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Abstract—A generalized version of the majority voting rule is
proposed to speed up the calculation of global error probabilities
in parallel sensor networks, which otherwise requires exponen-

tially many computations in general. The motivation behind
proposing such a fusion rule is to inform the other researchers
that the recently available performance bounds are not tight
as claimed and can only be used for very limited decentralized
detection problems. The proposed fusion rule can be computed
in quasi-linear time for identically and quasi-quadratic time
for non-identically distributed independent sensor observations.
Effectiveness of the proposed fusion rule is illustrated with
comparative experiments for identical and non-identical sensors
over varying size of networks and various quantization levels.

Index Terms—Distributed detection, quantization, perfor-
mance bounds, sensor networks, error analysis

I. INTRODUCTION

Detecting events of interest through distributed sensor net-

works has some advantages, such as reliability, survivability

and much reduced usage of bandwidth compared to central-

ized networks. Despite all these advantages, optimization of

distributed sensor networks may be a very challenging problem

due to high computational complexity. For parallel sensor

networks an optimum design is an NP-complete problem in

general [1], [2]. Assuming that such a design has already

been performed, i.e., all local sensor thresholds and the global

fusion rule are determined by an algorithm, just evaluating the

global error probability has an exponentially increasing time

complexity in the total number of sensors [3, p. 314]. It is

therefore of high interest, especially for the designers, to have

sub-optimal yet efficient methods/bounds in order to calculate

the global error probability.

There are several approaches to performance evaluation which

circumvent direct computation of the global error probabili-

ties. In [4] an approximation was made by determining the

asymptotic error exponents of the distributed sensor network

as the number of sensor nodes tends to infinity. In [5],

Aldosari and Moura have presented an application of the

saddlepoint method to determine the global error probabili-

ties. However, the expressions obtained require the numerical

solution of a saddle-point equation. In a more recent work

[6] computationally simple upper-bounds were presented by

considering probability inequality introduced by Hoeffding

[7] and employing a multiplicative form factor following a

technique developed by Talagrand [8].

In this paper the upper-bounds proposed by [6] are shown

in fact not to be tight. Noting that any sub-optimal fusion

rule is a valid upper-bound on the minimum error probability,

a generalization of the majority voting rule to multilevel

decisions is proposed in order to calculate approximate global

error probabilities in parallel sensor networks. The proposed

fusion rule is scalable since it can be computed in quasi-linear

(or quasi-quadratic) time for identically (or non-identically)

distributed sensors, respectively cf. [9], [10]. Numerical results

indicate that the time complexities below that of the proposed

fusion rule may experience serious problems especially when

the number of quantization intervals is large and/or when the

sensors are not identically distributed.

The rest of this paper is organized as follows. In Section II,

the decentralized detection problem is introduced for parallel

sensor networks. In Sections III and IV, majority fusion rule

is introduced and its computational complexity is discussed

in comparison to [6]. In Section V, the performance of

the proposed fusion rule, as an approximation to the mini-

mum error probability, is evaluated over identically and non-

identically distributed independent sensor observations. Finally

in Section VI, the paper is concluded.

II. DECENTRALIZED DETECTION

Consider a distributed detection network with K decision

makers φ1, . . . , φK and a fusion center γ as illustrated by

Figure 1. Each sensor φk makes an observation yk ∈ Ωk from

a certain phenomenon, where Ωk is an interval, and gives a

multilevel decision uk ∈ {0, . . . , Nk − 1}. The phenomenon

is modeled by a binary hypothesis testing problem

H0 : Yk ∼ F k0 ,

H1 : Yk ∼ F k1 , (1)

where the random variables Yk corresponding to the observa-

tions yk are mutually independent and follow the probability

distribution function F k0 or F k1 , conditioned on the hypothesis

H0 or H1. The fusion center receives multilevel decisions from

all sensors and gives a binary decision u0.

A. Local sensors

Optimum quantization, which minimizes the error prob-

ability of the fusion center is known to be the monotone

likelihood ratio test [3]. Let fk0 and fk1 be the density functions

corresponding to F k0 and F k1 , respectively and lk = fk1 /f
k
0
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Fig. 1. Distributed detection network with K decision makers, each repre-
sented by the decision rule φ, and a fusion center associated with the fusion
rule γ.

denote the likelihood ratio function. Then, the decisions can

be obtained by

φk(yk) = uikk if λik−1
k ≤ lk(yk) < λikk , (2)

where λikk denotes the thresholds, k ∈ {1, . . . ,K} denotes

the indices of sensors and ik ∈ {1, . . . , Nk} denotes the

indices of the multilevel decision uk for the kth sensor.

