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Abstract—Existing multivariate goodness of fit (GoF) tests, to
check for multivariate data normality, are cumbersome or in-
tractable. Yet, they garner considerable interest in many practical
applications. Mostly, the current multivariate GoF approaches
are trivial extensions of their univariate counterparts thereby
ignoring inter channel signal dependencies that are inherent
in multivariate data sets. To address that, we develop a novel
multivariate goodness of fit (GoF) test that uses Mahalanobis
distance (MD) as a transformation to map multivariate data into
a univariate time series. This way, a novel multivariate GoF
test is defined based on the premise that EDF of MD computed
for multichannel data are distinct. To test for normality, CDF
of quadratic transformation of multivariate normal random
variables is used as the reference model within the Anderson
Darling (AD) statistic. Finally, this test is used on multiple scales
to reject multivariate coefficients fitting the normal distribution
leading to a novel multivariate signal denoising method.

Index Terms—Multivariate signals, Denoising, Mahalanobis
distance, Goodness-of-fit test

I. INTRODUCTION

Goodness-of-fit (GoF) tests measure how well an observed
data coincides with the assumed data model [1]. The tests
require a measure of fit, known as test statistic, to quantify
the difference between the empirical distribution functions of
observed data from the assumed model. Then, hypothesis test-
ing framework are employed to check (statistically) whether
the observed data belongs to the assumed model or not.

For univariate (single-channel) data, GoF tests employing
test statistics based on empirical distribution functions (EDF)
are popular in many engineering applications [2] due to their
ease of implementation, e.g., Kolmogrov-Smirnov (KS) [3]
statistic, Cramer-Von-Mises (CVM) [4] statistic and Ander-
son Darling (AD) [5] statistic. Since, cumulative distribution
function (CDF) for multivariate data are not uniquely defined
[10], their extension to multivariate case is not realized.
Nevertheless, tests for multivariate normality are in abundance,
e.g., chi-square test [6], SW test [7], skewness and kurtosis test
[7] etc., yet the following bottlenecks limit their widespread
use: i) computational expense or even intractability [11]; ii)
extension to distributions other than normal are not available.

Striving for an implementable yet effective multivariate
GoF test, an empirical approach is proposed in [11], which
computed Mahalanobis distances (MD) [12] from multivariate
data and used the global deviation statistic on their EDF.
The resulting test was computationally expensive owing to
the intense empirical procedure used to estimate reference
EDF. Further, the test was highly sensitive to sample size,
mostly under performing for smaller data sets thus rendering
it problematic in many real world settings.

To address these issues, we propose a theoretically sound yet
easy to implement multivariate GoF test that essentially maps
the data in multidimensional space of positive real numbers
RM , with M > 1, to the unidimensional space R+ by using
the squared Mahalanobis distance (MD) measure. The premise
that MDs from multivariate data follow a distinct distribution
allows us to define a unique EDF for multivariate data. Based
on that, a novel procedure to test multivariate normality in data
is formulated by specifying the reference model as a CDF
of quadratic transformation of multivariate normal random
variables. To quantify the statistical differences between the
test and the reference model, within the proposed GOF test,
we use the Anderson Darling (AD) statistic which is known
for its robustness for shorter data segments as compared to
other EDF statistics. In addition to the aforementioned test, we
develop a novel multivariate signal denoising method which
tests the normality of multivariate coefficients at multiple
wavelet scales to reject noise.

