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Department of Automatic Control
Gdańsk University of Technology

ul. Narutowicza 11/12, Gdańsk, Poland
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Department of Automatic Control
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Abstract—A new regularization method is proposed and ap-
plied to identification of time-varying finite impulse response
systems. We show, that by a careful design of the regularization
constraint, one can improve estimation results, especially in the
presence of strong measurement noise. We also show that the
the most appropriate regularization gain can be found by direct
optimization of the generalized cross-validation criterion.

Index Terms—Identification of nonstationary systems, basis
functions, generalized cross-validation

I. INTRODUCTION

Identification of nonstationary systems, exploited in many
disciplines such as telecommunications [1], geophysics [2] or
biomedicine [3], can be particularly demanding in the pres-
ence of strong measurement noise or when system parameter
changes are fast. Recently, a new approach to this problem
was described in [4]. The proposed local basis function (LBF)
approach builds upon the assumption that inside a local
analysis window, parameter changes can be approximated by
a linear combination of some known functions of time. Since
the method requires inversion of large-sized matrices and
computations are carried out in a sliding window mode, it can
be computationally quite demanding. In order to overcome
this problem, a novel, simplified algorithm was developed in
the follow-up paper [5]. The new, fast local basis function
(fLBF) method allows one to convert the original identification
problem into a task of smoothing the preestimated parameter
trajectories. We will show that the accuracy of fLBF estimates
can be further increased by applying the regularization tech-
nique. It is well-known that a carefully designed regularization
can lower the mean square parameter estimation error (MSE)
by improving the bias-variance trade-off [6]. In order to
properly tune the regularization constant we will minimize the
generalized cross-validation criterion [7].

The main interest of this paper lies in the identification
of parameters of the finite impulse response (FIR) model
described by the equation

y(t) = ϕϕϕT(t)θθθ(t) + e(t), (1)
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where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, ϕϕϕ(t) = [u(t), . . . , u(t − n + 1)T denotes the regression
vector made up of the previous values of the input signal u(t),
θθθ(t) = [θ1(t), . . . , θn(t)]T is the vector of unknown time-
varying parameters and e(t) stands for a white measurement
noise.

A new challenging application of nonstationary FIR system
identification techniques, proposed recently, is tracking and
equalization of underwater acoustic (UWA) channels [8], [9].
The time variability of channel impulse response coefficients
results from the Doppler effect due to the transmitter/receiver
and water motion [10]. It is worth noting that noncausal esti-
mators, like the one presented in this paper, can be used in this
application since some decision delay is acceptable. Another
problem connected with UWA communication, which requires
identification of a time-varying channel impulse response,
is self-interference cancellation in full-duplex communication
systems [11], [12].

II. PREESTIMATION

Preestimates are raw estimates of parameter trajectories.
They are approximately unbiased regardless of the type and
speed of parameter changes. However, the price for their
unbiasedness is a large variance. Hence, in order to obtain
reliable estimates, additional filtration is performed. As shown
in [5], preestimates can be obtained via “inverse filtration” of
short-memory exponentially weighted least squares (EWLS)
estimates,

θ̂θθ
EWLS

(t) = arg min
θθθ

t−1∑
i=0

λi[y(t− i)−ϕϕϕT(t− i)θθθ]2, (2)

namely

θθθ∗(t) = Ltθ̂θθ
EWLS

(t)− λLt−1θ̂θθ
EWLS

(t− 1), (3)

where λ ∈ (0, 1) denotes the so-called forgetting constant and
Lt =

∑t−1
i=0 λ

i = λLt−1 + 1 is the effective width of the
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exponential window. The EWLS estimates can be computed
recursively using the well-known algorithm [13]

ε(t) = y(t)−ϕϕϕT(t)θ̂θθ
EWLS

(t− 1)

k(t) =
P(t− 1)ϕϕϕ(t)

λ+ϕϕϕT(t)P(t− 1)ϕϕϕ(t)
(4)

θ̂θθ
EWLS

(t) = θ̂θθ
EWLS

(t− 1) + k(t)ε(t)

P(t) =
1

λ

[
P(t− 1)− P(t− 1)ϕϕϕ(t)ϕϕϕT(t)P(t− 1)

λ+ϕϕϕT(t)P(t− 1)ϕϕϕ(t)

]
,

with initial conditions θ̂θθ
EWLS

(0) = 0 and P(0) = cIn where
In denotes the n× n identity matrix and c is a large positive
constant.

