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Abstract—The fast iterative shrinkage-thresholding algorithm
(FISTA) is a well-known first order method used to minimize
`1 regularized problems. However, it is also a non-monotone
algorithm that can exhibit a sudden and gradual oscillatory
behavior during the convergence. One of the parameters that
directly affects the convergence of the FISTA method, whose
optimal value is typically unknown, is the step-size (SS) that is
linked to the Lipschitz constant. Depending on a suitable selection
of the SS either manual or automatic, and the SS evolution
throughout iterations, e.g. constant, decreasing, or increasing
sequence, the practical performance can differ in orders of
magnitude with or without stability issues (oscillations or, in the
worst case, divergence).

In this paper, we propose an algorithm, which has two variants,
to address the stability issues in case of ill-chosen parameters for
a given SS policy (either manual or adaptive). The proposed
method structurally consists of an instability prediction rule
based on the `∞ norm of the gradient, and a correction for
it, which can interpreted as an under-relaxation technique.

Index Terms—FISTA, stable convergence, step-size, convolu-
tional sparse representation

I. INTRODUCTION

Sparse models such as the `1 regularization [1] have consis-
tently received increasing attention in signal processing, image
processing and machine learning. This sparse models can be
raised as a convex optimization problem of the form

min
x∈RN

F (x) := f(x) + λ · h(x), (1)

where f, h : RN 7→ R are both convex functions, ∇f is L-
Lipschitz continuous and h is such that it induces sparsity
and has a computationally simple proximal operator, i.e.
proxλh(y) = arg min

x

1
2‖x − y‖22 + λ · h(x). While there

are many methods to solve (1), e.g. ADMM [2], FISTA [3],
IRLS [4], forward-backward splitting [5] and others, FISTA
is widely used due to its simplicity and applicability in large-
scale problems, generating the iterative sequence

xk = proxαkh
(yk − αk∇f(yk)) (2)

yk = xk + γk(xk − xk−1) (3)

where αk ∈ (0, 1
L ] is the step-size (SS) sequence, and

γk = tk−1
tk+1

, referred to as the inertial sequence, is a weighting
parameter that satisfies: t2k+1 − tk+1 ≤ t2k ∀k ≥ 1.

Unfortunately, FISTA is a non-monotone algorithm that can
exhibit oscillations during convergence [6], [7] of the objec-
tive. Since its rate of convergence (RoC) is directly related to
the SS (see Section II-A), a poor estimation or selection of
this parameter can cause stability issues as oscillations and,
in the worst case, divergence. Compared to a direct objective
function monitoring, [8] has recently been shown that gradient
monitoring can help to anticipate this kind of erratic behavior.

In this paper, we introduce a robustifying stability algorithm,
which has two variants, to effectively prevent potential stability
issues. The proposed algorithm is assessed in the convolutional
sparse coding and convolutional dictionary learning problems,
which are particular cases of `1 regularized problems.

II. PRELIMINARIES

A. FISTA-F3K: an improved FISTA variant

FISTA is one particular variant among several accelerated
methods to solve problem (1), which theoretical RoC is
inversely proportional αk and t2k, the SS and the inertial
sequence respectively, i.e.

F (xk)− F (x∗) ≤ ς ·
‖x0 − x∗‖22

αkt2k
, (4)

for some constant ς . In particular, the well-known O(k−2)
FISTA’s RoC, i.e. F (xk)−F (x∗) ≤ ς · ‖x0−x∗‖22

k2 , is achieved
(see [3, Section 4]) by selecting an inertial sequence such tk ≥
k+1
2 , and by considering αk ≥ αk+1. Past attempts to improve

FISTA’s RoC include alternative inertial sequences [9], [10],
and intertwining the selection of the inertial sequence and the
SS [11], [12]. Very recently, [13] heuristically showed that
FISTA can achieve a RoC proportional to k−3 for the indexes
where the SS exhibits an approximate linear growth, with the
default O(k−2) behavior when the SS’s bound is reached. In
order to generate such exceptional step-size sequence, [13]
proposed to use a modified version of the Cauchy SS