The multivariate signal denoising problem is formulated as
follows: Let xi ∈ RM denote a real multivariate observations
with M number of channels where index i = 1, · · · , N de-
notes the number of observations (in time). Assuming additive
multivariate noise observations are denoted by ψ ∈ RM with
positive definite covariance matrix Σ, xi is given by

xi = si +ψi, (1)

where si ∈ RM denotes the true (free from noise) multivariate
observations. Denoising aims to estimate si, given xi and the
multivariate distribution governing noise observations ψi.
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To compute s̃i - an estimate of si, a class of multiscale meth-
ods exist where the multivariate wavelet denoising (MWD)
method performs signal decomposition via Discrete Wavelet
Transform (DWT), followed by channel-wise thresholding
on resulting scales [13]. More recent multiscale approaches
are based on Synchrosqueezed Transform (SST) [14] and
Multivariate Empirical Mode Decomposition (MEMD) [15],
[16] but these methods ignore inter-channel correlation of
noise while thresholding each channel separately. In this work,
we address this issue through the joint processing of multiple
channels of input data within the proposed multivariate GOF
framework that utilizes squared MD measure. The resulting
denoising method fully caters for interchannel signal depen-
dencies, thereby outperforming existing denoising approaches.
While the efficacy of our new multivariate signal denoising
methodology has already been demonstrated in [17], this
work (a) seeks to introduce our new methodology to wider
signal and image processing community through this flagship
conference (a standard practice in the signal processing com-
munity); (b) presents an extension of the proposed multivariate
denoising framework to multichannel (or color) images. The
next couple of sections lay the theoretical foundations for our
proposed method(s) in Section 4.

II. MULTIVARIATE GOODNESS-OF-FIT TEST

Definition 1 (Multivariate EDF). Let xi ∈ RM denote M -
variate observations where i = 1, · · · , N , then multivariate
EDF Ẽ(·) : RM → R+ may be defined as follows:

Ẽ(t1, t2, . . . , tM ) =

1

T

T∑
i=1

1.(x
(1)
i ≤ t1, x(2)

i ≤ t2, ... x
(M)
i ≤ tM ),

(2)

where xi = [x
(1)
i x

(2)
i ... x

(N)
i ]′ denotes the ith observation.

The above definition of multivariate EDF (2) is one of the
multiple definitions possible for an M -variate data [10]. Owing
to this non-uniqueness of multivariate EDF, an approximation
of multivariate CDF is devised in [10], [18] in which a
symmetric kernel functions K(·, ·) was used to obtain a unique
localised cumulative distribution (LCD) L(m, b) from the
multivariate pdf g(x), as follows

L(m, b) =

∫
RN

g(x)K(x−m, b)dx, (3)

where K(·, ·) ∈ R+ → [0, 1] is a symmetric and integrable
kernel located at position m ∈ RM having width b.

A modified CVM statistic γ̃ based on LCD (3) was intro-
duced in [10] to devise a normality test, as follows

H0 : L(m, b) ∼= L0(m, b)⇒ γ̃ < λ

H1 : L(m, b) � L0(m, b)⇒ γ̃ ≥ λ (4)

where L0(m, b) denotes the LCD corresponding to the mul-
tivariate normal distribution, H0 denotes null hypothesis that
normal multivariate sample is detected and H0 denotes the
alternate hypothesis. However, the downside of this test is its

enormous computational cost required to compute the LCD in
(3) that prohibits its practical use.

III. MAHALANOBIS DISTANCE (MD)

Definition 2. Let xi = [x
(1)
i , · · · , x(M)

i ] ∈ RM denote a
random multivariate observation, having M channels, from
a set of N number of observations. The MD for xi, given
mean µ ∈ RM and covariance matrix Σ, is defined as

∆i =
√

(xi − µ)′Σ−1(xi − µ). (5)

where
′

denotes vector transpose.

Remark 1. MD measures the distance of a point in multidi-
mensional space from the mean of its distribution in terms of
the number of standard deviations [19].

Remark 2. MDs corresponding to data from a multivariate
probability distribution function follow a distinct probability
distribution [11].

Remark 3. Square of the MD (5) can be seen as the
quadratic transformation of multivariate random observations
xi through the covariance matrix Σ.

Definition 3 (Quadratic Transformation of Random Vari-
ables). Let x denote a real vector of P random observations
{x1, · · · , xP } with mean µ = 0, then the quadratic transfor-
mation of random variables Q(x) is defined as

Q(x) = xTAx (6)

where A ∈ RP×P is a real, symmetric and positive definite
matrix such that A = AT > 0.

