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Abstract—We consider a linear minimum mean squared error
(LMMSE) estimation framework with model mismatch where the
assumed model order is smaller than that of the underlying linear
system which generates the data used in the estimation process.
By modelling the regressors of the underlying system as random
variables, we analyze the average behaviour of the mean squared
error (MSE). Our results quantify how the MSE depends on the
interplay between the number of samples and the number of
parameters in the underlying system and in the assumed model.
In particular, if the number of samples is not sufficiently large,
neither increasing the number of samples nor the assumed model
complexity is sufficient to guarantee a performance improvement.

Index Terms—Model uncertainty, missing features, robustness.

I. INTRODUCTION

Described in several text books and used in a wide range of
applications, the linear minimum mean square error (LMMSE)
estimator [1], [2] is one of the fundamental estimation methods
of signal processing. Being a Bayesian estimation approach,
the parameters of interest are modeled as random variables
with some joint probability density function (pdf), based
on some background knowledge. The LMMSE estimator is
the optimal estimator out of all the possible linear (more
precisely affine) estimators in terms of minimizing the mean
squared error (MSE), and it only depends on the mean and
covariances. If the assumed covariance matrices are inaccurate,
which is generally the case for real-world problems, then
the performance of the computed LMMSE estimator can be
suboptimal. In this article, we focus on characterizing such
performance degradation.

We consider the underlying system y = Ax + v, where y
is the observed output vector, A is the matrix of regressors,
v is some unknown noise vector and the vector x denotes the
unknown model parameters which we want to estimate. We
model x and v as random vectors, and propose an LMMSE
estimation framework which allows us to systematically study
the MSE when only a subset AS of the columns in A
are available for estimation. In particular, the mismatched
estimator is based on the assumed system y = ASxS + z,
where the assumed number of unknowns (length of xS) is
smaller than the number of unknowns in the underlying system
(length of x). We model the regressors in A as random
variables and derive an analytical expression for the expected
MSE of the low order LMMSE estimator, over the distribution
of A.
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A range of methods have been proposed for robustness
against uncertainties or model flaws in the LMMSE estimation.
Methods to deal with covariance matrix uncertainties have
been presented in [3]–[5], and in [6] the effect of having
missing features, i.e., unknowns, in the underlying model
was investigated. Robustness have been also investigated un-
der a classical estimation framework where the unknown is
modelled as deterministic, such as for uncertainties in the
regressors [7]. Further model mismatch trade-offs in classical
estimation settings have been studied, focusing on the rela-
tionship between model size and number of observations [8],
[9]. In our setup, only parts of the regressors are available for
estimation, and the respective models on xS and w do not
match the underlying models x and v, constituting a hybrid
setting with uncertain regressors and a model mismatch in the
unknowns and the noise.

We study the average MSE performance under a model
mismatch and with an isotropic Gaussian model on the re-
gressors. Our contributions can be summarized as follows:
i) Our analytical results show that the MSE depends on the
respective signal powers of x, xS and v, but not on the general
covariance structure of the unknowns x. ii) These results
quantify how the MSE heavily depends on the relation between
the number of samples, the underlying and the assumed model
orders: If the number of samples is not sufficiently large, then
the performance is not guaranteed to improve by increasing
the number of samples or the assumed model complexity. In
particular, lowering the assumed model order can improve the
performance even when the number of samples is larger than
the number of unknowns in the underlying system.

The rest of the paper is organized as follows: In Section II,
we provide the problem formulation. In Section III, we present
and discuss our main analytical results, which are numerically
verified in Section IV. Conclusions are summarized in Sec-
tion V.