αk = c · ‖sk � gk‖22
‖A(sk � gk)‖22

(5)

where c ∈ (0, 1] is an small multiplicative factor, sk =
supp(xk) = I[|xk|>0] is the support of the current (sparse)
solution, gk = ∇f(xk) is the gradient of f , and A is the
forward operator associated to f(x) = 0.5 · ‖A(x)− b‖22.
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While (5) certainly has better convergence performance
when compared to other adaptive schemes such Cauchy [14,
Section 3] and Barzilai-Borwein [15], the factor c must be
correctly chosen otherwise the resulting SS can force the
objective to have an erratic behavior.

B. Gradient’s behavior in descent methods

Although the classic target in convex optimization is to
analyze the RoC of the functional value in (1), i.e. F (xk),
towards its optimal solution F (x∗), examining the evolution
of ∇f(xk) [16] has also attracted interest in order provide ad-
ditional strategies to improve practical performance of gradient
based methods.

In the case of the (accelerated) gradient method (GD), i.e.
h(x) = 0 in (1), [16] showed that the gradient norm can
attain a small value ‖∇f(xk)‖2 ≤ ε in O

(
4L‖x0−x∗‖2

ε

)
and O

(
(L‖x0−x∗‖2

ε )2/3
)

iterations for GD and its accelerated
version (AGD) respectively. Similarly, other descent methods
[17]–[19] such as stochastic gradient descent and sign gradi-
ent descent have successfully verified that the decrement of
‖∇f(xk)‖ is not limited to `2 norm case.

For the `1 regularized problem, i.e. h(x) = ‖x‖1 in (1), the
convergence of the gradient can be obtained from its dual prob-
lem, resulting in ‖∇f(x∗)‖∞ ≤ λ. In [20], it has been shown
that this bound can be achieved after O

(
κ · log( 2L‖x0−x∗‖2

ε(λ,∇f(x∗)) )
)

iterations, where κ is the condition number of f(x) and
ε(·, ·) depends on λ (see (1)) and the entries of |∇f(x∗)|.
Additionally, it is known that ‖∇f(xk)‖∞ is a sequence that
tends to decrease, but not necessarily monotonously.

C. Robustifying FISTA via `∞ norm

The limit value of ‖∇fk‖∞ plays an important role in
screening techniques [21] for quickly eliminating suboptimal
features in the sparse solution. Recently, in the FISTA context,
[8] has shown that ‖∇fk‖∞ can be employed as an early
warning metric to identify future fluctuations in the objective.
Furthermore, by forcing ‖∇fk‖∞ to be strictly decreasing
(‖∇fk‖∞ ≥ ‖∇fk+1‖∞) [8] heuristically showed that sta-
bility problems can be avoided.

Algorithm 1: Robustifying algorithm proposed in [8]

1 if ‖∇fk‖∞ > τk−1 then
2 Set ∇fk(n) = sign(∇fk(n)) · τk−1,∀n ∈ I
3 τk = τk−1, c = max(cMIN, ρ · c) (used in (5))
4 else
5 τk = ‖∇fk‖∞

Such method can be broken down into an instability alert
rule and a gradient correction, as shown in Algorithm 1, where
I = {n : |∇fk(n)| > τk−1} is the set of “offending entries”.
Since the stability issues like divergence are caused by a too
large SS, a multiplicative factor c as (5) can be used to reduce
the SS, i.e. αk = c · αk. In Algorithm 1, line 3, the factor
c = max(cMIN, ρ · c) is gradually reduced (ρ < 1) until it
reaches a predefined minimum value.

