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Abstract—Fixed sample size and sequential performance of the
asymptotically minimax robust hypothesis test is evaluated over a
signal processing example and the results are compared to other

well known robust hypothesis testing schemes and the nominal
test. As a fixed sample size test around fifty samples are sufficient
to observe the minimax properties of the asymptotically minimax
robust test. Comparisons indicate that Huber’s minimax robust
test and the nominal test degrade their performances drastically
when imposed to uncertainties due to modeling errors. Similarly,
Dabak and Johnson’s asymptotically robust test degrades its
performance, hence it is not minimax robust. This indicates
that choosing the right uncertainty model and the corresponding
minimax test is crucial in applications. For the sequential test a
new definition of minimax robustness is made. The simulations
indicate that the new definition is satisfied by the asymptotically
minimax robust test asymptotically.

Index Terms—Hypothesis testing, detection, robustness, least
favorable distributions, spectrum sensing

I. INTRODUCTION

The detection of the presence or absence of an event is

paramount to various applications such as cognitive radio,

radar, sonar or communications, and can be realized by a

binary hypothesis test [1]. The classical hypothesis testing is

not robust in the sense that small deviations from the nominal

model, due to for example non-Gaussian noise, outliers present

in the collected data or modeling errors made prior to detec-

tion, can lead to large performance degradation [2]. In order

to be able to deal with such cases usual approach is to extend

the nominal model to a much wider model, which accepts a

set of distributions under each hypothesis. A minimax robust

test is then designed over these sets to minimize the worst case

error probability. Hence, the designed test provides the best (in

terms of minimum error probability) guaranteeable detection

performance despite uncertainties imposed by the uncertainty

model [3].

One of the earliest works in robust detection was presented

by Huber in 1965, where he showed that the minimax robust

test for the ǫ-contamination neighborhood was the clipped

likelihood ratio test (CLRT) [4]. Moreover, he also showed

that the sequential version of the same test was asymptoti-

cally minimax robust for the false alarm and miss detection

probabilities. A more in dept analysis of sequential robustness

of Huber’s test can be found in [5]. Later Huber and Strassen

showed that the CLRT was the minimax robust test for larger

classes of distributions [6], [7].

Huber’s ǫ-contamination neighborhood is a proper model to

deal with outliers. However, in order to deal with modeling

errors, according to Dabak et al. [8], it is more appropriate

to consider distance based uncertainty classes since modeling

errors do not result in abrupt changes on the distribution

functions. While Dabak at el. considers the KL-divergence for

large sample sizes (asymptotically), Levy [9] and Gül, [10],

[11] consider the KL-divergence and the α-divergence for a

single sample over randomized decision rules. The resulting

test of Dabak is still a nominal likelihood ratio test but

with a modified threshold, whereas the minimax robust test

for the whole α-divergence neighborhood (including the KL-

divergence as a special case) is a censored likelihood ratio test.

Recently, asymptotically minimax hypothesis testing was de-

rived both in Neyman-Person as well as in Bayesian sense

[12]. Furthermore, it was theoretically shown that Dabak’s test

was not asymptotically minimax robust. However, the fixed

sample size as well as sequential versions of the asymptotically

minimax robust test have never been analyzed before.

In this paper fixed sample size and sequential performances of

the asymptotically minimax robust hypothesis test have been

evaluated considering a signal processing example from spec-

trum sensing. For comparison three other robust hypothesis

testing schemes are considered [4], [8], [10]. Although the the-

ory of asymptotically minimax robustness is well established,

it is not known in which extend the word asymptotical can be

used. Moreover, it is also not known whether asymptotically

minimax robust test can remain minimax for sequential setup.

In order to evaluate the latter, a new definition of sequential

minimax robustness is made. This definition makes sense

because for engineering applications, a guaranteed power of

detection performance is sought for a fixed expected number

of samples. It was shown that this new definition was satisfied

by the asymptotically minimax robust hypothesis test asymp-

totically for the considered signal processing example.