Notation: We denote the Moore-Penrose pseudoinverse and
the transpose of a matrix A as A+ and AT, respectively. The
p×p identity matrix is denoted as Ip. The Euclidean norm and
trace operator are denoted by ‖ · ‖ and tr(·), respectively. We
use the notation E

x
or Ex to emphasize that the expectation

is taken with respect to the random variable x. For two
column vectors z, w, we denote their covariance matrix by
Kzw = Ez,w[(z−Ez[z])(w−Ew[w])T]. For auto-covariance
matrices, we write the subscript only once: Kz = Kzz .
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II. PROBLEM STATEMENT

A. The Underlying System

The observations y come from the following linear system

y = Ax + v, (1)

where x = [x1, . . . , xn]T ∈Rp×1 denotes the unknowns,
y = [y1, . . . , yn]T ∈Rn×1 denotes the vector of observations,
A = [a1 | · · · |an]T ∈Rn×p denotes the known matrix of
regressors, and v = [v1, . . . , vn]∈Rn×1 denotes the unknown
noise. Here, x and v are modeled as zero-mean uncorrelated
random vectors. Note that aT

i denotes the ith row of A, i.e.,
the regressors corresponding to the observation yi = aT

i x+vi.
Consider the class of linear estimators, i.e., the estimators

such that the estimate x̂ is a linear function of the vector of
observations y, with x̂ = Wy where W ∈Rp×n. The mean
squared error (MSE) associated with W is given by

J(W ) = E
x,y

[
‖x− x̂‖2

]
= E

x,y

[
‖x−Wy‖2

]
. (2)

Under the linear model in (1), J(W ) is found as

J(W ) = E
x,y

[
‖x−W (Ax + v)‖2

]
(3)

= E
x,v

[
‖(Ip −WA)x−Wv‖2

]
(4)

= tr((Ip−WA)Kx(Ip−WA)T+WKvW
T). (5)

The linear minimum MSE (LMMSE) estimator, i.e., the
matrix W that minimizes the MSE J(W ) over all W ∈Rp×n,
is given by [1]

WO = KxyK
+
y = KxA

T(AKxA
T + Kv)+, (6)

where we have used the fact that under (1), we have Kxy =
KxA

T and Ky = AKxA
T + Kv . In (6) we have used

the Moore-Penrose pseudoinverse, rather than the ordinary in-
verse, which, as discussed in [1, Theorem 3.2.3] will minimize
the MSE regardless of whether Ky is singular or not.

B. Model Mismatch and Assumed Model

In this paper, our focus is on estimation under a model
mismatch. In particular, we consider the case that the LMMSE
estimator relies on an incorrect signal model such that i) only
a subset of the unknowns xi are assumed to be present in
the system equation; ii) the assumed covariances are possibly
inconsistent with the underlying system in (1). Let this subset
of x be denoted by xS ∈RpS×1 and its complement (i.e., the
elements of x that are not in xS) by xC ∈RpC×1, where
p = pS + pC . Let AS ∈Rn×pS and AC ∈Rn×pC denote the
submatrices of A consisting of the columns corresponding to
the indices that are in xS and in xC , respectively.

The estimator uses the following partial model
y = ASxS + z, (7)

where xS and the noise z are assumed to be uncorrelated and
zero-mean, and AS is known. Here, the respective assumed
covariance matrices for xS and the noise z are given by
K̂xS

and K̂z . We have used the notation K̂ to emphasize
that these covariance matrices are not necessarily the same
as the ones that can be derived from (1). Hence, there is a

model mismatch between (7) and (1). According to (7), other
covariance matrices of interest are given by
K̂xSy =E

xS ,y

[
xSy

T
]
=E
xS ,z

[
xS(ASxS+z)T

]
=K̂xS

AT
S , (8)

K̂y =E
xS ,z

[
(ASxS+z)(ASxS+z)T

]
=ASK̂xS

AT
S+K̂z. (9)

Let x̂S = WSy be an estimate of xS , where WS ∈RpS×n.
Then the corresponding MSE for xS is given by
JS(WS) = E

xS ,y

[
‖xS−x̂S‖2

]
= E

xS ,y

[
‖xS−WSy‖2

]
. (10)

An explicit expression for JS(WS) is provided in (17). The
corresponding LMMSE estimator, assuming (7), is given by

x̂S=WSy=K̂xSyK̂
+
y y=K̂xS

AT
S (ASK̂xS

AT
S +K̂z)+y, (11)

We note that the estimator in (11) would be the true
LMMSE estimator if the observations y were in fact generated
by the model in (7). However, this is not the case. Here, y
actually comes from the underlying system in (1), hence the
true LMMSE estimate of xS , minimizing the MSE in (10), is

x̂S = KxS
AT

S (AKxA
T + Kv)+y. (12)

To summarize our setting, y is generated by the system in (1),
while the estimation is performed under the assumption that
y is generated by (7). Hence, the LMMSE estimator in (11) is
used instead of the correct estimator in (12). In other words,
we consider LMMSE estimation under a model mismatch.