IV. PROPOSED METHODOLOGY

In this section, we present a novel signal denoising method
for multivariate data; a new multivariate GoF test based on
MD and AD statistic which underpins the proposed denoising
method is explained first.

A. Multivariate GOF test based on MD and AD statistic

A multivariate GoF test requires a unique definition of
multivariate EDF. That is challenging since the typical EDF
reprsentation as defined in (2) is not unique for a given
multivariate data. While some kind of averaging over all
possible EDFs is an option [10], the resulting representation is
cumbersome and computationally expensive. To address that,
we propose to utilise the distribution of MD as an alternative
to the non-unique multidimensional EDF (2) and the unique
but cumbersome LCD (3) based on the premise that given a
multivariate pdf, the corresponding distributions of MD will
be distinct [11]. The EDF based on MD is defined as

Definition 4 (Mahalanobis EDF). Let xi ∈ RM denotes zero-
mean multivariate measurements such that i = 1, · · · , N , then
the unique EDF E(t) based on squared Mahalanobis distance
is defined as follows

E(t) =
1

N

N∑
i=1

1.(x
′

iΣ
−1xi ≤ t), (7)
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where Σ is the covariance matrix of the observations xi and
E(t) : RN → R+ denotes the EDF of multivariate data
defined over support t.

Given the unique Mahalanobis EDF (7) for multivariate
data, the formulation of a multivariate normality test requires
the specification of a reference CDF based on the same (MD)
transformation of the multivariate normal distribution. Since,
squared MD is essentially a quadratic transformation (6) based
on the covariance matrix Σ, we propose to use the CDF of
the quadratic transformation of multivariate normal random
variables as the reference distribution model in our test for
normality, given in Theorem 1.

Theorem 1. Let ψi denote a vector-valued Gaussian random
variable, i.e., ψi ∼ NM (0,Σ), where Σ is symmetric and
positive definite (and therefore Σ−1 is also symmetric and
positive definite). Given that eigenvalues λ of Σ−1 are distinct,
the CDF F0(t) of the quadratic transformation y = ψT Σ−1ψ
is given from [20], as follows

E0(t) =

∞∑
n=0

(−1)n cn
t
M
2 +n

Γ(M
2 + n+ 1)

, 0 < t <∞ (8)

where Γ(·) is Gamma function and the coefficients cn for n =
0 and n ≥ 1 are respectively given below

c0 =

M∏
m=0

(2λm)−
1
2 ; cn =

1

n

n−1∑
r=0

hn−r cr, n ≥ 1,

where hm are given as follows

hm =
1

2

M∑
m=0

(2λm)−m, n ≥ 1.

The traditional EDF like definitions for both observed EDF
E(t) and assumed reference CDF E0(t) respectively in (7)
and (8) enables us to formulate a modified AD statistic for
multivariate data, as follows

γ =

∫ ∞
−∞

(E0(t)− E(t))
2

E0(t)(1− E0(x))
dE0(t), (9)

where γ the estimated AD distance. The proposed modifica-
tions due to multidimensional extension of AD statistic are
apparent in the computable version of (9), as follows

γ = L−
L∑

i=1

(2i− 1)

L
(ln(E0(x

′

iΣ
−1xi))

− ln(E0(x
′

M+1−iΣ
−1xM+1−i))),

(10)

which we obtained by substituting the squared Mahalanobis
distance (or quadratic form) of xi into the numerical form
of (9) suggested in [1] for 1D data of sample size L. Since
the quadratic transformation x

′

iΣ
−1xi maps the multichannel

data to a single channel dataset, the proposed test statistic
(10) employs the powerful AD statistic, originally devised
for univariate time series data, to design a robust multivariate
normality test.
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Fig. 1: Illustration of the proposed denoising framework.

