices sharing
a common face with it. Similarly, the upper neighborhood Nu,i of
Sk
i collects the k-simplices sharing a common coface with Sk

i . The
lower and upper neighbors of Sk

i are encoded in the nonzero off-
diagonal elements of L1,l and L1,u, respectively. More specifically,
the cardinality of Nl,i (called lower degree) and the cardinality of
Nu,i (called upper degree), are equal to the numbers of nonzero
off-diagonal elements of the i-th row/column of L1,l and L1,u,
respectively. For example, for edge (5, 6) in Fig. 1a, we can see that
Nl = {(4, 5), (3, 6), (5, 7), (6, 7)}, while the upper neighborhood is
Nu = {(5, 7), (6, 7)}, as they share a triangle with edge (5, 6). The
corresponding row/column in L1,l and L1,u have respectively 4 and 2
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Fig. 2. Gradient flow denoising on a SC (cf. Section V). The estimation error
e is the normalized RMSE. (a) Edge flow f0 induced by a node signal. (b)
The noisy observation f . (c) Denoised by the filter in [11]. (d) Denoised by
the filter in [17]. (e) Denoised by filter (1) with length L = 4. (f) Denoised
by the subspace-varying filter (5) with L1 = L2 = 1.

nonzero off-diagonal elements. Note that these local lower and upper
connections lead to the sparsity of the Hodge Laplacian.

Simplicial signal shift. Applying the filter (1) to an input signal f ,
i.e., H1f can be understood in terms of the basic signal shift operation
L1f . We denote a shift of an edge flow f as f (1) , L1f = B>1 B1f+
B2B

>
2 f , where we define f

(1)
l , B>1 B1f and f

(1)
u , B2B

>
2 f . The

shifting result on the i-th edge, i.e., [f (1)]i, can be expressed as

[f (1)]i = [f
(1)
l ]i + [f (1)u ]i

=
∑

j∈{Nl,i∪ i}

[L1,l]ij [f ]j +
∑

j∈{Nu,i∪ i}

[L1,u]ij [f ]j . (2)

Thus, the shift operation in the edge space is local. For each edge,
it collects information from its lower and upper adjacent neighbors
and combines this information with its own state. Figs. 1b and 1c
show the operation of shifting an all-one flow by Ll,1 and L1,u on
one edge. For a given input f , we can now write the filter output as

fo = H1f =

L−1∑
l=0

hlL
l
1f =

L−1∑
l=0

hlf
(l), (3)

where f (l) , Ll
1f = L1f

(l−1) is the l-th shift of the edge flow, which
contains information up to its l-th hop lower and upper neighbors.
Thus, the filter output can be seen as a weighted linear combination
of consecutively shifted edge flows, which is similar to the concepts
of graph signal shifting in graph filters [3], [4].

Distributed implementation and complexity. Observe that (3) is
characterized by the recursion f (l) = L1f

(l−1). That is, edges can
locally compute f (l) by exchanging information with their neighbors
about the previous shifted signal, f (l−1). This implies that in (3)
we need in total L such shifts by L1. Moreover, as each shift (2)
can be implemented via local operations, which can be implemented
by distributed communication between edges, the final output of the
simplicial FIR filter can be computed in a distributed way. If we
denote the maximal edge degree by D, then the communication cost
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to compute (2) is O(D). Thus, (3) has a total cost of O(LN1D).
Usually, the edge degree is independent of (and much smaller than)
the number of edges, so we would have a complexity of O(LN1).

Spectral analysis. By applying an eigen-decomposition on the filter
(1), we obtain H1 =

∑L−1
l=0 hlU1Λ

l
1U
>
1 = U1

(∑L−1
l=0 hlΛ

l
1

)
U>1 ,

where we define H̃1 ,
∑L−1

l=0 hlΛ
l
1 as the frequency response

of H1. For simplicity of notation, let us assume hereafter that
Λ1 = diag(λ1, . . . , λN1). At frequency λi, the filter implements the
response H̃1(λi) =

∑L−1
l=0 hlλ

l
i leading to the spectral input-output

relation f̃o(λi) = H̃1(λi)f̃(λi). As different types of frequencies are
present in simplicial signals, filter (1) needs to control the different
signal components according to their corresponding frequencies. In
other words, the gradient component needs to be tuned using H̃1(λi)
with λi ∈ QG, the curl component using H̃1(λi) with λi ∈ QC , and
the harmonic component using H̃1(λi) with λi ∈ QH . By properly
designing the frequency response at each frequency, we can thus
implement any desired filtering operation.