The rest of this paper is organized as follows. In Section II,

minimax robust hypothesis testing and its extension to fixed

sample size and sequential tests are introduced. Furthermore,

a new definition of sequential minimax robustness is made. In

Section III, four different robust hypothesis testing schemes

are presented. In Section IV, numerical results are provided

in order to evaluate the performance of the asymptotically

minimax robust hypothesis test in comparison to other robust

tests. Finally in Section V, the paper is concluded.
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II. MINIMAX ROBUST HYPOTHESIS TESTING

Let Y1, . . . , Yn be a sequence of independent and identically

distributed random variables with a common distribution G
defined on a measurable space (Ω,A ). Let furthermore F0 and

F1 be the nominal, and G0 and G1 be the actual probability

distributions having the density functions f0, f1, g0 and

g1 with respect to a measure µ, respectively. Consider the

following hypothesis testing problem

H0 : G = G0, G0 ∈ G0,

H1 : G = G1, G1 ∈ G1,

where the distribution G equals G0 or G1, which belongs to

disjoint uncertainty classes G0 and G1, if the hypothesis H0

or H1 is true. Most common way of defining the uncertainty

classes is either based on a distance or on a model. Here we

consider (in Section III A) the uncertainty classes based on

the ǫ−contamination model

Gj = {Gj|Gj = (1 − ǫj)Fj + ǫjHj , Hj ∈ Ξ, }, j ∈ {0, 1},

where 0 ≤ ǫj < 1 and Ξ is the set of all probability measures

on (Ω,A ), as well as (in Section III B-D) the uncertainty

classes

Gj = {Gj : D(Gj , Fj) ≤ ǫj}, j ∈ {0, 1}, (1)

which are induced by the KL-divergence

D(Gj , Fj) =

∫

Ω

log (gj/fj) gjdµ.

A. Fixed Sample Size Tests

Given the uncertainty classes, fixed sample size likelihood

ratio test (the decision rule) is defined as

δ =











0, ln < t

κ ln = t

1, ln > t

(2)

where

ln = log
n
∏

k=1

dG1(Yk)

dG0(Yk)
= log

n
∏

k=1

g1(Yk)

g0(Yk)
=

n
∑

k=1

log
g1(Yk)

g0(Yk)

(3)

is the log-likelihood ratio, t ∈ R is a threshold and κ ∈ {0, 1}
is a random variable. Let P0 = P (H0) and P1 = P (H1)
be the a priori probabilities of the hypotheses. Furthermore,

let PF (δ,G0) = G0[δ = 1] and PM (δ,G1) = G1[δ = 0]
define the false alarm and the miss detection probabilities,

respectively, and

PE(δ,G0, G1) = P0PF (δ,G0) + P1PM (δ,G1)

define the overall error probability. Then, the objective of

minimax decision making is to find a solution to

sup
(G0,G1)∈G0×G1

min
δ∈∆

PE(δ,G0, G1)

= min
δ∈∆

sup
(G0,G1)∈G0×G1

PE(δ,G0, G1) (4)

which implies a saddle value [13],

PE(δ̂, G0, G1) ≤ PE(δ̂, Ĝ0, Ĝ1) ≤ PE(δ, Ĝ0, Ĝ1), (5)

where δ̂ is the robust decision rule, and Ĝ0 ∈ G0 and Ĝ1 ∈ G1

are the least favorable distributions (LFDs). Inequalities in 5

indicate that the minimax decision making guarantees a certain

detection performance irrespective of the uncertainty imposed

by G0 and G1 (left inequality) and this guaranteed performance

is the best achievable among all other decision rules (right

inequality).