Finally, the hypothesis testing framework given in (11) is
used to check whether given Mahalanobis EDF E(t) corre-
sponding to the multivariate observations fit the reference CDF
E0(t).

H0 : E(t) ∼= E0(t)⇒ γ̃ < λ

H1 : E(t) � E0(t)⇒ γ̃ ≥ λ (11)

where operator ∼= and � respectively denote close fit and
no fit using AD statistic, H0 denotes the null hypothesis
that multivariate normal observations are detected while H1

denotes the alternate hypothesis. The threshold λ is selected
based on the desired probability of false alarm Pfa [21].

B. Multivariate signal denoising based on MD

We now propose a novel multivariate signal denoising
method based on multivariate empirical GoF test described in
the previous section. GoF tests are typically used in signal
detection applications, e.g., spectrum sensing in cognitive
radio [21] and denoising of singal channel data [23]–[25] since
their framework facilitates detection of noise (H0) and ‘signal
+ noise’ (H1). For this framework to be applicable to signal
denoising, the binary hypothesis testing must be modified to
make noise only (H0) and signal only (H1) decisions. That
way, data observations corresponding to noise can be discarded
while those associated with signal could be retained yielding
the denoised signal.

To achieve that, we propose to decompose a signal at
multiple scales using the discrete wavelet transform owing
to its following properties: i) the distribution of noise in the
transform domain is not altered; ii) sparse signal representation
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Fig. 2: Original and noisy bivariate SOFAR data (upper) and
corresponding denoised signal from MWD and the proposed
methods (lower).

at is obtained at multiple scales of DWT thus enabling suitable
segregation between noise and signal.

Fig. 1 graphically explains the working of the proposed
denoising method based on MD. Firstly, the multiscale de-
composition of a multivariate signal is obtained via the DWT,
see Fig. 1(top row). Subsequently, multivariate coefficients
at multiple scales are divided into small windows leading
to estimation of their Mahalanobis EDF, see Fig. 1 (middle
row). Finally, modified AD statistic (10) is computed for each
window using their EDFs estimated in previous steps and the
reference CDF (8), see Fig. 1 (lower row) where examples
of how noise and signal are detected using AD statistics are
visually shown along with their corresponding hypothesis.

Let ck denote multiscale coefficients at scale index k
obtained by applying a transform T to input multivariate
data xi. The proposed hypothesis testing framework given in
(11), applied at multiple data coefficients ck, was implemented
through the following multivariate thresholding function

ĉk =

{
0 γ̃ < λk,

ck γ̃ ≥ λk.
(12)

where λk denotes the threshold at scale index k based on
the desired probability of false alarm Pfa and ĉk denotes
thresholded coefficients at scale index k.

Finally, inverse transform T −1 is applied to the thresholded
coefficients ĉk to yield an estimate of the true signal.

V. RESULTS AND DISCUSSION

We compare the performance of the proposed multivariate
denoising method against the state of the art in multivariate
denoising including MWD [13], MWSD [14] and MEMD-
IT [15]. The input signals included a bivariate SOFAR data
[22] and quadrivariate synthetic signal obtained by combining
(1D) ‘Bumps’, ‘Blocks’, ‘Heavy sine’ and ‘Doppler’ signals.
Multivariate Gaussian noise was added to the data and the
cases of both balanced noise (channels corrrupted with noise

TABLE I: Comparison of the proposed method against comparative
methods for SOFAR and synthetic signals for balanced and unbal-
anced input noise.