Filter design. Given a filter specification in the frequency domain
H̃1(λi) =

∑L−1
l=0 hlλ

l
i = gi, for i = 1, . . . , N1, we can design the

filter coefficients by solving the least squares problem

min
h
‖Φh− g‖2, (4)

where Φ ∈ RN1×L is a Vandermonde matrix with entries [Φ]i,j =
λj−1
i , and g = [g1, . . . , gN1 ]

>. Hence, given a desired frequency
response g, we first identify the frequency sets QG, QC and QH by
computing the eigenvalues of L1,l and L1,u, and then solve problem
(4) to obtain h. We can then build a simplicial FIR filter which has
(approximately) the desired frequency response and apply the filter
directly in the simplicial space as in (3). Thus, to solve the problem
in Example 1, we can design a gradient-preserving filter by setting
the desired frequency response to one at the gradient frequencies and
zero at the rest, as shown in Figs. 2e and 2f.

Subspace-varying simplicial filter. As seen in Section III, the
gradient space is fully described by L1,l and the curl space by L1,u.
However, for the filter (1), the shift operators L1,l and L1,u are
jointly weighted by {hl}L−1

l=0 , and consequently we cannot control
the frequency response at the gradient and curl frequencies indepen-
dently. To enable an independent design of the frequency responses at
gradient and curl frequencies we thus assign L1,l and L1,u a different
set of weights, leading to the following subspace-varying FIR filter

HSV
1 = h0I +

L1∑
l1=1

αl1(B
>
1 B1)

l1 +

L2∑
l2=1

βl2(B2B
>
2 )

l2 , (5)

where α = [α1, . . . , αL1 ]
> and β = [β1, . . . , βL2 ]

> control the
gradient and curl frequency responses, and h0 controls the harmonic
frequency response. We use the convention that if L1 = 0 or L2 = 0
the corresponding terms are zero. This can be useful if we only want
to tune the gradient or curl component. Our earlier discussion on the
shift operator and the complexity also applies to (5).

Using a spectral decomposition of (5), we can see that its frequency
response is given by

H̃SV
1 (λi) =


h0, for λi ∈ QH ,

h0 +
∑L1

l1=1 αl1λ
l1
i , for λi ∈ QG,

h0 +
∑L2

l2=1 βl2λ
l2
i , for λi ∈ QC .

(6)

From these equations, we see that in the subspace-varying filter, the
frequency responses at gradient and curl frequencies can indeed be
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Fig. 3. Sub-component extraction by filters H1 and HSV
1 . The extraction

becomes better as the filter length grows. For the harmonic component, both
filters perform the same as expected. But for the gradient and curl component
extraction, the filter H1 cannot obtain an accurate extraction until the filter
length is nine. However, HSV

1 performs much better than H1, which is
consistent to the discussion after (7).

controlled independently via the different weights. As a result, the
filter is more flexible than H1 (and has increased degrees of freedom).

For a specified frequency response H̃SV
1 = diag(g), we can again

design the filter coefficients by solving the least squares problem

min
h0,α,β

∥∥∥∥∥∥
1

0>

ΦG 0NG×L2

0NC×L1 ΦC

h0

α
β

− g

∥∥∥∥∥∥ , (7)

where 1 (0) is an all-one (all-zero) vector, 0m×n is an all-zero
matrix of size m × n, and ΦG ∈ RNG×L1 and ΦC ∈ RNC×L2

are Vandermonde matrices with respective entries [ΦG]i,j = λj
G,i

and [ΦC ]i,j = λj
C,i. An immediate observation is that when L1 (or

L2) is zero, the number of rows for this system of equations is one
plus the number of curl (or gradient) frequencies, which is less than
the corresponding number of rows of Φ in (4). This makes the filter
(5) more suitable when only gradient (or curl) components need to
be tuned, as the remaining components can be jointly controlled by
the frequency response h0 at zero as in (6).

V. NUMERICAL EXPERIMENTS

In this section, we provide experimental results for the simplicial
filters (1) and (5) to process the edge flow in a network. To evaluate
the performance, we consider the normalized root mean square error
(NRMSE), defined as e = ‖f̂ − f0‖2/‖f0‖2, where f̂ is the flow
estimate obtained by the filters and f0 is the groundtruth flow.

Sub-component extraction. We first constructed a synthetic SC as
in Fig. 1a with seven nodes, ten edges, and three triangles [11]. We
then generated an edge flow with a flat spectrum f = U1 f̃ with f̃ =
1 ∈ R10. We then designed FIR filters to preserve only the gradient,
curl or harmonic signal components respectively, and compared their
results to an exact projection of the signals on the corresponding
subspace (see [11], [14], [15], [17]) in terms of the error.