B. Sequential Tests

Sequential probability ratio test (SPRT) was proposed by

Wald as an alternative to classical hypothesis testing [14]. Let

l0 = 0 and at each iteration k > 0 let

lk = lk−1 + log
g1(Yk)

g0(Yk)
. (6)

Then,

δ =











0, ln < tl

continue monitoring, tl < ln < tu

1, ln ≥ tu

(7)

defines the stopping rule for the stochastic process (lk)k>0

and

τ = min{n ≥ 1 : ln ≥ tu or ln ≤ tl}
defines the stopping time, where tl ∈ R

− and tu ∈ R
+ are the

lower and upper thresholds of the SPRT. According to Huber

an SPRT is minimax robust if

PF (δ(tl, tu), Ĝ0) ≥ PF (δ(tl, tu), G0),

PM (δ(tl, tu), Ĝ1) ≥ PM (δ(tl, tu), G1), (8)

and

EĜ0
[τ(tl, tu)] ≥ EG0

[τ(tl, tu)],

EĜ1
[τ(tl, tu)] ≥ EG1

[τ(tl, tu)], (9)

for all (tl, tu) and for all (G0, G1) ∈ G0 × G1, where EGj

denotes the expected value with respect to the distribution

Gj . Notice that for minimax robustness Wald’s approximations

cannot be considered since the computations must be exact,

which can be found e.g. in [10].

C. A New Definition of Sequentially Minimax Robustness

It is known that existing minimax robust hypothesis tests

do not satisfy both (8) and (9) [3]. Moreover, it is not clear

why both of these conditions must hold, because the related

objective functions are not compatible, i.e. a test satisfying one

does not imply satisfying the other. Here, we make another

definition of sequential minimax robustness which is more

practically oriented.

Definition II.1. Let tu = −ctl, c > 0, and

hG0
: EG0

[τ(tl, tu)]
n7→ PF (δ(tl, tu), G0),

hG1
: EG1

[τ(tl, tu)]
n7→ PM (δ(tl, tu), G1).
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Then, a sequential probability ratio test is minimax robust if

hĜ0
(n) ≥ hG0

(n), ∀n, ∀G0 ∈ G0

hĜ1
(n) ≥ hG1

(n), ∀n, ∀G1 ∈ G1 (10)

where n is a common notation for EG0
and EG1

. The test is

called asymptotically minimax robust if (10) holds as n → ∞.

Although the set of tl and the corresponding tu can be

defined differently, the main idea remains the same; a sequen-

tial test satisfying Definition II.1 guarantees a certain level of

detection performance, despite the uncertainty imposed by Gj ,

for any given set of expected number of samples n.

III. ROBUST HYPOTHESIS TESTING SCHEMES

In this section four different robust hypothesis testing

schemes are introduced. The following test is based on the

ǫ−contamination model whereas the latter three are derived

elsewhere by considering the KL-divergence neighborhood.

A. Huber’s Clipped Likelihood Ratio Test

The ǫ−contamination classes of distributions are first con-

sidered by Huber in order to deal with outliers often present in

the collected data [4]. The resulting minimax robust test, i.e.

a solution to (4) is known to be the clipped likelihood ratio

test with the robust likelihood ratio function

l̂(y) =
ĝ1(y)

ĝ0(y)
=











btl, l(y) ≤ tl

bl(y), tl < l(y) < tu

btu, l(y) ≥ tu

(11)

where l = f1/f0 is the nominal likelihood ratio function

(LRF), y is the single observation, b = (1 − ǫ1)/(1 − ǫ0)
and 0 < tl < tu < ∞. Huber’s clipped likelihood ratio test is

denoted as the (h)-test in the rest of the paper.

B. Dabak’s Asymptotically Robust Hypothesis Test

It was first observed by Dabak and Johnson that the

ǫ−contamination model is not suitable for modeling errors and

a smooth distance based uncertainty classes would be more

appropriate. Considering the KL-divergence and large sample

sizes, an asymptotically robust hypothesis testing scheme was

derived. Surprisingly the test for n samples [2], [10]

1

n

n
∑

k=1

log l(yk)
H1

≷
H0

t
′

=
log

(

s(1−v)
s(u) t1/n

)

1− (u + v)
(12)

is still a likelihood ratio test, but with a modified threshold t
′

,

where

s(u) =

∫

R

f1(y)
uf0(y)

1−udy (13)

and u and v are the variables to be determined based on the

robustness parameters ǫ0 and ǫ1, [8], and t is the threshold of

the nominal test e.g. t = 1. Dabak’s asymptotically robust test

is denoted as the (a)∗-test in the rest of the paper.