In order to take into account the part of x that is not
estimated in this partial setting, i.e., xC , we also define the
MSE associated with the whole vector x under WS as

J(WS) = JS(WS) + tr(KxC
). (13)

Note that the subscript S in JS(·) emphasizes that the error
is over xS whereas J(·) refers to the error in the whole
vector x. Here, J(WS) corresponds to the error associated
with estimating xS with WS while setting the estimate of xC

to E[xC ] = 0.

C. Expected MSE over Regressors
We are interested in the average behaviour of the MSE of

the partial LMMSE estimator in (11) over regressor matrices
A. We model ai’s as independent and identically distributed
(i.i.d.) Gaussian random vectors, i.e., ai∼N (0,Ka), ∀ i with
Ka = Ip. The expected MSE over the distribution of A’s is
given by

εS(pS , n) = E
A

[JS(WS)] = E
A

î
JS(K̂xSyK̂

+
y )
ó
. (14)

Note that this is the expected MSE associated with xS . Here
WS is a function of A (more precisely a function of AS ,
a submatrix of A), and y varies with A. We are interested
in how the MSE varies for different choices of pS , i.e., the
number of estimated parameters, and n, i.e., the number of
samples in y. Hence, εS(pS , n) is defined as a function of
these variables.

Here, we analyze the MSE from the perspective of repeated
experiments using different matrices A, hence we here model
A as a random matrix. Nevertheless, note that while doing the
LMMSE estimation, A and AS are known in (6) and (11),
respectively.
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We similarly define the expected MSE associated with the
whole vector x as

ε(pS , n) = E
A

[J(WS)] = εS(pS , n) + tr(KxC
), (15)

which in addition to (14) takes into account the power of the
signal xC that is disregarded by the assumed model (7).

As a part of our analysis of ε(pS , n), we also compare it to
the expected MSE associated with the full LMMSE estimator

ε̄ = E
A

[J(WO)] = E
A

[J(KxyK
+
y )]. (16)

where WO is the estimator in (6).

III. EXPECTED MSE UNDER A MODEL MISMATCH

We now provide an explicit expression JS(WS) of (10).
Plugging in y from the underlying model in (1),
JS(WS) = E

x,v

[
‖xS −WS(ASxS + ACxC + v)‖2

]
(17)

= E
x,v

[
‖(IpS

−WSAS)xS−WSACxC −WSv‖2
]

(18)

= tr
(
(IpS
−WSAS)KxS

(IpS
−WSAS)T

+ WSACKxC
AT

CW
T
S + WSKvW

T
S

− 2WSACKxCxS
(IpS

−WSAS)T
)
.

(19)

The following result describes the generalization error as-
sociated with the partial LMMSE estimator in (11):

Theorem 1. With Ka = Ip, K̂xS
= IpS

and K̂z = 0,
i.e., the noise z is assumed to be zero, the partial LMMSE
estimator in (11) has the expected MSE

εS(pS , n) = tr(KxS
)

Å
1− min{pS , n}

pS

ã
+γ

Å
tr(KxC

) +
1

n
tr(Kv)

ã
,

(20)

with γ defined as

γ =


pS

n−pS−1 for pS < n− 1, (21a)
n

pS−n−1 for pS > n+ 1, (21b)
+∞ otherwise, (21c)

where p = pS + pC .
Proof: See Section VI-A.

Theorem 1 quantifies the dependence of the expected MSE
εS on the individual powers of xS , xC and the noise v, i.e.,
tr(KxS

), tr(KxC
) and tr(Kv). It also reveals that the error

does not depend on the covariance between xS and xC , or on
the general structure of Kv .