The upper and lower thresholds are given by λ0k := inf Ωk
and λNk

k := supΩk, leaving Nk − 1 unknown thresholds to

be determined per sensor. From (1) and (2) the probability

mass functions (p.m.f.s) of the decisions conditioned on the

hypothesis Hj can be found by

pkj (u
ik
k ) = Fj [λ

ik−1
k ≤ lk(Yk) < λikk ], j ∈ {0, 1}. (3)

B. Fusion center

Let p0 and p1 denote the joint probability mass functions

of the random variables Uk, corresponding to the multilevel

decisions uk, conditioned on the hypotheses H0 and H1,

respectively. Furthermore, let the transmitted decisions uk be

reformed optimally by the fusion center as

uk := log
pk1(uk)

pk0(uk)
. (4)

Then, the optimum test at the fusion center can be obtained

by [11, p. 39]

log
p1(u1, . . . , uK)

p0(u1, . . . , uK)
=

K
∑

k=1

log
pk1(uk)

pk0(uk)
=

K
∑

k=1

uk
H1

R
H0

log
π0
π1
,

(5)

where π0 and π1 are the a-priori probabilities of the hypothesis

H0 and H1, respectively.

III. MAJORITY VOTING RULE

Since the test statistic in (5) corresponds to the summation

of K random variables Uk, the probability mass function of the

sum can be obtained by K-fold convolution of the marginal

mass functions as

gj(z) =

N1
∑

i1=1

· · ·

NK
∑

iK=1

p1j(u
i1
1 ) · · · pKj (uiKK )δ

( K∑

k=1

uikk −z
)

, (6)

where δ is the dirac delta function. Then, for M = dim(gm)
the minimum error probability can be found by

PE =

M
∑

n=1

min (π0g0(n), π1g1(n)) , (7)

In general, evaluating error probabilities using (6) is of ex-

ponential complexity [12]. Here, we simplify (6) by omitting

(4), hence keeping the original domain uk ∈ {0, . . . , Nk − 1}
and considering the test

K
∑

k=1

uk

H1

R
H0

1

2

K
∑

k=1

Nk −
K

2
. (8)

This approximation, which is the majority voting rule extended

to multilevel quantization, simplifies the p.m.f. of the sum of

the random variables Uk to

gj = p1j ∗ p
2
j ∗ . . . ∗ p

K
j , (9)

where (∗) stands for the ordinary discrete convolution,

(p1j ∗ p
2
j)[n] =

N1+N2−2
∑

m=0

p1j(m)p2j(n−m). (10)

Hence, given a set of quantization thresholds for K sensors

as in [6], the performance can be evaluated approximately

but much faster than the true calculation of the global error

probability.

IV. COMPLEXITY ANALYSIS

Computational complexity of the proposed fusion rule can

be obtained by using the convolution theorem. Suppose that

N = Nk∀k. Then, the output of the K-fold convolution given

by (9) has NK − K + 1 values. Therefore, the discrete

Fourier transform of all pjs should include zero padding up

to NK − K + 1 samples. Taking the fast Fourier transform

(FFT) has a complexity of O(KN logKN), where O is the

standard Landau notation. For identically distributed p.m.f.s,

i.e., p1j = pkj∀k, after the FFT, raising each sample to the Kth

power requires O(KN) and taking the inverse FFT (IFFT)

requires again O(KN logKN). Hence, the overall complexity

for the identical p.m.f.s is O(KN logKN). If the p.m.f.s are

not identical, then FFT should be taken for all zero padded

pjs having the overall complexity of O(K2N logKN). Mul-

tiplying them together requires O
(

K2N
)

and the IFFT needs

O(K2N logKN). Hence, the overall complexity for non-

identical p.m.f.s is O(K2N logKN). The complexity of the

proposed scheme is slightly worse than that of the bound

proposed in [6], which has O(KN) complexity. As it will

be shown in the next section, it is not plausible in general

to have a linear complexity in the number of sensors K and

obtain tight bounds on an exponentially complex problem.

V. NUMERICAL RESULTS

In this section, the performance of the proposed approxima-

tion to the true error probability is evaluated and compared to

[6] for both identically as well as non-identically distributed

sensor observations. In all cases the sensors are assumed to

be mutually independent.
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Fig. 2. Minimum error probability versus the total number of sensors over
identical p.m.f.s with N = 4.

A. Identically distributed observations

Consider a decentralized detection network with K = 5 to

K = 100 number of sensors and N = 4 levels of quantization.

Suppose that the a-priori probabilities of the hypotheses are

equal π0 = π1 = 1/2 and the probability mass functions of

each sensor are represented by the following probabilities,

pk0(0) = 0.3, pk0(1) = 0.3, pk0(2) = 0.2, pk0(3) = 0.2,

pk1(0) = 0.1, pk1(1) = 0.2, pk1(2) = 0.3, pk1(3) = 0.4, (11)

for all k ∈ {1, . . . ,K}, as given by [6]. Figure 2 illustrates

the numerical results regarding this problem. The names of

the methods are abbreviated by the initials of the authors, i.e.,

(GB) stands for the proposed approximation, (FM) denotes [6],

whereas (MC) stands for extensive Monte-Carlo simulations

with up to 109 samples per sensor. The results indicate that

the proposed scheme is only slightly better than that of [6],

whereas both methods are slightly worse than the minimum

global error probability.

