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Abstract—Neural networks generally require large amounts
of data to adequately model the domain space. In situations
where the data are limited, the predictions from these models,
which are typically obtained from stochastic gradient descent
(SGD) minimization algorithms, can be poor. In these cases, the
use of more sophisticated optimization approaches becomes even
more crucial to increase the impact of each training iteration.
In this paper, we propose an optimization algorithm that uses
second-derivative information that exploits curvature information
for avoiding saddle points, which can result in limitations on
the learning process. In particular, we utilize a Hessian-free
approach where we do not explicitly store the second-derivative
matrix; rather, we apply a conjugate gradient method and require
the Hessian matrix only to compute matrix-vector products.
Our approach is based on trust-region methods, which do not
require the Hessian to be positive definite and which differentiates
our approach from existing Hessian-free methods. We present
numerical experiments which demonstrate the improvement in
classification accuracy using our proposed approach over a
standard SGD approach.

Index Terms—Second-order methods, Hessian-free, conjugate
gradient methods, trust-region methods

I. INTRODUCTION

Deep learning problems often involve the minimization of
an objective function given by

minimize
w∈<d

f(w) ≡ 1

n

n∑
j=1

fj(w), (1)

where fj is a function that depends on the jth observation
in a training set {(xj , yj)}nj=1. These objective functions are
generally large-scale (the dimension of w, d, and the number
of data points, n, are typically in the order of millions),
non-linear (the function f often involves nonlinear activation
functions), and non-convex (f is a composition of functions
that can result in non-convexity [1]).

The recent success in the application of neural networks to a
variety of fields can be mostly attributed to two driving factors:
improvements in network architecture and the optimization
techniques used during the learning process [2]–[4]. Since
the inception of the back-propagation algorithm made the
optimization of the network parameters viable, methods using
first-derivative information have dominated the field (see e.g.,
[5]–[11]). With an increased access to powerful computational
resources, there is greater potential for the field to shift toward
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considering more sophisticated algorithms. This is particularly
true for data-limited inference, where the availability of data
is limited, i.e., n in (1) is relatively small. In the case of an
image classifier, this translates to a limited number of training
images for classification.

The novelty of this paper is as follows: we exploit second-
derivative information to improve the predictive capabili-
ties of artificial neural networks for data-limited inference.
Our method combines the efficient computation of a true
Hessian-vector product in a trust-region setting, thus allowing
us to solve the trust-region subproblem using a conjugate based
method.

The paper is organized as follows. In Sec. 2, we describe
existing and commonly used algorithms and then discuss
some of the recent techniques which approximate second-order
information. In Sec. 3, we describe the novelty of our proposed
approach, which is based on trust-region methods, which are
alternatives to the more commonly-used line-search methods
in optimization. We describe our numerical experiments in
Sec. 4 and the main results in Sec. 5. Finally, we summarize
our paper with concluding remarks in Sec. 6.

II. RELATED METHODS

Stochastic Gradient Descent (SGD). First-derivative algo-
rithms have emerged as the standard optimization techniques
used for training deep neural networks. In particular, methods
based on stochastic gradient descent (SGD) are preferred for
their low computational cost and ease of implementation [5],
[12]. This method differs from a classic gradient descent
approach in that the gradient is computed based on a sample
of the dataset. In the context of deep learning, the gradient is
computed based on a sample batch. Specifically, at iteration
k in SGD, a sample batch Sk ⊆ {1, 2, . . . , n} is randomly
chosen and the current iterate wk is updated using

wk+1 = wk − αk
1

|Sk|
∑
j∈Sk

∇fj(wk),

where αk known as the learning rate.

