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Abstract—Acoustic signaling systems often suffer from severe
distortions from motion induced Doppler. Therefore, estimation
and compensation of such time warping have been considered
indispensable blocks in various applications including underwater
acoustic communications. However, conventional matched filtering
based methods often fail to provide robust tracking of time warping
trajectories, especially when non-uniform Doppler effects reside
in multi-path arrivals separately. In this paper, we propose HB-
DTW, a hyperdimensional generalization of standard dynamic time
warping (DTW) algorithms, to precisely estimate non-uniform time
varying Doppler in acoustic multipath channels. The proposed
algorithm exploits a Bayesian approach to map multidimensional
temporal scaling, while guaranteeing polynomial time complexity
in the length of the signal. Simulation results on synthetic channels
with non-uniform Doppler effects are demonstrated to evaluate the
proposed method.

Index Terms—Doppler Estimation, Dynamic Time Warping,
Acoustic Communications.

I. INTRODUCTION

Estimation of Doppler effects has been considered indispens-
able for successful implementation of many acoustic signal
processing applications including underwater acoustic commu-
nication. Computationally expensive ambiguity-function based
methods have shown good performance in estimating slowly
varying uniform Doppler. However, for fast-fading and highly
reverberant environments such as in shallow water acoustics,
such matched filter based methods often fail, and no robust
approach to the estimation of non-uniformly time varying
Doppler along each of the different propagation paths has been
found.

Meanwhile, Dynamic Time warping (DTW) has been widely
used to find a minimum distance matching between two tem-
poral or spatial sequences with non-linear distortions in their
indices for various applications including speech recognition
[1], medical image processing [2], radar detection [3], and
gesture recognition [4]. However, in spite of its proven perfor-
mance, DTW has been rarely adopted for the receiver front end
processing of acoustic communication systems; this algorithm
is not suitable for mapping channel outputs from multi-path
arrivals. Figure 1 describes the situation where an autonomous
underwater vehicle (AUV) communicates with the tethered
receiver in shallow water. As can be seen from the figure, each
of the propagation paths not only introduces delay, but also
different levels of motion induced Doppler.

In this paper, we propose hyperdimensional Bayesian dy-
namic time warping (HB-DTW), a generalized form of stan-
dard DTW algorithms, which is designed to precisely estimate

nonuniform time varying Doppler in multipath channels. Opti-
mality of the proposed algorithm is supported by preliminary
achievements in Bayesian estimation and Dynamic Program-
ming problems, while computational complexity is guaranteed
to be of polynomial time, when there exist a finite number of
paths with non-uniform Doppler.

This paper is organized as follows. In section II, we mathe-
matically formulate non-uniform Doppler estimation problems
in multi-path settings. Section III summarizes preliminary re-
sults of Bayesian approaches on DTW algorithms, and shows
how these approaches can be applied on Doppler estimation in a
single-path scenario. In section IV, HB-DTW is proposed to pre-
cisely estimate non-uniform time varying Doppler in multi-path
channels described in section II. In section V, the performance
of the proposed approach is evaluated with simulation results
on multi-path fading channels.

II. PROBLEM STATEMENT

Let us assume an acoustic signal x(t) is sent and received
between subsonically moving objects in a free space filled
with an ideal acoustically dispersionless fluid. Then, a sampled
version of the recorded output y(t) with sampling period T ,
y[·], can be expressed as follows:

y[n] = hx(w[n]), (1)

where w[·] is a monotonically increasing sequence which rep-
resents the time-warped mapping due to Doppler, and h refers
a time varying gain.

Let us assume w[·] as a random vector on positive real
numbers, whose increments ∆w are given as i.i.d. random
variables , i.e.,

w[n] = w[n− 1] + ∆w, (2)

and PT (∆w) : [0, 2T ] 7→ [0, 1] is a probability denstiy
function of ∆w. Note that finite support assumption of [0, 2T ]
comes from the subsonic constraint [5] and assumptions on the
sampling rate relative to the acoustic propagation velocity in
the medium.

In multi-path settings like the one described in Figure 1,
each propagation paths can be modeled as if transmitted from
mirrored phantom sources moving in different directions. There-
fore, each of these paths introduce different levels of time-
varying Doppler, which we will call paths with non-uniform
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Fig. 1: In shallow water environments, because of reflection and
refraction, acoustic signals propagate through multi-paths with
non-uniform Doppler shifts due to differences in the motion of
mirrored transmitting sources.