Effect of γ: The factor γ, hence εS , can take extremely
large values if the number of samples n is too close to the
number of estimated parameters pS . We observe that if both
xC and v are identically zero, then γ does not affect the MSE,
however this is generally not the case.

We continue the discussion of the behaviour of εS by
considering the following scenarios of n versus pS : i) n > pS ,
and ii) n < pS .

i) n > pS : Here, the MSE component from tr(KxS
) is

constantly zero, and γ in (21a) decreases monotonically with
an increasing n. Hence, if the noise level per sample does not
increase with the number of samples, i.e., if tr(Kv)/n doesn’t

increase with n, then the MSE monotonically decreases with
increasing n. Regarding the MSE’s dependency on pS , we
will show in Corollary 2 that if n is not large enough, then
the expected MSE is not guaranteed to improve with pS , under
some additional constraints.

ii) n < pS : The result in Theorem 1 shows that the
performance is not guaranteed to improve by having more
samples. In (21b), we see that for n < pS , γ increases with
n, hence the expected MSE can also increase with n. In
particular, as we will illustrate with numerical examples in
Section IV, the power in xS must be significantly larger than
the combined powers of xC and v, in order for the MSE
to decrease as n increases. For such small n, it is also not
immediately apparent which choice of pS gives the lowest
MSE. This insight is illustrated in the numerical examples in
Section IV.

The following corollary is a special case of Theorem 1
where the powers in xS and xC are directly proportional to
pS and pC and the noise level per sample is constant:

Corollary 1. Consider the setting of Theorem 1, with
tr(KxS

) = σ2
x pS > 0, tr(KxC

) = σ2
x pC ≥ 0 and

tr(Kv) = nσ2
v > 0, then the partial LMMSE estimator in

(11) has the following expected MSE:

εS(pS , n) = σ2
x(pS −min{pS , n}) + γ(σ2

x pC + σ2
v). (22)

Proof: This result is readily obtained by plugging in the
respective assumptions on Kx,KxS

,KxC
and Kv into (20).

Under the given additional assumptions, Corollary 1 gives
a clear characterization of the dependence of the MSE on the
respective dimensions of xS and xC , the number of samples
n, and the power levels σ2

x and σ2
v .

While our Bayesian problem formulation is different than
the classical estimation setting of [9], the result in this
corollary describes the same phenomenon as studied in [9,
Theorem 2.1]. In [9], according to least-squares estimation
setting [2, Ch.8], the performance is measured by the residuals
yi − aT

i x̂, i.e., the error made when predicting y with x̂. On
the other hand, in this paper we focus on the error associated
with the estimate x̂. Nevertheless, the expected error for the
estimate of a new yj satisfies Eyj ,x,x̂,aj ,v[(yj − aT

j x̂)2] =
Ex,x̂[‖x−x̂‖2]+σ2

v , with aj ∼ N (0, Ip). Moreover, the least-
squares (LS) estimator in [9] matches our estimator under the
assumptions of Theorem 1, i.e., x̂ = A+

Sy.

Corollary 2. Consider the setting of Corollary 1. Let n > p+
1. Then the expected MSE ε(pS , n) decreases monotonically
with pS if

n > p+ σ2
v/σ

2
x + 1. (23)

Furthermore, ε(pS , n) increases monotonically with pS if

n < p+ σ2
v/σ

2
x + 1. (24)

Proof: This result can be found by treating pS as a con-
tinuous variable and taking the derivative of ε(pS , n) =
εS(pS , n) + tr(KxC

) w.r.t. pS , and solving the inequalities
∂ε/∂pS < 0 and ∂ε/∂pS > 0, for n.
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Fig. 1: Empirical and analytical MSE versus the number of
samples, for the partial LMMSE estimator in the high SNR
case (S1).
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Fig. 2: The MSE in the low SNR case (S2).

Corollary 2 shows that n needs to be sufficiently large to
guarantee a performance gain with an increase in the assumed
model’s complexity pS . It also shows that for p + 1 < n <
p+ σ2

v/σ
2
x + 1, the MSE increases with pS . We note that the

bound is larger for worse signal-to-noise (SNR) ratios σ2
x/σ

2
v ,

increasing as the SNR decreases.

