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ABSTRACT
Based on an analysis of the Fisher Information Matrix (FIM),
this paper presents a study of the inherent limitations in
parameter estimation of a localized tempo-spatial field, char-
acterized by a parametric model. The problem is motivated
by the need to retrieve rain fields in rural areas, where sudden
flash floods are a life-threatening hazard. We first identify
the minimum number of sensors necessary for estimating all
of the unknown parameters, where two types of sensors are
considered: time projection sensors - characterized as a point
in space, line-projection in time (such as rain gauges), and
spatial projection sensors - characterized as a point in time,
line projection in space (such as wireless microwave links).
We show that a single spatial projection sensor with one or
more sensor of any type are required. Then, we show that
the Cramer-Rao bound of each of the unknown parameters
is characterized by a U-shape curve as a function of the
observation period. By studying the condition number of the
FIM we identify the sufficient conditions for the estimation
errors to be small (i.e., at the bottom of the U-shape).
We demonstrate the results of our analysis with different
combinations of sensors.

Index Terms— Parameter Estimation, Fisher Information
Matrix, Rain Monitoring.

I. INTRODUCTION

How many sensors are needed to identify a localized
Spatio-temporal physical field (such as a rain-field, an ir-
radiance field, etc.)? The answer obviously depends on the
sensors’ type, the field’s characteristics, and the sensor’s
coverage relative to the field’s location and movement. Will-
ing to examine the above question, we present a study that
deals with the ability to identify a spatio-temporal localized
field by a limited number of sensors. We consider temporal
measurements from two types of sensors: i) Time Projection
Sensor (TPS), where a measurement is an integration over a
time interval for a given point in space; ii) Spatial Projection
Sensor (SPS), where a measurement is an integration along
a line in space in a given time index.

An example of such an application is the case of rain
retrieval in rural areas, which is characterized by a sparse

coverage of near-ground rain monitoring instruments. Be-
yond economic drivers like agriculture and livestock farm-
ing, frequent unpredicted flash floods might cause damage
and even fatalities in those areas. In this example, the
TPSs used are rain gauges (RGs), and available commercial
microwaves links (CMLs) in the area are the SPSs. RGs
detect the accumulated amount of rainfall, over a given time
interval, at a fixed point in which they are installed. CMLs
can be used as opportunistic sensors for near-ground rain
monitoring as first introduced in 2006 [1]. A CML’s signal
is attenuated due to precipitation along its path, and based on
the difference between the measured transmitted signal level
(TSL) and the received signal level (RSL), one can relate
the CML-path attenuation with the fallen precipitation.

CMLs are widely used in cellular networks for backhaul
communication, and therefore are widely spread world-wide.
The dense coverage of CMLs in comparison with other
monitoring instruments has a clear advantage for weather
monitoring purposes and is therefore addressed in many past
studies. Some studies focused on the reconstruction of spatial
rain fields using CML measurements as a stand alone rainfall
monitoring tool [2]–[4], while others combined CMLs with
RGs [5]–[7]. Other studies treated the CML as a virtual RG
[8], [9]. Furthermore, monitoring the dynamic rain field via
CMLs was also proposed [10]–[12].

In this paper, we adopt a parameter estimation approach,
previously suggested in [7], [13], where a rain cell is
modeled by a parametric model, whose parameters are to
be estimated. We adopt a specific model [14], where we
assume that a cell has a Gaussian shape, referred to as a
Gaussian cell (GC) [15]. We extend the model by introducing
additional velocity parameters {vx, vy}, which are required
to introduce time dependency.1 We study a scenario in which
a parameter vector θθθ is to be estimated from a time series
of measurements taken by either TPS or SPS. Based on the
chosen model we determine the minimal number of sensors
required to identify the field. The sufficient conditions are
determined by the number of samples and the sampling rate,
which are evaluated by analyzing the Fisher Information

1Although this study is based on the GC model, it can be applied to any
parametric model, where a field is presented as R(x, y, t) = φ(x, y, t;θθθ)
where φ is a known function and θθθ is an unknown parameter vector.
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Matrix (FIM). We follow the methodology suggested in [16]
where analysis of the FIM is used to identify inherent limita-
tions in an estimation problem. By defining ”identifiability”
as a situation in which all parameters of the field can be
estimated with a reasonable estimation error, we analyse the
condition number of the FIM to find sufficient conditions for
identifiability.

