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Abstract—A multilevel quantization algorithm is proposed
for distributed sensor networks where each sensor transmits a
summary of its observation to the fusion center and the fusion

center makes the final decision. The proposed scheme comprises
a person-by-person optimum quantization at each sensor and
an optimum fusion rule at the fusion center. The complexity of
the algorithm is exponential yet practical for small to moderate
networks. The rationale behind the proposed scheme is that
from small to moderate networks, the naive algorithm is com-
putationally impractical while practically applicable algorithms
experience performance losses. Experimental results indicate that
the proposed scheme is able to fill in this gap and provide near
optimal solutions.

Index Terms—Distributed detection, quantization, cognitive
radio, wireless sensor networks, signal detection

I. INTRODUCTION

Detection of events in a distributed manner has been studied

in various applications such as cognitive radio or industrial

monitoring [1]. In parallel sensor networks, each sensor makes

an observation about a certain phenomenon and transmits it to

the fusion center for a final decision. Transmitting observations

or their likelihood ratios (LRs) to the fusion center under a

certain statistical model -called centralized detection- is opti-

mal, if the sensors are statistically independent, since LRs are

sufficient statistics and maximize the detection performance at

the fusion center [2]. Such a transmission is impractical for

wireless channels due to bandwidth and energy limitations [3].

Therefore, quantized versions of observations are transmitted

to the fusion center -called decentralized detection- subject to

the constraint that the loss of detection performance due to

quantization is insignificant [4].

Decentralized detection was first studied in [5] for binary

sensor quantization without considering the design of data

fusion algorithms. This work was later extended by [6], [7]

generalizing the binary quantization to multilevel quantization.

In order to be able to improve the performance further and

reduce the computational cost, pseudo objective functions

based on distances between probability distributions are used

for optimization. In [8] the J-divergence, in [9] the deflection

distance, and in a more recent work [10], both the J-divergence

and Bhattacharyya distances are considered.

Among all distances, only the Chernoff Information (CI)

has the asymptotic optimality property [11] and maximizing

the CI amounts to minimizing the upper bound on the true

objective function [12]. Based on this idea, the CI was first

studied in [11] for multilevel quantization. Scalable solutions

were obtained in [13] by locally maximizing the CI without

providing algorithmic solutions. In [14] Chernoff information

and deflection distance were used for the locally optimum

quantization of independent and identically distributed sen-

sors. This work was later extended by the same authors to

independent but not necessarily identically distributed sensor

observations [15]. In both [14] and [15] explicit algorithmic

solutions were presented.

Since the optimality of CI is invalid for any finite number

of sensors, it is desirable to consider the true objective

function with practical algorithmic solutions. In [16], a fast

multilevel quantization algorithm is proposed considering a

Gaussian approximation to the overall test statistic. Both [15]

and [16] optimize the performance by using person-by-person

optimum (PBPO) quantization at the sensors and asymptotic

optimization at the fusion center. In [17] exact error probability

is considered for the fusion center together with PBPO for the

sensors but the condition is exact only for binary quantization

and the performance starts to degrade for non-binary and non-

identical sensors. Therefore, for small to moderate number of

sensors and for non-identically distributed sensor observations,

the performance of available practically applicable schemes

are open to improvement.

In this paper a multilevel quantization algorithm is proposed

to fill in this gap. The proposed scheme quantizes the sensor

observations via considering PBPO optimization at the sensors

and an optimal fusion at the fusion center. The algorithm is

iterative and achieves near optimal solutions both for identi-

cally as well as non-identically distributed sensors. Numerical

results indicate its superiority over [14], [15], which is known

to perform better than [16] and [17] for non-identical sensors.

The rest of this paper is organized as follows. In Section II, the

decentralized detection problem is introduced. In Section III,

the proposed algorithm is derived and its computational com-

plexity is analyzed. In Section IV, the performance of the

proposed algorithm is evaluated and compared to [14], [15].

Finally in Section V, the paper is concluded.