IV. NUMERICAL RESULTS

A. Experimental Setup
The numerical results are obtained by averaging over M =

100 simulations. In each simulation (j), j = 1, . . . ,M , we
draw one random vector x(j) from a Gaussian distribution
N (0,Kx), one random vector v(j) from N (0,Kv) and one
matrix A(j) where each row is drawn from N (0, Ip). The
matrix A

(j)
S is extracted as the first pS columns of A(j). The

partial estimate x̂
(j)
S is then created using W

(j)
S from (11).

The MSE J (j)(W
(j)
S ) is then computed as

J (j)(W
(j)
S ) = ‖x(j)

S − x̂
(j)
S ‖2 + tr(KxC

), (25)

and averaged over the M simulations to create the empirical
average MSE, as an estimate of ε:

ε̂(pS , n) ,
1

M

M∑
i=1

J (j)(W
(j)
S ). (26)

We set p = 30 and vary pS and n to illustrate how ε̂
changes. We have Kv = σ2

vIn and K̂z = σ̂2
zIn. We consider

1 5 10 15 20 25 30 35 40 45 50
n

10−1

100

101
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M
SE

ε̂(5,n)
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ε̂(15,n)

ε(15,n)

ε̂(25,n)

ε(25,n)

ε̂(30,n)

ε(30,n)

ˆ̄ε

Fig. 3: The MSE in setting (S3). The SNR is high, but the
covariance matrix for x is randomized, rather than being
identity.
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Fig. 4: The empirical MSE in setting (S4). Here the partial
LMMSE estimator knows the noise level, i.e., σ̂z = σv .

the following experiment scenarios (S1) – (S4) in terms of
assumptions on Kx, K̂xS

, σv and σ̂z: (S1) Kx = Ip,
K̂xS

= IpS
, σv = 0.5, σ̂z = 0; (S2) Kx = Ip, K̂xS

= IpS
,

σv =
√
p, σ̂z = 0; (S3) Kx = p

tr(CT
xCx)

CT
xCx, with the

entries of Cx ∈Rp×p sampled once from N (0, 1) and fixed
throughout the M simulations, K̂xS

= IpS
, σv = 0.5, σ̂z = 0;

(S4) Kx = Ip, K̂xS
= IpS

, σv = σ̂z = 0.5. Note that in the
settings (S1), (S3) and (S4), the SNR 10 log10(tr(Kx)/σ2

v) is
around 21 dB, and in setting (S2), the SNR is at 0 dB.
B. The MSE, Model Order and the Number of Samples

In Figures 1 – 3 we plot the empirical average MSE ε̂
from (26) together with the analytical expected MSE ε =
εS+tr(KxC

) with εS from (20) versus the number of samples
n, for the experiments (S1) – (S3). The empirical values are
marked with lines, and the analytical with markers. We also
plot the empirically averaged MSE ˆ̄ε of the true LMMSE
estimator in (6) as a line with sparsely placed markers.

Overview: In the plots, we observe a perfect match between
the empirical and the analytical curves, confirming our analyt-
ical results. There are clear peaks in MSE when the number
of samples n is close to the number of parameters pS in the
assumed model, as expected from the behaviour of γ in (20). It
is clear that in this estimation setting, one should avoid having
n close to pS , and that changing the number of samples or
the assumed model order can significantly improve the MSE.

2048



Effect of n and ps: Consistently over all figures and all
pS , the MSE decreases monotonically as n grows, for n >
pS . However, to have performance close to that of the true
LMMSE estimator, pS must be equal to p = 30. For other
pS , there is a gap in the MSE between the partial and the true
estimator which does not vanish as n grows. In (S1), where
the model on xS is correct and the SNR is high, the MSE with
pS = p is close to that of the true estimator’s for all n (except
for when n is close to pS), despite the fact that the assumed
model ignores the noise. Furthermore, even in (S2) and (S3),
where the SNR is either low (and noise is still ignored in the
assumed estimator), or the assumed model on xS is incorrect,
it is still possible to get error values comparable to that of the
true estimator with pS = p for large n.