Doppler in our following discussion, and the resulting received
signal y[·] can be written

y[n] =
∑
i

hix(wi[n]) + v[n] (3)

with the existence of an ambient noise v[n], where hi’s and
wi’s each refer to gains, and Doppler from different paths.

In this paper, we will discuss maximum a posteriori (MAP)
estimation of non-uniform Doppler wi’s in a Bayesian setting,
i.e., seek ŵ = (ŵ1, ŵ2, ŵ3, ...) such that

ŵ = arg max
w

p(w|y[·], x(·)). (4)

III. BAYESIAN FORMULATION OF DYNAMIC TIME
WARPING FOR DOPPLER

A. Dynamic Time Warping

Dynamic Time warping is a well-known algorithm, com-
monly used in speech and image processing [6]. The goal
of this algorithm is to find best mapping between two given
finite length sequences x and y with length Lx and Ly , which
minimizes the Euclidean distance after index-remapping, i.e.,
we seek two time warping sequences of the same length, wx
and wy , which minimizes d(x, y;wx, wy) =

∑M
n=1 ‖x[wx[n]]−

y[wy[n]]‖2, and resulting minimum d is called the DTW dis-
tance.

A warping path q = {q1, q2, ..., qM} is defined as a sequence
of pairs wx and wy in that qi = (wx[i], wy[i]) ∈ [1 : Lx]× [1 :
Ly] for 1 ≤ i ≤ M . In addition, time warping sequences wx
and wy satisfy the following criteria [7]:
• Boundary condition: start and end points of x and y must

be matched, i.e., wx[1] = x[1], wy[1] = y[1], wx[M ] =
x[Lx], and wy[M ] = y[Ly]

• Monotonicity condition: two sequences wx and wy must
be non-decreasing.

• Step size condition: increments of the warping path, ∆i =
qi+1− qi, can only have values among (0, 1), (1, 0), (1, 1)

Now, let us define DTW matrices Γ ∈ RLx×Ly

+ , whose
element satisfy γ(i, j) = minq:qend=(i,j) d(xi1, y

j
1; q), which

refers the DTW distance between two sequences xi1 and yj1.
The elements γ can be computed by recursively updating the
following Bellman equation:

γ(i, j) =‖x[i]− y[j]‖2+

min{γ(i− 1, j − 1), γ(i, j − 1), γ(i− 1, j)},
(5)

where γ(1, 1) is commonly initialized to be zero. The top right
element of a DTW matrix is equivalent to the DTW distance
between x and y, i.e., min d(x, y;wx, wy) = γ(Lx, Ly). The as-
sociated computational complexity is of O(LxLy), while brute-
force searching algorithms are of O(3Lx+Ly ). Also, in each
Bellman update, optimal warping transitions are memorized,
and can be used to trace back to obtain the corresponding
optimal time warping path, which is also called a DTW warping
path.

B. Bayesian Formulation

Traditional DTW problems can be interpreted as special cases
of Bayesian approaches to time warping sequence estimation
problems. In [8], a unified interpretation of Hidden Markov
Models and Dynamic Time Warping was first proposed. Also,
these Bayesian methods have been more elaborately formulated
by algorithms called enhanced DTW (EDTW) [9].

Let us assume a priori probability on warping paths q =
{q1, . . . , qM} = {(wx[1], wy[1]), . . . (wx[M ], wy[M ])} as a
Markov chain. For example, time-homogeneous Markov chain
q can be represented with transition probability

p(qi+1|qi) =


θ1 if ∆i = (1, 0),

θ2 if ∆i = (0, 1),

1− θ1 − θ2 if ∆i = (1, 1).