For large values of t, when the effective window width
reaches its steady state value L∞ = 1/(1 − λ), the formula
(3) can be replaced with

θθθ∗(t) =
1

1− λ

[
θ̂θθ
EWLS

(t)− λθ̂θθ
EWLS

(t− 1)
]
. (5)

The rule of thumb for choosing the value of λ, which works
well in practice, is λ = max{0.9, 1−2/n}. When λ = 1−2/n
the equivalent width of the exponential window N∞ = (1 +
λ)/(1 − λ) ∼= 2/(1 − λ), different from its effective width
L∞ [13], is approximately equal to the number of estimated
coefficients n.

It can be shown that if the input signal is (locally) sta-
tionary, and the noise {e(t)} is white, the preestimates are
approximately unbiased

θθθ∗(t) ∼= θθθ(t) + zzz(t), (6)

where zzz(t) denotes zero-mean, white noise [5].

III. REGULARIZED FAST LOCAL BASIS FUNCTION
ESTIMATORS

A. Fast local basis function approach

In order to reduce the variance of the noise contami-
nating preestimates, a postfiltering technique should be in-
corporated. Assume that inside the local analysis window
Tk(t) = [t − k, t + k] of width K = 2k + 1, centered at
t, each parameter trajectory can be approximated by a linear
combination of known, linearly independent functions of time
f1(i), . . . , fm(i), i ∈ Ik = [−k, k], called basis functions,
namely

ΘΘΘj(t) = FFFαααj , j = 1, . . . , n, (7)

where ΘΘΘj(t) = [θj(t − k), . . . , θj(t + k)]T, αααj =
[α1,j , . . . , αm,j ]

T, FFF = [fff(−k), . . . , fff(k)]T, and fff(i) =
[f1(i), . . . , fm(i)]T. Without any loss of generality, we will
require the basis to be orthonormal, namely

FFFTFFF = IIIm. (8)

Note that orthogonalization of any set of basis functions can be
carried out sequentially using the well-known Gram-Schmidt
procedure.

Following [5], the fLBF estimates at the time instant t can
be obtained in the form

α̂αα
fLBF
j (t) = arg min

αααj

||ΘΘΘ∗j (t)−FFFαααj ||2

= (FFFTFFF)−1FFFTΘΘΘ∗j (t) = FFFTΘΘΘ∗j (t)

θ̂fLBF
j (t) = fffT0 α̂αα

fLBF
j (t),

(9)

where fff0 = fff(0) and ||xxx|| denotes the L2 norm. Once the
estimates are evaluated, the analysis window is moved to the
next position (t → t + 1) and the procedure is repeated. For
some choices of basis functions, computations can be carried
out in a recursive manner [4]. In this study, we will use
Legendre polynomials, obtained by orthonormalization of the
basis made up of powers of time

gl(i) =

(
i

k

)l−1
, i ∈ Ik, l = 1, . . . ,m.

It is worth mentioning that the fLBF procedure described
above allows one to obtain estimates that in many cases are
almost indistinguishable from those yielded by the, computa-
tionally much more demanding LBF procedure [5]. Addition-
ally, the fLBF scheme is more robust to numerical errors.

B. Regularization

Regularization was originally introduced as a way of im-
posing some smoothness constraints on a solution of the
estimation problem [14]. Later on it was reinvented as a
remedy for solving some ill-posed inverse problems [15], [16].
Recently, it gained a lot of attention in identification of linear
time-invariant (LTI) systems [6], [17] since it can improve the
MSE score by reducing the estimation variance at the cost of
slightly increasing the bias.