TABLE I
ROBUST TESTS USED IN SIMULATIONS FOR COMPARISON

Acronym Description

(a)-test Asymptotically minimax robust test [12]

(a∗)-test Dabak’s asymptotically robust test [8]

(h)-test Huber’s clipped likelihood ratio test [4]

(m)-test Minimax robust test for modeling errors [10]

(n)-test Nominal test

C. Minimax Robust Hypothesis Test for Modeling Errors

The KL-divergence does not allow a minimax robust test

to exist over deterministic decision rules [15]. This is actually

the main motivation for Dabak et al. to go for asymptotics.

However, a minimax robust test for a single sample (possibly

multivariate) exists for the KL-divergence neighborhood if

randomized decision rules are considered [9], [10]. For the

most general case, the robust decision rule is given by [10]

δ̂(y) =











0, l(y) < tl
log(l(y)/tl)
log(lu/ll)

tl ≤ l(y) ≤ tu

1, l(y) > tu

(14)

with the robust likelihood ratio function

l̂(y) = t
δ̂(y)−1
l t−δ̂(y)

u l(y). (15)

The parameters tl and tu are again found based on ǫ0 and

ǫ1. Notice that this test may not be extended to fixed sample

size or sequential tests without loosing the minimax robustness

property. This is due to the loss of randomization information

provided by δ̂. The minimax robust test for modeling errors

is denoted as the (m)-test in the rest of the paper.

D. Asymptotically Minimax Robust Hypothesis Test

It was shown theoretically in [12] that Dabak’s test is

not asymptotically minimax robust and the least favorable

distributions of the asymptotically minimax robust test can

be obtained by solving

min
u∈(0,1)

max
(G0,G1)∈G0×G1

∫

Ω

g1
ug0

1−udµ.

It was further derived that the LFDs for the KL-divergence

neighborhood can be given as

ĝ0 = exp

[−λ0 − µ0

λ0

]

exp

[

(1− u)l̂u

λ0

]

f0,

ĝ1 = exp

[−λ1 − µ1

λ1

]

exp

[

ul̂u−1

λ1

]

f1,

and the robust likelihood ratio function l̂ is obtained by solving

l̂ = exp

[

ul̂u−1 − µ1

λ1
+

(u − 1)l̂u + µ0

λ0

]

l, (16)

where λ0, λ1, µ0, µ1 are the Lagrangian parameters, which

are also determined by solving a set of equations. For details

see [12]. In the rest of the paper the asymptotically minimax

robust test will be denoted as the (a)-test and the nominal

likelihood ratio test will be denoted as the (n)-test.
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IV. NUMERICAL RESULTS

In this section, accuracy and robustness of the (a)-test will

be evaluated in comparison to the other robust tests which

are listed in Table I. For solving all systems of equations

damped Newton’s method [16] is used. The notation |ba stands

for testing with the (a)-test while the data samples are obtained

from the LFDs of the (b)-test.

Let us consider spectrum sensing used in cognitive radio to

allow unlicensed or secondary users to use spectrum holes that

are not occupied by licensed or primary users [17]. Presence

or absence of a signal is formulated by a binary hypothesis

test

H0 : y[n] = w[n], n ∈ {1, . . . , N}
H1 : y[n] = θx[n] + w[n], n ∈ {1, . . . , N}

where w[n] are noise samples, x[n] are unattenuated samples

of the primary signal, θ > 0 is the unknown channel gain

and y[n] are the received signal samples. Both the primary

signal samples x[n] and the noise samples w[n], which are

independent of x[n], are i.i.d. standard Gaussian. Under each

hypothesis, it is assumed that the distribution of Y may deviate

from its nominal distribution by a factor of ǫ0 = ǫ1 = 0.02
with respect to the KL-divergence. Furthermore, the channel

gain is assumed to be perfectly estimated as θ =
√
3. The

LFDs corresponding to the robust tests listed in Table I are

found by solving the related equations provided in [4], [8],

[10], [12]. The LFDs of the (h)-test are determined from

the ǫ-contamination neighborhood such that D(Ĝ0, F0) = ǫ0
and D(Ĝ1, F1) = ǫ1. In Figure 1 the ratio of the robust