II. DECENTRALIZED DETECTION

Consider a distributed detection network with K decision

makers φ1, . . . , φK and a fusion center γ as illustrated by

Figure 1. Each sensor φk makes an observation yk P Ωk from

a certain phenomenon, where Ωk is an interval, and gives a
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Phenomenon

γpu1, u2, . . . , uKq
u0

Fig. 1. Distributed detection network with K decision makers, each repre-
sented by the decision rule φ, and a fusion center associated with the fusion
rule γ.

multilevel decision uk P t0, . . . , Nk ´ 1u. The phenomenon is

modeled by a binary hypothesis test

H0 : Yk „ F k
0
,

H1 : Yk „ F k
1 , (1)

where the random variables (r.v.s) Yk corresponding to the

observations yk are mutually independent and follow the

probability distribution function F k
0

(or F k
1

), which has the

density function fk
0 (or fk

1 ), conditioned on the hypothesis

H0 (or H1). The fusion center receives multilevel decisions

from all sensors and gives a binary decision u0.

Optimum quantization, which minimizes the error probability

of the fusion center is known to be the monotone likelihood

ratio test [2]. Assuming that the likelihood ratio function

lk “ fk
1

{fk
0

is strictly monotone, thresholding can be done

directly over the observations. Thus, the decisions can be

obtained by

φkpykq “ uikk if λik´1

k ď yk ă λikk , (2)

where λikk denotes the thresholds, k P t1, . . . ,Ku denotes

the indices of sensors and ik P t1, . . . , Nku denotes the

indices of the multilevel decision uk for the kth sensor. The

upper and lower thresholds are given by λ0k :“ inf Ωk and

λNkk :“ supΩk, leaving Nk ´ 1 unknown thresholds to be

determined per sensor. From (1) and (2) the probability mass

functions of the decisions conditioned on the hypothesis Hm,

m P t0, 1u, can be found by

pkmpuikk q “ Fmrλik´1

k ď lkpYkq ă λikk s. (3)

Let p0 and p1 denote the joint probability mass functions of the

random variables Uk, corresponding to the multilevel decisions

uk, conditioned on the hypotheses H0 and H1, respectively.

Furthermore, let the transmitted decisions uk be reformed by

the fusion center optimally [2], [9] as

uk :“ log
pk
1
pukq

pk
0
pukq .

Then, the optimum test at the fusion center can be obtained

by

log
p1pu1, . . . , uKq
p0pu1, . . . , uKq “

K
ÿ

k“1

log
pk
1
pukq

pk
0
pukq “

K
ÿ

k“1

uk

H1

¡
H0

λ0, (4)

where λ0 P R is a suitable threshold. Since test statistic in

(4) corresponds to the summation of K random variables Uk,

the probability mass function of the sum can be obtained by

K-fold convolution of the marginal mass functions as

gmpzq “
N1
ÿ

i1“1

¨ ¨ ¨
NK
ÿ

iK“1

p1mpui1
1

q ¨ ¨ ¨ pKmpuiKK qδ
´ K

ÿ

k“1

uikk ´ z
¯

,

(5)

where δ is the dirac delta function.

III. OPTIMIZATION OF THE SENSOR NETWORK

In this section an iterative algorithm will be derived, which

is capable of quantizing both identically as well as non-

identically distributed sensor observations.

A. Derivation of the Algorithm

Let all non-trivial thresholds of the sensors be represented

by the set of parameters

λ “ tλikk : ik P t1, . . . , Nk ´ 1u, k P t1, . . . ,Kuu,
Then, considering (5) the minimum error probability can

explicitly be written as

PE “ min
λ

N1
ÿ

i1“1

¨ ¨ ¨
NK
ÿ

iK“1

min

˜

K
ź

k“1

pk
0
puikk q,

K
ź

k“1

pk
1
puikk q

¸

,

(6)

where pkm are dependent on λikk through (3). An exact

calculation of (6) is of exponential complexity even for

identically distributed sensor observations, since there are

counterexamples showing that identical sensor decisions are

not always optimum for identically distributed sensors [18].

In order to simplify the problem consider the following PBPO

assumption.

Assumption III.1. All thresholds except for the threshold λikk
are known in solving the optimization problem (6).