(6)

Then, we define a posteriori quality measure, f(y, x|q) as

f(y, x|q) =
M∏
i=1

1√
2πσ

exp

(
− |y[wy[i]]− x[wx[i]]|2

2σ2

)
, (7)

and path quality measure f(q, y, x) as

f(q, y, x) = f(y, x|q)p(q), (8)

where M refers the length of q. When x and y are given, our
goal is to find a warping path q̂ which maximizes path quality
measure, or equivalently,

q̂ = arg max qf(q, y, x)

= arg max qf(y, x|q)p(q)
(9)

This can also be easily solved by recursively updating Bellman
equations of the following:

γ(i, j) =
‖x[i]− y[j]‖2

2σ2
+

min{γ(i− 1, j − 1)− log(1− θ1 − θ2)),

γ(i, j − 1)− log(θ2), γ(i− 1, j)− log(θ1)},

(10)

which is nothing but a penalized version of Eq.(5), and we can
obtain the traditional DTW algorithm as the case with equal
priors.

Also, model quality measure fθ(y, x) =
∑
q∈Q f(q, y, x)

evaluates the expected performance of the algorithms on
parameters θ = (θ1, θ2, σ). Therefore, parameters θ can be
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Fig. 2: Schematic of Hyperdimensional Bayesian DTW (HB-
DTW) for two paths (left). Transition probabilities of qi’s on
different regions are described on (right).

chosen via optimizing this model quality measure. Detailed
procedures for parameter selections will be discussed in the
next section.

Claim: Assume x(t) is a band-limited signal and y[·] is a
sampled version of the recorded output with sampling period
T , which is given by a single path version of Eq.(3), y[n] =
x(w[n]) + v[n], and w[·] is defined in Eq.(2).

Then, ∀ε > 0, there exist some sampling period T and
parameters θ = (θ1, θ2, σ), that satisfies the following, when
q̂ = {(ŵx[1], ŵy[1]), . . .} is given by solving Eq.(9), and
ŵ = arg maxw p(w|y[·], x(·)),

1

M

M∑
i=1

‖ŵx[i]− ŵ[ŵy[i]]‖2 < ε, (11)

where M denotes the length of q̂.
Sketch of Proof: We outline a proof of this claim using an
approach based on the central limit theorem (CLT). Assume
two different i.i.d. random sequences with finite first and second
moments. Then, two series, built from cumulative sums of
these sequences will eventually converge to the same Gaussian
distribution with the exact first and second moments. �

This claim tells us that, as long as the subsonic constraint
is met, a solution to the time warping problem in Eq.(9) well
approximates MAP estimation of Doppler shifts in Eq.(4) for
bandlimited signals in a ‘single-path’ scenario.

IV. HYPERDIMENSIONAL BAYESIAN DTW FOR
NON-UNIFORM MULTIPATH DOPPLER SHIFTS

In the previous section, we have explained how time distorted
signals can be aligned via DTW in a single path scenario.
However, our main focus stands on N -path situations where
each path experiences statistically different Doppler induced
time warping, i.e.,

y[wy[n]] =

N∑
i=1

hix[wxi [n]] + v[n]. (12)

For example, let us consider a two-paths case. In standard
DTW methods, y[wy[n]] is matched to x[wx[n]] in DTW
matrices as previously explained. However for this scenario,
y[wy[n]] should be matched to h1x[wx1

[n]] + h2x[wx2
[n]]. Or,

we can equivalently postulate that y[wy[n]], x[wx1 [n]], and
x[wx2 [n]] simultaneously match among others on the element

(wx1 [n], wx2 [n], wy[n]) of Lx1 × Lx2 × Lx3 tensor illustrated
in Figure 2.

Similarly as in the previous section, we can define a
posteriori, path, and model quality measures as fθ(y, x|q),
fθ(y, x, q), and fθ(y, x), where q = {q1, q2, ...} and qi =
(wx1

[i], . . . , wxN
[i], wy[i]). An a posteriori quality measure for

HB-DTW, f(y, x|q) is defined as

f(y, x|q) =
M∏
i=1

1√
2πσ

exp

(
−
|y[wy[i]]−

∑N
j=1 hjx[wxj [i]]|2

2σ2

)
.

(13)

Also a corresponding path transition prior p(qi+1|qi) is defined
as

p(qi+1|qi) =

N∏
j=1

p(qji+1|q
j
i ), (14)

where qji = (wxj
[i], wy[i]), and each p(qji+1|q

j
i ) is given for

∆j
i = qji+1 − q

j
i as described in Eq.(15) (note that Eq.(15) is

after the conclusions due to space limitations).
In streaming scenarios, the signal almost always includes null

regions around the informational sequences. However, boundary
condition for DTW algorithms is not satisfied in this case.
In [10], SPRING, a simple but efficient solution for streamed
versions of DTW algorithms, was proposed. Instead of relying
on brute-force searching methods to find matching boundaries
between x and y, an additional ‘null’ symbol can be inserted
at the beginning and the end of x[·], i.e, x = [0, xoriginal[·], 0].