The rest of the paper is organized as follows: Section II
describes the mathematical formalism. Section III presents
the necessary conditions to identify the GC according to
the number of available sensors. In Section IV, we discuss
the sufficient conditions for the presented problem. Lastly,
Section V concludes the paper.

II. MATHEMATICAL FORMALISM
II-A. The Proposed Model

The parametric model of the field is based on a two-
dimensional Gaussian-shape function (that represents a rain
cell), characterized by 8 parameters: R0, the peak level (i.e.,
the maximal rain-intensity value in mm/h); {µ0x , µ0y} -
the initial position of the center of the cell, in Cartesian
coordinates; {σ2

x, σ
2
y} (in km2) represent the width of the

cell; and {vx, vy} (in km/h), that represent the velocity
(assumed constant during the observation period) of the
cell’s movement. The parameter ρ controls relation between
the x and the y coordinates, and thus, characterizes the shape
of the cell. Our model of a localized spatio-temporal field is
therefore given by:

R(x, y, t;θθθ) = R0 · exp[− 1

2(1− ρ2)

·( (x− (µ0x + vxt))
2

σ2
x

+
(y − (µ0y + vyt))

2

σ2
y

(1)

−
2ρ(x− (µ0x + vxt))(y − (µ0y + vyt))

σxσy
)]

where θθθ = [R0, µ0x , µ0y , σ
2
x, σ

2
y, ρ, vx, vy]T is the vector of

the unknown parameters. Under this assumed model, the
field can be evaluated for any set of coordinates {x, y} for
any time-index t, once θθθ is given.

II-B. The Available Measurements
The measurements are collated to a vector, consists of

two types of measurements whose components are given by
either (2) for the case of time projection sensors and by (3)
for the case of spatial projection sensors:

znTi =

∫ tnTi

tnTi
−∆T

gT (xi, yi, t)dt+Wn
Ti (2)

znSi =

∫
L

gS(x(l), y(l), tnSi)dl +Wn
Si (3)

where znTi , z
n
Si

are the nth measurement (taken at the time
indexes tnTi , t

n
Si

) from the ith TPS and SPS, respectively.

Wn
Ti
∼ (0, σ2

Ti
),Wn

Si
∼ (0, σ2

Si
) are assumed as additive

zero mean Gaussian noise processes.2 ∆T is the temporal
span of the TPS, and (xi, yi) is the ith TPS’s location.
gT (), gS() can be any known functions. For the case of
rain retrieval, these functions are gT () = R(x, y, t;θθθ), as
a RG measures the rain directly and gS() is a power law
that relates the rain-induced signal attenuation along the
propagation path with the rain rate, given by [17]:

gT (x, y, t;θθθ) = aRb(x, y, t;θθθ) (4)

where {a, b} are the power-law coefficients, that depend on
the frequency and polarization of the signal as well as on the
rain drop size distribution. These coefficients are assumed to
be known and can be found in the literature [18].

II-C. The Fisher Information Matrix

For the estimation problem described above, and assuming
that the additive noise values are independent and identically
distributed (iid), the FIM, Iθθθ(θθθ), can be expressed by [19]:

Iθθθ(θθθ) =

N−1∑
i=0

1

σ2
i

· ∇θθθfi · ∇θθθfTi (5)

Where fi is the ith entry of the mean of the measurement
vector (a deterministic, assumed known function of the
unknown parameter vector and the known parameters of the
sensors), σ2

i is its ith variance (assumed known) ,and ∇θθθ is
the gradient operator with respect to the θθθ.