The regularized fLBF (fRLBF) estimates can be written
down in the following form

α̂αα
fRLBF
j (t) = arg min

αααj

[
||ΘΘΘ∗j (t)−FFFαααj ||2 + µj ||fffT0αααj ||2

]
= (FFFTFFF + µjfff0fff

T
0 )−1FFFTΘΘΘ∗j (t) (10)

θ̂fRLBF
j (t) = fffT0 α̂αα

fRLBF
j (t),

where µj > 0 denotes a regularization constant. Note that
the applied variant of regularization penalizes the norm of the
parameter vector θθθ(t) = fffT0αααj , the estimation of which is the
purpose of system identification, instead of the norm of the
vector of hyperparameters αααj . The latter one is penalized in
the classical regularization approach.

Using the Sherman-Morrison formula [18], one can compute
the fRLBF estimates in terms of the fLBF estimates

α̂αα
fRLBF
j (t) =

[
IIIm −

µjfff0fff
T
0

1 + µjfffT0 fff0

]
α̂αα
fLBF
j (t)

θ̂fRLBF
j (t) =

θ̂fLBF
j (t)

1 + µjfffT0 fff0
.

(11)
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IV. OPTIMIZATION VIA GENERALIZED CROSS
VALIDATION

One of the well-known methods for choosing the regular-
ization constant is cross-validation. Cross-validation can be
applied in many different forms, the predicted residual sum
of squares (PRESS) [19] being probably the most popular
one. However, although intuitive, PRESS can be computa-
tionally challenging. Moreover, it is well-known, that under
some operating conditions [7] better results can be obtained
via the so-called generalized cross-validation (GCV), which
also asymptotically minimizes the following quality measure
(see Theorem 1 in [20]) E[||FFFαααj − FFFα̂ααj(t)||2]. Since the
basis is orthonormal, this is equivalent to minimization of
E[||αααj − α̂ααj(t)||2]. We will show that in the case considered,
the GCV criterion can be optimized in a direct way, leading
to a closed-form solution.

The GCV quality measure is given by [7]

GCV(t, µj) =
||ΘΘΘ∗j (t)− Θ̂ΘΘ

fRLBF

j (t)||2

{tr[IIIK −AAA(µj)]}2

=
||[IIIK −AAA(µj)]ΘΘΘ

∗
j (t)||2

{tr[IIIK −AAA(µj)]}2
,

(12)

where Θ̂ΘΘ
fRLBF

j (t) = AAA(µj)ΘΘΘ
∗
j (t) is the predicted “output”

and

AAA(µj) = FFF(IIIm + µjfff0fff
T
0 )−1FFFT

= FFFFFFT − µj
1 + µjfffT0 fff0

FFFfff0fff
T
0 FFFT.

Consequently

tr[IIIK −AAA(µj)] = K −m+
µj

1 + µjfffT0 fff0
tr[BBB]

= K −m+
µjfff

T
0 fff0

1 + µjfffT0 fff0
,

(13)

where BBB = FFFfff0fff
T
0 FFFT. All transitions in the above formula

follow directly from the well-known trace identity tr[AAABBB] =
tr[BBBAAA], which holds provided that dimensions of the corre-
sponding matrices match.

Straightforward calculations lead to the following expres-
sion

GCV(t, xj) =
aj(t)x

2
j + bj(t)

(c+ dxj)2
, (14)

where

xj =
µj

1 + µjfffT0 fff0
∈
(

0,
1

fffT0 fff0

)
aj(t) = fffT0 fff0[ΘΘΘ∗j (t)]

TBBBΘΘΘ∗j (t)

= fffT0 fff0[α̂αα
fLBF
j (t)]Tfff0fff

T
0 α̂αα

fLBF
j (t) = fffT0 fff0[θ̂fLBF

j (t)]2

bj(t) = [ΘΘΘ∗j (t)]
T[IIIK −FFFFFFT][IIIK −FFFFFFT]TΘΘΘ∗j (t)

= [ΘΘΘ∗j (t)]
T[IIIK −FFFFFFT]ΘΘΘ∗j (t) (15)

= [ΘΘΘ∗j (t)]
TΘΘΘ∗j (t)− [α̂αα

fLBF
j (t)]Tα̂αα

fLBF
j (t)

c = K −m
d = tr[BBB] = fffT0 fff0.

Note that both aj(t) and bj(t) can be expressed in terms of the
fLBF estimates. The lack of the linear term in the numerator
of (14) is due to the fact that

[IIIK −FFFFFFT]FFFfff0fff
T
0 FFFT = FFFfff0fff

T
0 FFFT −FFFfff0fff

T
0 FFFT = 0.