Effect of SNR: Figure 2 illustrates the result of Corollary 2,
i.e., if n is large enough n > p + σ2

v/σ
2
x + 1, then the

MSE decreases monotonically with pS . This bound on n
provides a clear marking of an operating range on which
performance gain is guaranteed when increasing pS . In this
low SNR setting, there is a large range of n on which a
smaller pS gives lower MSE. In other words, although we have
the correct model on xS , choosing a smaller model size pS
can improve the performance even after interpolation threshold
(i.e., n = p), if the estimator ignores the noise (σ̂z = 0) and
there is not enough data.

Matched noise level: In Figure 4, we plot the results of
experiment (S4), where the assumed noise level is the same as
the level of the true noise: σ̂z = σv . There are still peaks in
the MSE but they are significantly dampened compared to the
earlier experiments. For high values of pS , e.g., pS = 29, 30,
the MSE decreases monotonically with n. For lower values
of pS , we still have the same effects on the MSE as we saw
in the settings (S1) – (S3). More specifically, as in previous
experiments, the performance is not guaranteed to improve
with increasing n or pS .

V. CONCLUSIONS
Under an LMMSE estimation framework, we investigated

the average degradation of the estimation performance due to
model mismatch. Our analytical results, verified with simu-
lations, illustrate the interplay between the SNR, the number
of samples and the model orders of the underlying and the
assumed models. In general, neither increasing the number
of samples nor the assumed model complexity can guarantee
performance improvement. Extending these results to different
covariance structures on the regressors as well as to complex
regressors, including non-circular scenarios, are important
directions for future work.

VI. APPENDIX
A. Proof of Theorem 1

In the setting of Theorem 1, the partial LMMSE estimator
in (11) is WS = AT

S (ASA
T
S )+ = A+

S . Plugging this WS

into (17), and applying the trace operator, we have
JS(A+

S ) = tr
(
(IpS

−A+
SAS)T(IpS

−A+
SAS)KxS

+ AT
C(A+

S )TA+
SACKxC

+ (A+
S )TA+

SKv

− 2(IpS
−A+

SAS)TA+
SACKxCxS

)
,

(27)

By the definition of the pseudoinverse, the matrix A+
SAS is

symmetric, A+
SASA

+
S = A+

S . Hence, (IpS
−A+

SAS)T(IpS
−

A+
SAS) = (IpS

−A+
SAS), and (IpS

−A+
SAS)TA+

S = A+
S −

A+
S = 0. Furthermore, the pseudoinverse has the property

(A+
S )TA+

S = (ASA
T
S )+. We can now write

JS(A+
S ) = tr

(
KxS

−A+
SASKxS

+AT
C(ASA

T
S )+ACKxC

+(ASA
T
S )+Kv

)
.

(28)

We now take the expectation over the distribution of A, noting
that AS and AC are uncorrelated, and use the linearity and
cyclic property of the trace operator to write:

ε(pS , n) = tr(KxS
)− tr

Å
E
AS

[
A+

SAS

]
KxS

ã
+ tr

Å
E
AS

[
(ASA

T
S )+

]
E
AC

[
ACKxC

AT
C

]ã
+ tr

Å
E
AS

[
(ASA

T
S )+

]
Kv

ã
.

(29)

We continue the proof by noting that

tr

Å
E
AS

[A+
SAS ]KxS

ã
= E

xS

ï
xT
S E
AS

[A+
SAS ]xS

ò
(30)

= min{pS ,n}
pS

tr(KxS
), (31)

where in the last step we used Lemma 3 of [10], as
well as ExS

[‖xS‖2] = tr(KxS
). By [11], we have that

EAS
[(ASA

T
S )+] = 1

nγIn, with γ as in (21). We can now
write

εS(pS , n) = tr(KxS
)− min{pS ,n}

pS
tr(KxS

)

+
1

n
γ tr

Å
KxC

E
AC

[
AT

CAC

]ã
+

1

n
γ tr(Kv),

(32)

into which we plug in that EAC
[AT

CAC ] = nIpC
, to yield the

final expression for εS(pS , n).
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