Fig. 3 displays the performance of filter (1) (solid line) and the
subspace-varying filter (5) (dashed line). As expected, the subspace
extraction becomes more accurate as L grows (indeed for a filter
of order L = 10 the least squares problem can always be solved
exactly). Importantly, to extract a particular subspace component,
filter (1) performs always worse than the subspace-varying filter
(5). The reason is that for filter (5), we can tune the frequency
response in the respective subspace independently, and thus require
less coefficients to approximate the desired frequency response.

Edge flow denoising. Using the same network again, we generated
an edge flow induced by a node signal which contains all ones in the
graph frequency domain and corrupted by white noise, i.e., similar
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TABLE I
Flow prediction on Sioux Falls network. Ltotal is the total filter length and

e1 and e2 the prediction errors by H1 and HSV
1 on the test data.

Ltotal e1 e2 Ltotal e1 e2

1 0.786 ± 0.003 – 6 0.070 ± 0.010 0.013 ± 2 · 10−5

2 0.659 ± 0.005 0.613 ± 0.007 7 0.048 ± 0.014 0.003 ± 2 · 10−4

3 0.086 ± 0.005 0.220 ± 0.005 8 0.009 ± 0.010 5 · 10−4 ± 6 · 10−5

4 0.071 ± 0.006 0.082 ± 0.003 9 0.007 ± 0.012 8 · 10−5 ± 3 · 10−5

5 0.037 ± 0.010 0.034 ± 5 · 10−4 10 0.002 ± 0.012 2 · 10−5 ± 10−5

to an instance of the problem in Example 1. The noisy flow (Fig.
2b) introduces an error of 0.46 originally. When using the (low-pass)
denoising filters discussed in [17] and [11] (Figs. 2c and 2d), the
error becomes even larger. This is expected as the assumption of a
low-pass signal used in [17], [11] is not fulfilled in our problem setup.
Using a proper filter design that preserves the gradient components,
filter (1) with L = 4 and filter (5) with L1 = L2 = 1 can, however,
achieve errors of 0.39 and 0.23, as shown in Figs. 2e and 2f.

Sioux Falls network. We now consider a real world Sioux Falls
transportation network [21]. It contains 24 nodes, 38 edges, and 2
triangles (1-simplices). We assumed an autoregressive (AR) model
to generate a set of time-evolving edge flows as

ft+1 = (0.5I + 0.3B>1 B1 + B2B
>
2 + 0.5(B2B

>
2 )

2)−1ft, (8)

where t is the time instance. Assuming the model to be unknown to
the analyst, we sought to train filters (1) and (5) in order to learn a
data-driven model for flow prediction. Accordingly, we generated a
training set containing 10 sample pairs {fs,in, fs,out}, where fs,in is a
random Gaussian flow to be used as input for model (8), and fs,out

is the output. Note that we can rewrite the filtering equation (3) as

[f , f (1), . . . , f (L−1)]h = fo, (9)

where the system matrix contains the shifted versions of the input.
With the training set, we built the system matrices by shifting each
input and horizontally concatenated them and the outputs. Then, we
used the least squares solution to (9) as the trained filter coefficients h
to build a data-driven filter H1. The test data, T = {f0, f1, . . . , f99},
is generated by initializing (8) with a random flow f0. Then, with each
observation ft, t = 0, 1, . . . , 99, we obtained a one-step prediction
f̂t+1 = H1ft. Finally, we evaluated the average performance by
computing the error between ft+1 and f̂t+1. Similar steps were
followed for the subspace-varying filter HSV

1 .
The results are shown in Table. I. We reported the best performance

for HSV
1 for each Ltotal, as different L1 and L2 lengths lead to different

performance. When Ltotal is larger, both filters fit the model (8) better
and the prediction becomes more accurate as well. Moreover, to
deal with models like (8) in the simplicial space, the more flexible
subspace-varying filter HSV

1 usually learns the model better.

VI. CONCLUSION

We proposed two linear FIR filters in the form of (1) and (5)
for filtering simplicial signals (and more specifically edge flows).
We revisited the simplicial Fourier transform, and defined gradient
and curl frequencies for edge flows, which measure the divergence
and rotational properties of the flow. Both of our proposed filters
are able to tune signals for these two kinds of frequencies and
can be distributively implemented, since the simplicial shift operator
defined by the Hodge Laplacian can be built from local operations.
We showed that the subspace-varying filter is more flexible and
is especially beneficial if we desire to tune only gradient or curl
frequencies, since the different weights on the lower and upper
Laplacians in (5) enable an independent tuning of those components.

Finally, experimental results were reported to support our findings.
Future work will concern: 1) examining the utility of simplicial filters
beyond the edge space; 2) performing filter design for both (1) and
(5) with smaller costs; 3) combining simplicial filters into simplicial
neural networks as considered, e.g., in [20].
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