The restricted domain of xj stems from the fact that µj > 0.
It is straightforward to check that when aj(t), bj(t), c, d > 0,
which is the case, the unrestricted (global) minimum of (14)
is attained for

xmin
j (t) =

bj(t)d

aj(t)c
. (16)

Furthermore, since xj = µj/(1 + µjfff
T
0 fff0) and

∂xj
∂µj

=
1

(1 + µjfffT0 fff0)2
> 0,

the global minimum of (12) is obtained for

µmin
j (t) =

xmin
j (t)

1− xmin
j (t)fffT0 fff0

=
bj(t)d

aj(t)c− bj(t)d2
. (17)

Finally, taking into account the positivity constraint imposed
on µj , the optimal-local regularization gain can be expressed
in the form

µopt
j (t) =

{
µmin
j (t) if xmin

j (t) < 1
fffT0 fff0

∞ if xmin
j (t) ≥ 1

fffT0 fff0
.

(18)

The practical way of implementing this rule is by the following
formula

θ̂fRLBF
j (t) =

{
θ̂fLBF
j (t)

1+µmin
j (t)fffT0 fff0

if µmin
j (t) ≥ 0

0 otherwise.
(19)

Remark 1: Note that the unbiased estimate of the variance
of noise contaminating the j-th parameter trajectory can be
expressed as

σ̂2
zj (t) =

1

K −m
||ΘΘΘ∗j (t)−FFFα̂αα

fLBF
j (t)||2 =

bj(t)

c
. (20)

Hence, combining (15), (17) and (20), one arrives at the
following equivalent expression for µmin

j (t)

µmin
j (t) =

σ̂2
zj (t)

[α̂αα
fLBF
j (t)]Tfff0fffT0 α̂αα

fLBF
j (t)− fffT0 fff0σ̂2

zj (t)

=
σ̂2
zj (t)

[θ̂fLBF
j (t)]2 − fffT0 fff0σ̂2

zj (t)
.

(21)

Since typically fffT0 fff0 � 1, for most of the time [θ̂fLBF
j (t)]2 >

fffT0 fff0σ̂
2
zj (t) and the value of µmin

j (t) is positive. According
to (19), when the parameter estimate is greater than some
noise-dependent threshold, its value is shrinked. However,
whenever its value falls below the threshold, it is disregarded
as unreliable and set to zero.
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Remark 2: The computational complexity of the EWLS
algorithm (4), used to obtain parameter preestimates, is of
order O(n2) per time update; it can be further reduced to as
little as 3n operations per time update if the iterative dichoto-
mous coordinate descent (DCD) technique, described in [21],
is applied. Computation of fLBF estimates is matrix-inversion-
free and requires O(nmK) operations per time update. It
can be reduced to O(mn) operations if the incorporated
basis functions are recursively computable (note that Legendre
polynomials have this property). From the quantities needed
for evaluation of the regularization constant µj(t), only aj(t)
and bj(t) are data-dependent and therefore need to be updated
at each time step. However, since the first term in bj(t) can be
also computed in a recursive fashion, the number of additional
operations per time update is of order O(mn).

V. COMPUTER SIMULATIONS

To show advantages of the regularization technique, a 45-tap
nonstationary FIR system was simulated using the morphing
technique. The time-varying impulse response θθθ(t) of this
system was generated as result of a smooth transition from θθθA,
through θθθB to θθθC, where θθθA, θθθB and θθθC denote the truncated
impulse responses of time-invariant infinite impulse response
(IIR) systems governed by

HA(q−1) =
0.36q−1

1 + 0.34q−1 + 0.7225q−2

HB(q−1) =
0.1606 + 0.1606q−1 + 0.3214q−2

1− 1.4038q−1 + 0.7225q−2

HC(q−1) =

0.015q−1 − 0.1q−2

1 + 2.178q−1 + 2.2625q−2 + 1.2347q−3 + 0.3540q−4
.