B. Non-identically distributed observations

1) Bernoulli distributed observations: For the same sensor

network as before assume now that each sensor makes a binary

quantization, i.e., N = 2 and the a-priori probabilities of the

hypotheses are π0 = 0.8 and π1 = 0.2. The conditional

probability mass functions corresponding to each sensor are

characterized by the following local false alarm and miss

detection probabilities

pk0(1) = 0.2 + 0.002(k − 1),

pk1(0) = 0.5− 0.002k, k ∈ {1, . . . ,K}. (12)

For this problem, which is again adopted from [6], Figure 3

illustrates the error probabilities of the proposed scheme in

comparison to those obtained by [6]. Although the results of

the proposed scheme is almost the same with the true error

probabilities obtained by extensive Monte-Carlo simulations,

the error probabilities obtained by [6] is slightly off and the
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Fig. 3. Minimum error probability versus the total number of sensors over
non-identical p.m.f.s with N = 2.

related gap seems to be increasing with the number of sensors.

2) χ2-distributed observations: Consider a signal detection

problem, where each sensor is an energy detector over a static

channel model facing a presumably different signal-to-noise

ratio (SNR). The details of this problem can be found in

[11, p. 42]. The probability mass functions of the quantized

observations are given by their dependence on the quantization

thresholds λikk ,

pk0(u
ik
k ) =

Γu

(

W
2 ,

λ
i
k
−1

k

2

)

− Γu

(

W
2 ,

λ
i
k

k

2

)

Γ
(

W
2

) ,

pk1(u
ik
k ) =

Γu

(

W
2 ,

λ
i
k
−1

k

2(ψk+1)

)

− Γu

(

W
2 ,

λ
i
k

k

2(ψk+1)

)

Γ
(

W
2

) , (13)

where W is the number of samples collected by each sensor,

ψk is the SNR of the kth sensor, Γ is the gamma function and

Γu is the upper incomplete gamma function. It is assumed

that each sensor collects W = 10 samples, as in [11], and ψk
are found by dividing the SNR range of [−3, 2]dB uniformly

to the total number of sensors in the network as in [13]. The

thresholds λikk are either found by the Gaussian approximation

method [9] or by the Chernoff information based method [13].

We are interested in, first, whether the bound proposed by [13]

is tight, i.e. whether one can obtain similar error probabilities

to the true error probability, and second, whether the evaluated

approximations to the true error probability can distinguish

between the performances of Gaussian approximation and

Chernoff information based quantization methods. Figures 4,

5 and 6 illustrate the error probabilities PE obtained by two

different schemes for sensor networks consisting of 5, · · · , 50
sensors, where each sensor transmits 1-, 2- and 3 bits, re-

spectively. The proposed scheme (GB) provides consistently

close results to the true error probabilities, whereas the bound

proposed by [6] (FM) is off by a considerable margin and

this margin increases both with the number of sensors as well

2057



5 10 15 20 25 30 35 40 45 50

10
-4

10
-3

10
-2

10
-1

Optimum Gauss    1 bit (MC)

Optimum Chernoff 1 bit (MC)

Optimum Gauss    1 bit (GB)

Optimum Chernoff 1 bit (GB)

Optimum Gauss    1 bit (FM)

Optimum Chernoff 1 bit (FM)

P
ro

b
ab

il
it

y
o

f
E

rr
o

r
(P
E

)

Number of Sensors (K)

Fig. 4. Minimum error probability versus the total number of sensors over
non-identical distributions for 1-bit quantization.
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Fig. 5. Minimum error probability versus the total number of sensors over
non-identical distributions for 2-bit quantization.

as with the number of transmitted bits. Moreover, the bounds

proposed by [6] is not capable of distinguishing the better

performing quantization method, i.e., in all figures it wrongly

suggests that the Gaussian approximation method is better

although this is not true. Another serious inaccuracy is that

it shows that around K = 50 sensors, the error probabilities

obtained by 3-bit quantization is almost the same with that of

1-bit quantization.

VI. CONCLUSION

The purpose of this paper was to show that performance

bounds running in linear time may not be tight for distributed

detection problems and in some cases may totally be useless.

In order to illustrate this, a generalized version of the majority

voting rule was proposed as an alternative approximation to

calculate the true error probabilities and its performance was

compared to the one available in the literature. Computa-

tional complexity of the proposed scheme is quasi-linear for

identically distributed and quasi-quadratic for non-identically

distributed independent sensors. Comparative simulations have
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Fig. 6. Minimum error probability the total number of sensors over non-
identical distributions for 3-bit quantization.

revealed that the proposed scheme is a much better approxi-

mation, although imposed computational complexities can be

slightly more, yet can efficiently be computed with ordinary

personal computers. The proposed scheme is supposed to

be useful, where multiple evaluations of the performance

measures of interest are necessary.
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