Using Assumption III.1, except for pkmpuikk q, pkmpuik`1

k q, all

other terms are some constants. Hence, (6) can be written as

PE “ min
λ
ik
k

N1
ÿ

i1“1

¨ ¨ ¨
Nk´1
ÿ

ik´1“1

Nk`1
ÿ

ik`1“1

¨ ¨ ¨

NK
ÿ

iK“1

min

¨

˚

˝
pk0puikk q

ź

1ďtďK
t‰k

pt0puitt q, pk1puikk q
ź

1ďtďK
t‰k

pt1puitt q

˛

‹

‚

` min

¨

˚

˝
pk0puik`1

k q
ź

1ďtďK
t‰k

pt0puitt q, pk1puik`1

k q
ź

1ďtďK
t‰k

pt1puitt q

˛

‹

‚

` Ck, (7)

where Ck is a constant. For simplicity, Equation (7) can be

reformulated using a bijective mapping running over the index

n as follows

n : ti1, . . . , ik´1, ik`1, . . . , iKu ÞÑ t1, . . . , Nu, (8)
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where

Mk “
ź

1ďtďK
t‰k

Nt. (9)

For example, if Nk “ 3 for all k and K “ 3 we have t1, 1u Ñ
1, t1, 2u Ñ 2, t1, 3u Ñ 3, t2, 1u Ñ 4, . . . , t3, 3u Ñ 9.

Accordingly (7) can be written as

PE “min
λ
ik
k

Mk
ÿ

n“1

min
`

pk
0
puikk qck

0
pnq, pk

1
puikk qck

1
pnq˘

` min
`

pk0puik`1

k qck0pnq, pk1puik`1

k qck1pnq˘ ` Ck, (10)

where ck0 and ck1 are some known vectors, which can be

calculated as

ck0pnq “
N1
ÿ

i1“1

¨ ¨ ¨
Nk´1
ÿ

ik´1“1

Nk`1
ÿ

ik`1“1

NK
ÿ

iK“1

ź

1ďtďK
t‰k

pt0puitt q,

ck
1
pnq “

N1
ÿ

i1“1

¨ ¨ ¨
Nk´1
ÿ

ik´1“1

Nk`1
ÿ

ik`1“1

NK
ÿ

iK“1

ź

1ďtďK
t‰k

pt
1
puitt q, (11)

using the index mapping stated by (8). Let | ¨ | denote the

absolute value function and let us consider the identity given

by

minpa, bq “ a` b

2
´ |a ´ b|

2
. (12)

Accordingly, by using (12) one can write (10) as

PE “min
λ
ik
k

Mk
ÿ

n“1

pk0puikk qck0pnq ` pk1puikk qck1pnq
2

´ |pk
0
puikk qck

0
pnq ´ pk

1
puikk qck

1
pnq|

2

` pk
0
puik`1

k qck
0
pnq ` pk

1
puik`1

k qck
1
pnq

2

´ |pk0puik`1

k qck0pnq ´ pk1puik`1

k qck1pnq|
2

` Ck. (13)

Exchanging the sum and min terms, the minimum can be

obtained by solving

dPE

dλikk
“1

2

Mk
ÿ

n“1

d

dλikk

”

pck
0
pnqppk

0
puikk q ` pk

0
puik`1

k qq

` ck1pnqppk1puikk q ` pk1puik`1

k qq
´ |pk0puikk qck0pnq ´ pk1puikk qck1pnq|
´ |pk0puik`1

k qck0pnq ´ pk1puik`1

k qck1pnq| ` Ck

ı

“ 0,

which is equivalent to

1

2

Mk
ÿ

n“1

`

fk
0

pλikk qck
0
pnq ´ fk

1
pλikk qck

1
pnq˘

ˆ

pk
0
puik`1

k qck
0
piq ´ pk

1
puik`1

k qck
1
pnq

|pk
0
puik`1

k qck
0
pnq ´ pk

1
puik`1

k qck
1

pnq|

´ pk
0
puikk qck

0
pnq ´ pk

1
puikk qck

1
pnq

|pk
0
puikk qck

0
pnq ´ pk

1
puikk qck

1
pnq|

˙

“ 0, (14)