LRF to the nominal LRF for four different robust hypothesis

testing schemes is depicted. Both similarities and differences

can be observed, and in particular l̂/l is not integrable for

the (m)-test. For the aforementioned scenario, the goal is to

evaluate the performance of the (a)-test, (a∗)-test, (h)-test and

the (m)-test under fixed sample size and sequential concepts

for various statistics of the data samples.

A. Fixed Sample Size Test

For a fixed number of samples n ∈ {1, . . . , 100}, the

performance of the robust tests are evaluated with Monte-

Carlo simulations for 106 samples. The threshold of the fixed

sample size test is set to t = 0. False alarm and miss

detection probabilities of the (a)-test in comparison to that

of the (a∗)-test are illustrated in Figures 2 and 3, when the

tested data samples are obtained from the LFDs of the robust

tests listed in Table I. In Figures 4 and 5 similar experiments

are repeated for the (h)-test in comparison to the (n)-test. The

following conclusions can be made from these experiments.

1) The (a)-test does not degrade its performance as the

theory suggests.

2) The (a∗)-test degrades its performance for the data sam-

ples obtained from the LFDs of the (a)- and (h)-tests,

see Figure 2.

HaL- test

Ha*L-test

HmL- test

HhL- test

-6 -4 -2 2 4
y

0.2

0.4

0.6

0.8

1.0

1.2

l
`

�l

Fig. 1. The ratio of the robust likelihood ratio function to the nominal
likelihood ratio function for various tests.

3) The data samples obtained from the LFDs do not always

yield worse results than that of the nominal test, cf. PM
n
a

with PM
m
a in Figures 3 and 5.

4) The performance of the (h)-test degrades significantly if

indeed the uncertainties can be well modeled by the KL-

divergence neighborhood, see Figure 4.

B. Sequential Test

The performance of the sequential version of the (a)-test can

similarly be evaluated. Of particular interest is whether the new

definition of the minimax robust sequential test in Section II-C

holds. The value of c = 1 is chosen. The SPRT is run for every

tu ∈ {0.01, 0.02, . . . , 4} assuming the same experimental

setup used for fixed sample size tests. Figure 6 illustrates the

false alarm and miss detection probabilities resulting from the

sequential (a)-test as a function of n. According to results,

the sequential (a)-test does not degrade its performance as n
gets larger for any input data that is considered. It was also

verified that the (a)-test is not asymptotically minimax robust

for Huber’s definitions given by (8) and (9).

V. CONCLUSION

Minimax robustness of the asymptotically minimax robust

hypothesis test was evaluated for fixed sample size and se-

quential tests considering a signal processing example. Ac-

cording to numerical results, fifty samples were sufficient to

observe the minimax robustness property of the asymptotically

minimax robust test, which implies the best guaranteeable

detection performance regardless of the uncertainties. Unlike

the (a)-test, Huber’s minimax robust test as well as the

nominal test experienced significant performance degradation.

It was also verified experimentally that Dabak’s asymptoti-

cally designed test also experienced performance degradation,

hence it was not minimax robust. Since Huber’s definition of

minimax robustness is more mathematically oriented, a new

definition of minimax robusness for sequential tests was made.

It was shown that the (a)-test satisfies this new definition

asymptotically. More general theoretical results are currently

not available but can be a future work.
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Fig. 2. False alarm probability as a function of the total number of samples
for the asymptotically minimax robust test ((a)-test) in comparison to Dabak’s
test ((a∗)-test).
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Fig. 3. Miss detection probability as a function of the total number of samples
for the asymptotically minimax robust test ((a)-test) in comparison to Dabak’s
test ((a∗)-test).
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