Inp. SNR -5 dB 0 dB 5 dB 10 dB
Inp. Signal Bivariate Sofar Signal
Channel-
wise SNR

-5,5
/-3,-7

0,0
/-2,2

5,5
/3, 7

10,10
/8, 12

MWD 7.10/6.48 11.68/11.34 15.26/14.30 17.83/18.01
MWSD -0.33/-0.09 1.22/1.29 2.40/2.30 3.05/ 2.88
MEMD-IT 5.04/2.81 7.80/-2.36 5.11/5.88 7.28/ 8.23
Prop. 9.15/8.23 13.62/12.32 15.95/14.55 18.02/17.21
Inp. Signal Quadrivariate Synthetic Signal
Channel-
wise SNR

-5,-5,-5,-5
/-3,-4,-6,-7

0,0,0,0
/-2,-1,1,2

5,5,5,5
/3,4,6,7

10,10,10,10
/12,11,9,8

MWD 6.32/2.86 10.02/6.90 13.18/11.29 16.57/14.12
MWSD -2.58/-5.01 -1.42/-2.38 -0.92/-1.48 -0.73/-0.96
MEMD-IT 2.44/2.29 8.03/7.62 12.17/10.97 14.67/13.39
Prop. 6.99/4.77 10.15/7.95 14.11/11.54 17.14/14.38

having same power) and unbalanced noise (channels with
different noise power) were considered. The proposed method
was implemented using K = 5 decomposition levels of DWT
and Daubechies mother wavelet with 8 vanishing moments.
The probability of false alarm and window length were chosen
to be Pfa = 0.01 and M = 28 respectively.

We show the noisy and original SOFAR signals in Fig. 2
(upper) while its denoised versions by the proposed method
and the MWD method are plotted in Fig. 2 (lower) for
comparison. Note that the denoised signal from the proposed
method closely follows the true signal (plotted in background)
whereas MWD fails to capture the subtle variations of the
SOFAR signal.

Table. 1 reports average output reconstructed SNR values
(over J = 10 iterations) of different denoising methods for
input SNRs = −5, 0, 5, 10 dB; the values in bold represent
the highest reconstructed SNR. Different noise powers in each
channel for the case of unbalanced noise are also given in the
table; e.g., for the SOFAR signal, for unbalanced noise at av-
eraged input SNR=5dB, the two channels had powers of 3 dB
and 7 dB. From the table, it is clear that the proposed method
outperforms comparative multivariate denoising methods by
yielding highest output SNR at all noise levels for both input
signals, except for a single case of unbalanced noise at input
SNR = 10 dB for the SOFAR signal.

Moreover, we also demonstrate the efficacy of our approach
for color image denoising in Fig. 3. For this purpose, the
3D extension of the proposed algorithm is obtained by (i)
using the 2D redundant wavelet transform on each of the RGB
channels and (ii) employing a 3D window (of size 5× 5× 3)
for local multiscale application of the proposed multivariate
GoF test for normality without losing the spatial dependencies
within the image. In this regard, Mahalanobis EDF of the 3D
window is estimated by reshaping it into a trivariate segment
thus allowing to incorporate the cross-channel-correlations of
noise. Rest of the steps in our approach remain unchanged.
Observe from the denoised imaged in the righ column of Fig.
3 that proposed method significantly enhances the quality of
the noisy images (shown in left column). That is also apparent
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(a) In. PSNR = 28.13 dB (b) Out. PSNR = 33.54 dB

(c) In. PSNR = 22.12 dB (d) Out. PSNR = 30.12 dB

Fig. 3: Denoising results on images using proposed denoising
framework based on a novel multivariate GoF test.

from the significant improvement in peak SNR (PSNR) values
mentioned below each figure.

VI. CONCLUSIONS

We have presented a novel multivariate goodness of fit
(GoF) test for normality which employs empirical distribution
of Mahalanobis distance (MD) as a substitute for the distribu-
tion of multivariate data. That is accomplished by specifying
the reference distribution as a quadratic transformation of
multivariate random variables. The resulting test that also
employs a modified robust Anderson Darling test statistic fixes
the long standing problem of lack of reliable yet practically
convenient test for checking multivariate normality. While the
theoretical and computational aspects of the proposed test
fall outside the scope of this paper, we have illustrated the
utility and potential of the proposed test in signal and image
denoising applications.
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