by making use of the relations given by

dpk
0
puikk q
dλikk

“ fk
0 pλikk q, dpk

1
puikk q
dλikk

“ fk
1 pλikk q,

dpk0puik`1

k q
dλikk

“ ´fk
0 pλikk q, dpk1puik`1

k q
dλikk

“ ´fk
1 pλikk q,

and
d|rpn;λikk q|

dλikk
“ rpn;λikk q

|rpn;λikk q|
drpn;λikk q
dλikk

,

where r is a real differentiable function. Let us consider the

sets

N1 “tn : ck
0
pnqpk

0
puikk q ą ck

1
pnqpk

1
puikk q

^ ck0pnqpk0puik`1

k q ă ck1pnqpk1puik`1

k qu,
N2 “tn : ck

0
pnqpk

0
puikk q ă ck

1
pnqpk

1
puikk q

^ ck
0
pnqpk

0
puik`1

k q ą ck
1
pnqpk

1
puik`1

k qu,
N3 “tn : ck0pnqpk0puikk q ă ck1pnqpk1puikk q

^ ck
0
pnqpk

0
puik`1

k q “ ck
1
pnqpk

1
puik`1

k qu,
N4 “tn : ck

0
pnqpk

0
puikk q ą ck

1
pnqpk

1
puikk q

^ ck0pnqpk0puik`1

k q “ ck1pnqpk1puik`1

k qu,
N5 “tn : ck

0
pnqpk

0
puikk q “ ck

1
pnqpk

1
puikk q

^ ck
0
pnqpk

0
puik`1

k q ă ck
1
pnqpk

1
puik`1

k qu,
N6 “tn : ck0pnqpk0puikk q “ ck1pnqpk1puikk q

^ ck
0
pnqpk

0
puik`1

k q ą ck
1
pnqpk

1
puik`1

k qu. (15)

Then, Equation (14) can be rewritten as

´
ÿ

nPN1

fk
0

pλikk qck
0
pnq ´ fk

1
pλikk qck

1
pnq

`
ÿ

nPN2

fk
0 pλikk qck0pnq ´ fk

1 pλikk qck1pnq

` 1

2

ÿ

nPN3XN6

fk
0

pλikk qck
0
pnq ´ fk

1
pλikk qck

1
pnq

´ 1

2

ÿ

nPN4XN5

fk
0

pλikk qck
0
pnq ´ fk

1
pλikk qck

1
pnq “ 0, (16)

which is equivalent to

lkpλikk q “ fk
1

pλikk q
fk
0

pλikk q “ 2d1 ´ 2d2 ´ d3 ` d4

2d5 ´ 2d6 ´ d7 ` d8
, (17)

where

d1 “
ÿ

nPN1

ck0pnq, d2 “
ÿ

nPN2

ck0pnq,

d3 “
ÿ

nPN3XN6

ck0pnq, d4 “
ÿ

nPN4XN5

ck0pnq,

d5 “
ÿ

nPN1

ck
1
pnq, d6 “

ÿ

nPN2

ck
1
pnq,

d7 “
ÿ

nPN3XN6

ck1pnq, d8 “
ÿ

nPN4XN5

ck1pnq. (18)
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Algorithm 1 Iterative multilevel observation quantizer

Input: f0, f1, and initialized λikk , pk
0
, pk

1

Output: Updated thresholds λikk and probabilities pk
0
, pk

1

1: do

2: for each k P t1, . . . ,Ku do

3: Find ck
0

and ck
1

using (11)

4: for each ik P t1, . . . , Nku do

5: Find the index sets N1-N6 using (15)

6: Update thresholds λikk by using (19)

7: Update probabilities pk
0
, pk

1
by using (3)

8: end for

9: end for

10: while @λk,ik converges or PE doesn’t decrease anymore

Assuming that the inverse function of lk exists and is denoted

by l´1

k , the threshold in (17) can eventually be computed as

λikk “ l´1

k

ˆ

2d1 ´ 2d2 ´ d3 ` d4

2d5 ´ 2d6 ´ d7 ` d8

˙

. (19)

Remark III.1. Without loss of generality, d3, d4, d7 and d8
may be assumed zero for continuous valued observations since

N3, N4, N5, N6 are almost surely empty sets due the equality

conditions.