III. NECESSARY CONDITIONS

In order to achieve full identifability, a given set of
measurements should allow estimating a unique parameter
vector. Thus, if two parameter vectors are shown to corre-
spond to the same measurement-set, the lack of identifability
is proven. Willing to prove this for the case of a pair of TPSs
or a single SPS, we incorporate the GC model (eq. (1)) into
the TPSs (eq. (2)) and the SPSs (eqs. (3) and (4)) based
measurements, yielding3:

znTi =

∫ tnTi

tnTi
−∆T

R0 · exp[− 1

2(1− ρ2)

·( (xi − (µ0x + vxt))
2

σ2
x

+
(µ0y + vyt)

2

σ2
y

(6)

+
2ρ(xi − (µ0x + vxt))(µ0y + vyt)

σxσy
)]dt

+Wn
Ti ; i = 1, 2

2For the case of e.g. an intensity field this assumption is theoretically
incorrect as the measured values are non-negative. However, it is a valid
approximation in scenarios with high signal to noise ratio.

3For simplicity, we assume that the sensors are placed on the x-axis.
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znS1
=

∫ L

0

Rb0 · exp[− b

2(1− ρ2)

·(
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n
Si

))2

σ2
x

+
(µ0y + vyt

n
Si

)2

σ2
y

(7)

+
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n
Si

)

σxσy
)]dx

+Wn
S1

where, as before, θθθ = [R0, µ0x , µ0y , σ
2
x, σ

2
y, ρ, vx, vy]T

For θCθCθC = [R0, µ0x , Cµ0y , σ
2
x, C

2σ2
y, ρ, vx, Cvy]T ,∀C ∈

R, the measurements are identical, so there is an inherent
ambiguity. Note that the same ambiguity occurs for any
given set of SPSs and TPSs that lie on the same line. A
visual example of this ambiguity for measurements produced
by a single CML is illustrated in Fig. 1.

Fig. 1. Two different GCs (blue ellipses) moving through a
CML (i.e., - an SPS - magenta lines bounded by X). The
green dots mark the centers of the GCs, and the orange lines
show the GCs’ path integration that are to be sampled by
the SPSs. These path integration are identical, illustrating
the ambiguity of the parameter estimation.

This ambiguity is resolved in scenarios in which mea-
surements from more than one SPS or two TPSs are
available as long as they are not co-linear, or if some
entries of the parameter vector θθθ are considered known.
For instance, avoiding this ambiguity can be achieved in
the case of GC known to be symmetric, where σ2

x =
σ2
y = σ2, ρ = 0 , or if side information about the GC’s

movement (i.e., its velocity) is provided. In those scenarios,
the model is characterized by θθθ = [R0, µ0x , µ0y , σ

2, vx, vy]T

and θθθ = [R0, µ0x , µ0y , σ
2
x, σ

2
y, ρ]T , respectively. Nonethe-

less, the identification remains unattainable if only a sin-
gle TPS is available. In this case, it can be shown, fol-
lowing the same settings of eq. (6), and by relying on
the fact that a TPS measuring a moving field is prac-
tically equivalent to an SPS lying along its movement
direction, that θθθ can be represented as θCθCθC = [R0 ·
e

−C
2σ2 , µ0x ,±

√
µ2

0y
− C, σ2, vx, vy]T given that the GC is

symmetrical, or as θCθCθC = [R0, µ0x , Cµ0y , σ
2
x, C

2σ2
y, ρ]T

under the assumption that the velocity of the GC movement
is known. The results from this Section are summarized in
Table I.

IV. SUFFICIENT CONDITIONS
In cases where the FIM is full rank, but its condition

number (CN), defined as the ratio between the largest and

Table I. Necessary conditions to achieve identifability ac-
cording to the number of the available sensors. ”V” indicates
attainable identification and ”X” indicates the opposite.

1 TPS 1 SPS or > 1 SPS or
2 TPS > 2 TPS

No Prior Data X X V
Velocity or symmetric known X V V

the smallest eigenvalue, is very large, the estimation error of
at least some of the parameters will be very large. We refer
to such a case as ”practically unidentifiable”. In this section
we analyse cases where the necessary conditions for identifi-
ablity are met, but the condition number of the FIM is large,
to identify sufficient conditions for practical identifiability.
Our methodology is based on setting a scenario for which
the problem is fully identifiable (so the FIM is full rank, and
its condition number is below a pre-determined threshold)
and a study of how the CN changes as a function of the
system parameters - in particular: (i) the total observation
period (OP) and (ii) the number of samples (N) from each
sensor. We found out that for all fully identifiable scenarios,
the CN as a function of OP for a given N (or vice versa)
has a u-shape characteristic [20] (see Fig. 2). The conditions
which guarantee the CN to be below a given threshold are
considered as the sufficient conditions for identifiabily. In
the sequel we demonstrate this methodology with a real life
example.