Quasi-Newton Methods. Quasi-Newton methods have also
been explored as a possible alternative to gradient descent
based algorithms for training neural networks [13]–[16]. These
methods use previous computed gradients to approximate the
second derivative to improve the search direction at each
iteration.
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Fig. 1. Illustration of the CG-Steihaug approach in two dimensions. (a) When Qk(p) is convex and its unconstrained minimizer lies within the trust-region
radius, then the CG iterates will converge to the unconstrained minimizer. (b) When Qk(p) is convex but its unconstrained minimizer is outside the trust
region, then the minimizer pk is defined where the CG iterate crosses the boundary. (c) When Qk(p) is not convex, i.e., Hk is not positive definite, then the
CG-Steihaug method terminates when a direction of curvature is detected and the minimizer pk is defined where Qk(p) is minimized along the last computed
CG iterate.

Hessian-Free Methods. Like quasi-Newton methods,
Hessian-free methods look to improve on gradient-descent
methods by using higher-order information. To minimize the
cost of storing second-derivative (Hessian) matrices (which
can be potentially too large to store in memory), Hessian-free
methods only require them for matrix-vector multiplication.
The approach by Martens [17] uses the finite difference
approximation of the matrix vector product:

Hd = lim
ε→0

∇f(x+ εd)−∇f(x)

ε
, (2)

where the operation is used in a conjugate gradient (CG)
setting in order to provide the descent direction to the next
iterate. Pearlmutter [18] offers an alternative approach which
computes the actual Hessian-vector product as

Hd =
∂

∂ε
∇f(x+ εd)

∣∣∣∣
ε=0

. (3)

For details on implementation, see [19]–[22]. A related ap-
proach utilizes Gauss-Newton approximations [23]. For exam-
ple, the approach in [24] extends the approximation for use
with a cross-entropy loss and a framework similar to [18].

III. PROPOSED APPROACH

In the methods described above, the Hessian H is often
required to be positive definite to guarantee that the com-
puted search direction is a descent direction. For non-convex
problems, this requirement is not always satisfied. In [17], the
eigenvalues of H are shifted by adding λI to H , where λ > 0
is obtained heuristically. Here, we propose using a trust-region
approach that does not require modifying the eigenvalues of
H . As they are stated, the matrix-vector products in (2) and
(3) do not provide any guarantees that the matrix H is positive
definite. One commonly used technique to guarantee to avoid
the problems associated with an indefinite matrix is to shift
or “dampen” the eigenvalues of H as B = H + λI , where
λ ≥ 0. The Hessian-vector product is now expressed as

Bd = Hd + λd, where Hd is evaluated using the previously
described techniques.

The proposed method presents a novel optimization rou-
tine designed to minimize (1). Unlike the previous methods
described, the goal is computing fast Hessian-vector products
within a trust-region setting. This allows us to approximately
solve the trust-region subproblem using CG while allowing
for negative curvature. By incorporating second-derivative
information, we improve the impact of each iteration and avoid
certain local minima and saddle points. The increase in the
quality of the optimization routine will increase the value of
each data point and allow us to reach better optima with fewer
training instances. In the following subsections we describe the
proposed approach in more detail.

Fast Exact Hessian-Vector Products. As stated in the previ-
ous section, computing the second-derivative or Hessian can
be computationally intensive. Furthermore, in the context of
neural networks, storing the Hessian can be infeasible. Using
exact second derivative information allows us to create an
accurate localized model of the true objective function which
is used in the trust-region setting described in the next section.
At the same time we require this information to be available
for use in the CG method in Section 3.3. In both cases, a
Hessian-vector multiplication is required, and so we chose
to use Pearlmutter’s algorithm, commonly referred to as Rop
[18]. While we are not the first to use Rop in a CG setting,
our approach is novel in that we no longer require dampening
of the Hessian to guarantee positive definiteness.