In our formulation, we allocate new transition probabilities
on states qi’s with these null indices. For qi = (1 or Lx, wy[i]),
path transitions don’t necessarily mean time distortions; rather,
transition events mean either path arrivals or ends in transmitted
signals. Especially, each of jth path arrival is modeled as
geometric(αj), as illustrated in Eq.(15).

Eq.(14) assumes that each of the paths are statistically inde-
pendent. This need not hold in general, but we sacrifice model
complexity when considering correlated paths; while available
transition paths are as many as 2N − 1, independence enables
the use of a transition prior p(qi+1|qi) to be modeled by only
3N parameters. Then, in HB-DTW, path quality maximization
in Eq.(9) can be solved by recursively updating the Bellman
equation:

γ(qi) =
|y[wy[i]]−

∑N
j=1 hjx[wxj

[i]]|2

2σ2
+

min
q′∈{q′:q′=qi−[

∑
k∈K ek,0]}

{γ(q′)− log(p(qi|q′)},
(16)

where ek is the kth standard basis vector in N-dimensional
Cartesian coordinates, and K is a set of every subsets of [1, N ]
except for the null-set. Resulting γ(qi) forms a DTW tensor,
Γ ∈ RLx1

×...×Ly

+ , similar to the Bellman updates form a DTW
matrix in a standard DTW. Therefore, computational complexity
is of O(Ly

∏N
i=1 Lxi

).
In general transmission scenarios, environmental parameters

that affect statistical properties of the model represented by
Eq.(3) are not known. However, while maintaining the same
order of complexity, the Expectation-maximization (EM) algo-
rithm [11] can be used to update parameters, maximizing the
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model quality fθ(y, x), given observations of x and y, i.e.,

θ̂ = arg max
θ

∑
q∈Q

fθ(y, x, q), (17)

where Q refers a set of all available warping paths. EM
recursions are conducted through the following steps:

1) Initialization. Set θ with an initial guess. For example,
we allocate random probability values on transition priors, and
coarsely measured noise variance σ.
2) Expectation. Compute the expected value of the log of the
path quality measure on φ, with respect to the conditional
probability of q, whose parameters are given by θ, given x
and y:

E(q|y,x),θ(log fφ(y, x, q))

=
∑
q∈Q

fθ(y, x, q)

fθ(y, x)
log
(
fφ(y, x, q)

)
=

1

fθ(y, x)

∑
q∈Q

fθ(y, x, q) log fφ(y, x|q)

+
1

fθ(y, x)

∑
q∈Q

fθ(y, x, q) log pφ(q)

(18)

3) Maximization. Update θ with new θ′ s.t.,

θ′ = arg max
φ

∑
q∈Q

fθ(y, x, q) log fφ(y, x|q)

+
∑
q∈Q

fθ(y, x, q) log pφ(q).
(19)

Then, θji
′ is given as

θji
′ =

K(θji )∑3
i=1K(θji )

, (20)

where K(θji ) =
∑
q∈Q fθ(y, x, q)L(θji ; q). Here, L(θji ; q)

denotes the number of corresponding transitions with θji in the
warping path q ∈ Q. This can be interpreted as a ratio of
expected appearances of the corresponding transitions in the
model; the more this transition appears in preferable warping
paths, the larger the corresponding transition probability.