In the interval [1, T/2] the time-varying impulse response was
generated using the formula

θθθ(t) = [1− w(t)]θθθA + w(t)θθθB, t ∈ [1, T/2]

where {w(t)} denotes the Hann window

w(t) = 0.5

[
1− cos

(
2πt

T

)]
.

The analogous formula was applied to generate the time-
varying impulse response in the interval [T/2 + 1, T ]:

θθθ(t) = [1−w(t− T/2)]θθθB + w(t− T/2)θθθC,

t ∈ [T/2 + 1, T ].

Figure 2 shows snapshots of the true impulse responses of
the system at time instants 1, T/2 + 1 and T , respectively,
where T denotes the length of the simulation interval. The
corresponding fRLBF estimates are shown in the same figure.

Fig. 1. True (solid lines) and estimated (dotted lines) impulse responses of
the identified time-varying FIR system at t = 1 (A), t = T/2 + 1 (B) and
t = T (C); the fRLBF estimates were obtained for k = 200, m = 3 and
SNR=20 dB.

The simulated system was excited using an autoregressive
signal u(t) = 0.8u(t − 1) + v(t), where {v(t)} denotes
white noise with unit variance, independent of {e(t)}. For
the identification purpose, we used k = 200, n = 45 and
λ = 1−2/n ∼= 0.956. Computations were carried out for three
estimators with m equal 1, 3 and 5, respectively, two different
speeds of parameter changes, corresponding to T = 1000 (fast
changes) and T = 2000 (slow changes), and for four different
variances of measurement noise, namely 0.4, 0.04, 0.004 and
0.0004, corresponding to SNR equal to 10, 20, 30 and 40 dB,
respectively. To avoid transient effects, data generation was
started 1000 samples prior to t = 1 and was continued 1000
samples after t = T for a system with a constant impulse
response.

Estimation accuracy was evaluated using the FIT measure
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TABLE I
FIT (%) SCORES, AVERAGED OVER TIME AND 100 INDEPENDENT

REALIZATIONS OF THE MEASUREMENT NOISE, FOR FAST (UPPER TABLE)
AND SLOW (LOWER TABLE) PARAMETER CHANGES.

Fast parameter changes

m

SNR Method 1 3 5

10 dB
fRLBF 58.5 44.9 33.2
fLBF 50.6 30.7 14.5

20 dB
fRLBF 79.5 80.9 77.3
fLBF 77.9 76.9 71.8

30 dB
fRLBF 83.2 89.5 88.0
fLBF 83.4 89.7 88.0

40 dB
fRLBF 83.5 90.6 89.4
fLBF 84.2 92.3 91.4

Slow parameter changes

m

SNR Method 1 3 5

10 dB
fRLBF 62.3 45.9 34.0
fLBF 54.8 33.1 17.0

20 dB
fRLBF 86.5 81.8 77.9
fLBF 84.7 78.5 73.5

30 dB
fRLBF 93.1 93.0 91.8
fLBF 92.9 92.4 90.8

40 dB
fRLBF 94.1 95.2 94.6
fLBF 94.5 95.9 95.3

proposed in [6]

FIT(t) = 100

1−

[∑45
j=1 |θj(t)− θ̂j(t)|2∑45
j=1 |θj(t)− θj(t)|2

]1/2 , (22)

where θj(t) = 1
45

∑45
j=1 θj(t). The maximum value of this

measure, equal to 100, corresponds to the perfect match
between the true and estimated impulse responses. The final
scores, further referred to as FIT (%), were obtained by
combined time (over [1, T ]) and ensemble (over 100 indepen-
dent realizations of {e(t)}) averaging. Numerical results were
summarized in Table I. It can be noticed that regularization
improves the estimation results most significantly for the
SNR equal 10 or 20 dB. For high SNR values, the proposed
regularization method can worsen the results slightly, but the
fRLBF method still yields high-quality estimates of system
parameters.

VI. CONCLUSIONS

It was shown that the identification of a time-varying FIR
system can be effectively carried out by means of smoothing

the appropriately generated sequence of parameter preesti-
mates. For smoothing purposes, one can use regularized least
squares method, locally optimized using the GCV approach.
The resulting identification algorithm outperforms the cur-
rently available solutions in terms of estimation accuracy,
computational complexity, and numerical robustness.
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