Fig. 2. A schematic U-shape function indicating that for
values of OP inside the U, the CN is low and is roughly
constant so that one can estimate the model’s parameters
accurately. If the OP is outside the U shape, the CN is
large, indicating taht some of the parameters are practically
unidentifable. [α, β] is the interval of identifiability, and ∆
is its width.

IV-A. The Tested Scenario
Our tested scenario is presented in Fig. 3. The scenario

is based on actual CMLs and RGs located in the south of
Israel, in an area susceptible to flash-floods. The rain GC is
approximated based on an actual rain-event detected in the
area by a weather-radar [20]. We consider three RGs (TPS)
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and two CMLs (SPS) as depicted in Fig. 3. The observation
period (OP - defined as the time duration between the first
and the last samples that were taken in a given scenario) is
two hours, the sampling time is 10 minutes for the RGs and
15 minutes for the CML (which are typical sampling rates
for such instrument in this region), and the noise’s variance
is considered to be equal between all measurements. FIMs
for the nominal case in which three RGs, two CMLs, or one
CML and one RG are used. In all this cases the necessary
conditions are met and the FIMs are full rank, while with
any single CML or a pair of RGs the FIMs are singular.

Fig. 3. The initial state of a GC (in green) that moves along
the CMLs (blue lines) and the RGs (in red), in the direction
of the dashed magenta line. In the end of the observation
period (two hours) the GC’s center location is at the end of
the dashed magenta line.

IV-B. Identifiability as a Function of the System Param-
eters

While the scenario parameters are given, the system
parameters can be designed, based on the user requirements.
Such parameters include the number of samples (from each
monitoring instrument) NTi , NSi , and the OP . For a fixed
number of samples the desired OP has upper and lower
limits. While extremely short OP will result in a dense
samples consisting of similar information regarding the GC,
very long OP dictates that some of the measurements are
sampled at times in which the GC center is far from the
sensors (with respect to the GC width - {σx, σy}), causing
the sensors to miss the GC. Therefore, by examining the
FIM’s CN as a function of the OP , it can be seen that
there is a limited section of the OP where the identification
is attainable. Fig. 4 presents the interval of the OP that
allow identifiability of the scenario of Fig. 3, for given
sets of sensors-availability, and for different number of
samples (the sampling rate and the number of samples are
identical for all sensors). It shows that for all cases where
the necessary conditions for identifiability hold, there is a
range of system parameters (observation period, OP, and the
number of samples, N) that provide sufficient condition too.
The maximal OP (β in Fig. 2) grows roughly linearly with
the number of samples, N, while the minimal value of OP

(α in Fig. 2) remains relatively constant. The type, number,
and mainly the location of the available sensors relative to
the spatio-temporal field directly affect the range of OP that
is sufficient for identifiability for a given N. Therefore, no
general claim about the superiority of a certain scenario can
be made.

Fig. 4. Optional OP interval as a function of N for different
combinations of instruments (as detailed at the bottom). V
indicates the (assumed) known velocity. The green sections
indicate identifiability sections while the red indicates weak
identifiability.

V. CONCLUSION
This paper discusses the necessary and sufficient condi-

tions required for the identification of a tempo-spatial field
from a limited number of TPSs and SPSs. Based on a
parameter model of the field we have identified necessary
conditions for identifiablity, while a numerical study of
the FIM’s has revealed the required sufficient conditions.
The necessary conditions are summarized in Table I. In
practice, it is required to design the system as such that the
system parameters will result in an OP and the number of
samples that provide enough measurements with sufficient
information. Further research is needed, however, to study
the accuracy of the estimation in the case of identification
and the sensitivity of the results to miss-modeling, where
the actual cell does not fit the assumed parametric model.
Lastly, it is worth noting that for the application of flash
flood prediction one is interested in the estimation of the
accumulated rain in a given area and time. The results of
this paper can be used for providing such estimates [20].
However, note that accumulated rain can be estimated even
if the necessary conditions of Table I are not met.
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