Meanwhile, K(θji ) can be rewritten

K(θji ) =
∑
s∈(S)

∑
s′:p(qj

s′ |q
j
s)=θ

j
i

p(s′|s)κf (s)κb(s
′), (21)

where s, s′ ∈ [1 : Lx1 ] × . . . × [q : Ly] refers the location of

DTW tensor. κf and κs each refers

κf (s) =
∑
qf∈Qs

1

fθ(y, x, qf ), (22)

and
κb(s) =

∑
qb∈Q

qM
s

fθ(y, x, qb), (23)

where Qji refers to every warping path which connects the point
i ∈ S to the point j ∈ S in DTW tensors. Then, K(θji ) can
be efficiently computed via the forward-backward algorithms as
follows:
Forward Algorithm:

κf (qi) = exp

(
−
|y[wy[i]]−

∑N
j=1 hjx[wxj

[i]]|2

2σ2

)
·

∑
q′∈{q′:q′=qi−[

∑
k∈K ek,0]}

{κf (q′)},
(24)

Backward Algorithm:

κb(qi) = exp

(
−
|y[wy[i]]−

∑N
j=1 hjx[wxj

[i]]|2

2σ2

)
·

∑
q′∈{q′:q′=qi+[

∑
k∈K ek,0]}

{κb(q′)}.
(25)

4) Repeat step 2 and 3 until convergence.

V. SIMULATION RESULTS

In this section, we evaluate the performance of HB-DTW for
non-uniform time warping path estimation problems in a multi-
path scenario illustrated in Figure 3.

Here, the signal x is a 500 kHz (T is 2 µs) sampled Gaussian
pulse with 30 kHz bandwidth modulated at 50 kHz center fre-
quency. The signal y is a recorded output of the channel, where
two paths with different time-varying Doppler exist; path gains
for these arrivals are 1 and 0.5. Two warping paths are generated
via Eq.(4.15), where P (∆wx1

) ∼ uniform(0.5T, 1.1T ) and
P (∆wx2

) ∼ uniform(0.9T, 1.8T ). Before running HB-DTW on
numerically generated signals, model parameters were updated
after 10 EM iterations. To evaluate the proposed method by
comparison, a non-Bayesian implementation of the hyperdi-
mensional DTW was also conducted, which will be denoted
‘Conventional’ in our following discussion.

Estimation results from HB-DTW are shown in Figure 4.
As can be seen from Figure 4c and d, both HB-DTW and
Conventional algorithms succeeded to estimate ŷ, a denoised
version of y, which is regenerated from x and estimated time
warpings ŵx1 and ŵx2 . However, the non-Bayesian algorithm

p(qji+1|q
j
i ) =



θj1 if ∆j
i = (1, 0), wxj

[i] 6= 1, and wxj
[i] 6= Lx,

θj2 if ∆j
i = (0, 1), wxj

[i] 6= 1, and wxj
[i] 6= Lx,

1− θj1 − θ
j
2 if ∆j

i = (1, 1), wxj [i] 6= 1, and wxj [i] 6= Lx,

αj if ∆j
i = (1, 1) and wxj [i] = 1,

1− αj if ∆j
i = (0, 1) and wxj

[i] = 1,

1 if ∆j
i = (0, 1) and wxj

[i] = Lx,

0 otherwise.

(15)
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Fig. 3: Multi-path output y(t) (fourth) is a sum of two time-
distorted recording of input x(t) (first) through synthetically
generated time warping functions wx1 (second) and wx2 (third).
Path gains are each selected to 1 and 0.5.
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Fig. 4: Comparisons between HB-DTW and Conventional
method without Bayesian approaches upon warping path es-
timation results for signals generated in Figure 3: Estimated
warping paths for (a) the first and (b) the second path arrivals,
and regenerated y from time warping estimates from (c) HB-
DTW and (d) Conventional method.

failed to approximate time warping trajectories, while HB-DTW
successfully tracked the groundtruth path. The reason standard
DTW fails estimating warping paths, in spite of impressive
denoising performance, is that its objective is not targeted to
find wxi

’s but designed to minimize Euclidean DTW distance
between y and ŷ; this is equivalent to the least square estimation
of ŷ, while the proposed HB-DTW well approximates the
solution of the original problem in Eq.(4).

VI. CONCLUSION

In this paper, HB-DTW, a hyperdimensioanl DTW method
that exploits Bayesian modeling of time distortion, was pro-
posed. We showed that the proposed method can be used to
robustly estimate non-uniform time distortions of multi-path
arrivals. This was achieved by adding additional dimensions on
conventional DTW algorithms, which represent different path
arrivals with non-uniform time distortions. In future work, we
will deepen the analysis on hyperdimensional time warping
problems by focusing on more general scenarios with non-
stationary environments. Also, experimental evaluation of the
proposed method will be followed with field measured data from
experimental underwater acoustic communication systems.
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