The motivation for avoiding damped Hessian approxima-
tions comes in two parts. The first is that it requires the choice
of another hyperparameter, λ. The choice of λ can greatly
affect the convergence of the optimization routine and should
be chosen for each update of the Hessian vector product.
The second motivation is that the perturbation to the true
Hessian imposed by λ results in an approximation of the
second derivative and thus less accurate curvature information.
The proposed algorithm relaxes the requirement of the Hessian
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Algorithm 1 CG-Steihaug
Given: Tolerance εk > 0
Set: p0 = 0, r0 = gk, d0 = −r0 = −gk
if ‖r0‖2 < εk then

return pk = z0 = 0
end if
for j ∈ 0,1,2,3,4.. do

if d>jHkdj ≤ 0 then
Find τ such that pk = zj + τdj minimizes

Qk(p) in (4) with ‖pk‖2 = ∆k

return pk
end if
Set αj = r>j rj / d

>
jHkdj

Set zj+1 = zj + αjdj
if ‖zj+1‖ ≥ ∆k then

Find τ ≥ 0 such that pk = zj + τdj satisfies
‖pk‖2 = ∆k

return pk
end if
Set rj+1 = rj + αjHkdj
if ‖rj+1‖2 < εk then

return pk = zj+1

end if
Set βj+1 = r>j+1rj+1/r

>
j rj

Set dj+1 = −rj+1 + βj+1dj
end for

to be positive-definite and compensates for the possibility of
negative curvature by using a trust-region setting.

Trust-Region Methods. Trust-region methods [25] are al-
ternative approaches to line-search methods for solving op-
timization problems. While line-search methods first compute
a search direction and then determine a step length along
that direction at each iteration, trust-region methods deter-
mine a quadratic model to the true objective function and a
corresponding region over which the quadratic model can be
trusted to be accurate. Specifically, trust-region methods solve
a sequence of quadratic subproblems with a single constraint
of the following form:

pk = arg min
p∈<m

Qk(p) ≡ ∇f(wk)>p+
1

2
p>∇2f(wk)p

subject to ‖p‖2 ≤ ∆k (4)

where ∆k is a scalar parameter referred to as the trust-region
radius. The trust-region subproblem solution pk is used to
compute the next iterate given by wk+1 = wk + pk, provided
pk satisfies a certain property discussed below.

Conjugate Gradient (CG)-Steihaug Approach. An impor-
tant component of the algorithm facilitates solving the trust-
region subproblem in (4) to provide the directional step pk
to the next iteration. In a similar approach to [17], we use
a conjugate gradient method with the fast exact Hessian-
vector product in (3). Our algorithm uses a modified CG
method known as the CG-Steihaug approach [26], or as

Algorithm 2 Proposed Second-Order Trust-Region Method
Given: For some ∆max > 0,∆0 ∈ (0,∆max), η ∈ [0, 14 ),
and ε > 0
while ‖∇f(wk)‖2 > ε do

Obtain pk from CG-Steihaug in [26]
Perform line search using Wolfe conditions
Evaluate the ratio given by
ρk = (f(wk)− f(wk+1))/(Qk(0)−Qk(pk))

if ρk < 1
4 then

∆k+1 = 1
4∆k

else
if ρk > 3

4 and ‖pk‖2 = ∆k then
∆k+1 = min(2∆k,∆max)

else
∆k+1 = ∆k

end if
end if
if ρ > η: then
wk+1 = wk + pk

else
wk+1 = wk

end if
end while

the Steihaug-Toint truncated conjugate gradient method [25].
which we outline in Algorithm 1. If the minimizer lies within
the trust-region radius, then the CG iterates converge to the
unconstrained minimizer (see Fig. 1(a)). If the minimizer is
outside of the trust region, then the CG iteration terminates
where the iterate crosses the boundary 1(b)). Finally, if the
Hessian is not positive definite, then CG-Steihaug terminates
the algorithm and the minimizer is detected at the boundary of
the trust region in the direction of the last computed CG iterate
(see Fig. 1(c)). We re-iterate that the proposed method does
not require the Hessian to be positive definite. Therefore, we
do not have to use a dampening scalar λ, and consequently, the
method allows directions of negative curvature to be detected
to avoid saddle points. We describe our proposed approach in
Algorithm 2. We note that the final iterate pk in Algorithm 2
satisfies the following decrease in the quadratic model:

Qk(0)−Qk(pk) ≥ c1‖gk‖2 min

(
∆k,

‖gk‖2
‖Hk‖2

)
, (5)

where c1 is a constant with c1 ∈ (0, 1]. Also, we note that the
direction pk satisfies the trust-region constraint, i.e., ‖pk‖2 ≤
∆k, which will be used for convergence results.