B. Complexity Analysis

The proposed scheme which iteratively computes the op-

timum quantization thresholds is given by Algorithm 1. For

each k, calculating ck0 and ck1 requires OpKMkq computa-

tions, where Op¨q is the standard Landau notation. Given

ck
0

and ck
1
, calculating N1-N6 for each ik and k requires

OpKMkq operations. Since calculating λikk by finding d1-d8
requires no more than OpKMkq computations and finding

the probabilities pk0 , pk1 is independent of K , the overall

computational complexity of Algorithm 1 is OpK2Mq, which

is equivalent to OpK2NKq if N “ Nk for all k, where

M “ ř

kMk. Remember that the naive solution for the same

problem requires OpdNK`1pNK `Kqq computations, where

d is the total number of discretization points of the domain

of Yk [2]. Although it is still exponential, the complexity of

the proposed scheme is exponentially faster than the naive

solution. Hence, it makes a solution from small to moderate

number of sensor networks feasible with ordinary computers.

IV. NUMERICAL RESULTS

In this section, performance of the proposed algorithm is

evaluated over identically as well as non-identically distributed

independent sensor observations.

A. Identically distributed observations

Consider the uniform vs. linear (UL) and Gaussian vs.

Gaussian (GG) hypothesis testing problems,

Hm : Yk „ fmpyq “ 1

2
ym1t0ďyď2upyq, m P t0, 1u,

Hm : Yk „ fmpyq “ 1?
2πσ

e
´py´mq2

2σ2 , m P t0, 1u,

where 1t¨u is the indicator function. In the simulations λikk
are initialized uniformly on rλ0k, λNkk ´ ts for some suitable

t and the minimum PE is picked over a fixed number of

iterations, e.g. 100. Figures 2 and 3 illustrate the results of

the UL- and GG-problems, respectively, with 1-, 2- and 3-bit

quantizations for various total number of sensors. In all cases

the proposed scheme provides lower error probabilities than its

Chernoff distance based counterpart. Although the difference

in detection performance is very minor for 3-bit quantization,

it is recognizable for 2-bit quantization and a considerable

difference can be observed if 1-bit quantization is of interest.

For 2- and 3-bit quantization, the difference between two

methods tend to decrease as the number of sensors increases.

B. Non-identically distributed observations

Consider the hypothesis testing problem with non-

identically χ2 distributed random variables,

Hm : Yk „ fk
mpykq “ y

W
2

´1

k e
´

yk

2pψk`1qm

2
W
2 pψk ` 1qmW2 Γ

`

W
2

˘

, m P t0, 1u,

where W is the number of samples collected by each sensor,

ψk is the signal-to-noise ratio (SNR) and Γ is the gamma

function. These distributions arise from a signal detection

problem, where each detector is an energy detector over a

static channel model facing a presumably different SNR. The

details of this problem can be found in [15, p. 42]. We assume

that each sensor collects W “ 2 samples and the SNR range

of r0, 8sdB is divided uniformly to the total number of sensors

in the network and assigned to each sensors as

γk “ t0, 8, 0.89, 7.11, 1.78, 6.22, 2.67, 5.33, 3.56, 4.44u. (20)

Figure 4 illustrates the thresholds of K “ 10 sensors for

2-bit quantization (3 thresholds) in comparison to that of

the Chernoff distance based quantizer [15]. The thresholds

may vary considerably for higher SNRs while they are very

similar for low SNRs. In the next simulation the minimum

error probabilities of the sensor networks with various number

of sensors and with 1-, 2- and 3-bit quantizations have been

computed and compared with that of the Chernoff distance

based quantizer. The results have been depicted in Figure 5.

We can observe that the proposed scheme offers lower error

probabilities than the Chernoff distance based quantizer for

all cases and the difference between the error probabilities

decreases with the total number of sensors in the network.

V. CONCLUSION

An algorithm was proposed for the optimization of sensor

networks consisting of a finite number of sensors and a fusion

center. The algorithm is capable of quantizing both identi-

cally as well as non-identically distributed independent sensor

observations. The proposed scheme has an exponential time

complexity, yet exponentially faster than the naive solution,

which makes it practically applicable for small to moderate

sensor networks. The motivation behind the proposed scheme

is that the existing algorithms are either computationally
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Fig. 2. Minimum error probability for the UL problem.
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Fig. 3. Minimum error probability for the GG problem.

intractable or their performance is not near optimal for small

to moderate number of sensors. Additionally, unlike other

schemes no equation solving is necessary. Numerical results

indicate that the proposed scheme is superior in performance

in comparison to the state-of-the-art. Moreover, the method

can easily be extended to density functions which have non-

monotone likelihood ratios by using generalized inverse func-

tions.
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