Summary of Proposed Approach. In summary, the pro-
posed approach has three major components: (i) a trust-
region method (outlined in Algorithm 2, which allows for
indefinite Hessians that avoid saddle points; (ii) a fast and
exact Hessian-vector product (3) which efficiently provides
true second-derivative information at the current iterate; and
(iii) the CG-Steihaug approach, which solves the trust-region
subproblem without storing the Hessian matrix. To guarantee
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that the search direction provided by the CG-Steihaug method
sufficiently decreases the value of the quadratic subproblem,
we implement a Wolfe line search in the direction of pk [26].
Furthermore, we evaluate the accuracy of the quadratic model
of the objective function within the trust region using the
ratio ρk in Algorithm 2 to determine whether the update is
acceptable or not. The result is an algorithm that considers
second derivative information and allows for the possibility
of negative curvature. As such, the impact of each iteration is
more valuable when compared to those of first-order methods.
Convergence. We conclude with the following convergence
guarantee for our proposed method. We first define the level
set S = {w : f(w) ≤ f(w0)}, where w0 is the initial point,
and an open neighborhood of S by S(R0) = {w : ‖w− y‖ <
R0 for some y ∈ S}, where R0 is a positive constant. Then
we have the following result.
Theorem 1. Let η = 0 in Algorithm 2. Suppose that ‖Hk‖ ≤
β for some constant β > 0, that f(w) is bounded below on
the level set L and Lipschitz continuously differentiable in the
neighborhood L(R0) for some R0 > 0, and that all feasible
solutions pk of (4) satisfy (5). Then we have

lim inf
k→∞

‖gk‖2 = 0.

The proof follows directly from Theorem 4.5 in [26].

IV. LIMITED-DATA EXPERIMENTAL SETUP

To validate the effectiveness of the proposed algorithm, we
implemented Algorithm 1 with the intent to train a neural
network to perform a well established classification task.
However, we imposed a limitation on the amount of data
available for training to simulate data-starvation. Here, we
describe our experimental setup.

Neural Network Architecture. In each of these experiments,
we used a type of architecture known as a Multi-Layer Percep-
tron (MLP), which are a class of feed-forward artificial neural
networks with the ability to separate data with a non-linear
decision boundary [27]. The MLP used in our experiments
was implemented using the deep learning package Theano and
consisted of three layers of nodes/neurons. The input layer
consisted of the vectorized version of the input image (784
nodes), where each node corresponds to each pixel in the
sample image. The hidden layer contained 500 neurons and
was followed by the non-linear hyperbolic tangent function
(tanh) used as a non-linear activation on the output of the layer.
Finally, the output layer consisted of 10 neurons corresponding
to the 10 classes present in the the dataset. This layer was
also followed by the same activation function as the previous
layer. The softmax activation function was applied to the
output of the neural network in order to provide a probability
distribution of the possible classes. The probability distribution
was compared to the true one-hot encoding of the target class
using a cross entropy loss function. The architecture was kept
simple to demonstrate the effectiveness of the optimization
method on the intended task rather than the complexity of the
MLP.
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Fig. 2. A comparison of our method to Stochastic Gradient Descent (SGD)
with limited datasets. Here we report the accuracy error for datasets of 20,
100, 500, 1000 and 10000 images. Results are also shown for various numbers
of epochs. The proposed approach was only trained for 1 epoch while SGD
was allowed to run for 1, 100, and 1500 epochs and SGD Max, which refers
to the number of epochs of SGD allowed to run within the time our proposed
method runs 1 epoch.

Dataset. The dataset used for these experiments is known as
the MNIST dataset [28], which consists of rasterized 28× 28
pixel images of handwritten digits from 0-9 (10 classes). The
collection of images is partitioned in a training set of 60,000
images and a test set of 10,000 images.

Hardware. Experiments were carried out on GPUs housed in a
high-performance cluster. The cluster consists of 95 computer
nodes with a total of 2116 cores and 2301 Mhz processing
power. The GPUs include 4 NVIDIA Tesla K20 graphics cards
and 2 Nvidia p100s with a total operating capacity of 62
TFLOPS.

Testing Procedure. The goal of our experiments is to show
that the proposed approach can improve on SGD when training
a neural network with limited data. The 70,000 images in
the MNIST dataset were partitioned in the following manner:
50,000 images in the training set, 10,000 images in the
validation set and 10,000 images in the testing set. From the
training set, we randomly sampled subsets with sizes of 20,
100, 500, 1000 and 10,000 images. When implementing our
algorithm, the entire subset is used in a single batch over a
single epoch. The algorithm terminates when the norm of the
gradient of the objective function reaches a sufficient tolerance
(in our case, this was set to 10−5). When using SGD, we
approached training using the standard practice of using mini-
batches. We chose a mini-batch size of 20 images for all data
subsets

V. MAIN RESULTS

The results of our experiments are presented in Fig. 2 and
Table 1, which presents the average of 10 runs each with each
run using a different initial point. When compared to SGD for
various training times and various dataset sizes, the proposed
method improves on the accuracy of the classification task. In
particular, after a single pass (1 epoch) through the available
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Percent Error
Dataset SGD SGD SGD SGD Proposed

size 1 epoch 100 epochs 1500 epochs Max Method
20 79.39 58.45 44.45 44.01 43.68

100 69.49 33.50 32.17 32.12 25.58
500 41.10 16.70 16.23 16.23 14.23
1000 31.98 13.01 13.71 13.57 11.64

10000 16.35 6.57 4.21 3.97 3.38
TABLE I

ERROR TABLE CORRESPONDING TO THE TESTING ERROR/LOSS OF THE
NEURAL NETWORK FOR OUR PROPOSED METHOD IN COMPARISON TO

SGD OVER VARIOUS EPOCHS AND FOR DIFFERENT DATASET SIZES. FOR
OUR PROPOSED METHOD, THE DATASET IS FED AS A BATCH TO THE
NETWORK. FOR SGD, THE DATA ARE FED IN MINI-BATCHES OF 20

IMAGES. SGD MAX CORRESPONDS TO SGD TRAINED OVER THE SAME
GPU RUN TIME AS OUR PROPOSED ALGORITHM.

data the proposed method is almost twice as accurate as SGD.
This confirms the notion that the iterations of the proposed
method have a greater impact than that of the first-order
method. As we continued to allow the network to train we
can see that after almost 1500 epochs of SGD (which may be
considered overtraining) we do not see a great improvement
in the level of accuracy. In fact, we even allowed the SGD
algorithm to run in the same GPU time as our method,
we still improve on the performance of SGD. The results
in Table 1 show that the improvement on SGD in the case of
a 20 image dataset is less than 2%. In this case, 20 images
might approach the lower limit on the minimum size of the
data set you need in order for the network to learn. We can see
that as we increase the number of images in the dataset, SGD
still underperforms in comparison to our proposed method.

VI. CONCLUDING REMARKS

In this paper we proposed a novel algorithm for training
neural networks using second-order information for data-
limited inference. In particular, our algorithm improves on
first-order methods by allowing the use of curvature infor-
mation to improve the quality of each iteration in the opti-
mization method. This is accomplished by using a fast exact
Hessian operation, which allows us to efficiently compute
matrix-vector multiplication with the exact second-derivative
matrix. Unlike previous algorithms that have used this type of
algorithm in a conjugate gradient setting, by using the CG-
Steihaug approach in a trust-region setting it allows us to
relax the requirement that the Hessian be positive definite. This
allows the algorithm to detect negative curvature information
and avoid saddle points. We provided numerical results in a
standard implementation of an MLP classification problem
where the training dataset was limited. In all cases, the
proposed method improves upon a standard implementation
of Stochastic Gradient Descent trained over various epochs.
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