D. Over-relaxation and Under-relaxation

Relaxation technique is a versatile procedure that has been
used in different scenarios [2], [22], [23] where it can en-
hance practical RoC at the cost of stability and viceversa by
modifying the current estimation of a variable from the past
estimation. The general relaxation model is given by

zk+1 = βzk+1 + (1− β)zk (6)

where β ∈ (0, 2) represents the relaxation factor. When the
goal is to prioritize the convergence rate, β should be greater
than 1, case that is known as over-relaxation and, for instance,
it is used to accelerate the ADMM [2, Ch. 3] as well as other
first order methods [23, Section 4]. On the other hand, if β is
less than 1, the relaxation technique is called under-relaxation
in which the modification of the current estimated variable can
be interpreted as a correction that reinforces stability.

III. PROVING CONVERGENCE OF THE SUPPORT GRADIENT
IN FISTA METHOD

On what follows, considering h(x) = ‖x‖1 in (1), we will
assess the impact of replacing ∇f(yk) in (2) by

∇fS(yk) = supp(yk)�∇f(yk), (7)

i.e. gradient whose non-zero elements coincide with those of
the current sparse solution support yk.

We start by expressing the gradient as

∇f(y) = ∇fS(y) +∇fC(y) (8)

where ∇fC(y) is the complementary vector such (7)
holds. By construction, it is a direct exercise to note that
〈∇fS(y),∇fC(y)〉 = 〈y,∇fC(y)〉 = 0. Furthermore, we
also note that

〈x− y,∇f(y)〉 = 〈x− y,∇fS(y)〉+ 〈x− y,∇fC(y)〉
= 〈x− y,∇fS(y)〉+ 〈x,∇fC(y)〉. (9)

Assuming a strict support shrinkage case, i.e. supp(x) ⊆
supp(y), where x = xk+1 and y = xk, then 〈x,∇fC(y)〉
would be zero since all non-zeros elements of ∇fC(y) are
canceled out by the zeros elements of x. Thus, (9) is further
simplified to

〈x− y,∇f(y)〉 = 〈x− y,∇fS(y)〉 (10)

Finally by using (10) in the quadratic approximation of f ,
and after simple algebraic manipulation, we can obtain the
following particular iterative sequence:

xk+1 = arg min
x

1

2α
‖x− (y − α∇fS(y))‖22 + λ‖x‖1

= shrinkαλ(y − α∇fS(y)) (11)

To guarantee that the new sequence (11) converges, the
sufficient decrease lemma [24, Sect. 10.3] has to be proved.
By the decrease equation [24, Sect. 5.1], where (10) is
used, and the second prox theorem [24, Sect. 6.5], where
x = shrinkαλ(y − α∇fS(y)), we have that

f(x) ≤ f(y) + 〈∇fS(y),x− y〉+ 1

2αL
‖y − x‖22 (12)
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〈y − α∇fS(y)− x,y − x〉 ≤ λα (‖y‖1 − ‖x‖1) (13)

where αL is the inverse of the Lipschitz constant of f .
Expressing (13) as 〈∇fS(y),x − y〉 ≤ λ (‖y‖1 − ‖x‖1) −
1
α‖y−x‖22 and plugging such expression into (12), we obtain

F (y)− F
(
T̃α(y)

)
≥ α(2αL − α)

2αL
‖G̃Fα (y)‖22 (14)

where F = f + λ‖ · ‖1, T̃Fα (y) = shrinkαλ(y − α∇fS(y)),
G̃Fα (x) =

1
α (y− T̃

F
α (y)) and the required lemma is satisfied.

IV. PROPOSED METHOD

Inspired by [8], summarized in Section II-C, we present an
improved extension to such framework. Our proposed method
also consists of an instability warning rule and a gradient
correction stage, however, as described below, we modify
both stages. A thorough experimental analysis1 shows that
in general ‖∇fk‖∞ decreases non-monotonically throughout
iterations, even for conservative SS constant values. Thus, in
order to account for such behavior, we proposed to include a
trust bound in the instability warning rule, i.e. we check if

‖∇fk‖∞ > µ · τk−1, (15)

where µ > 1 instead of using the original rule, which takes
µ = 1 (see line 1 in Algorithm 1).

Our experimental analysis1 also showed that when an in-
stability event occurs, there is a drastic alteration in a large
number of ∇fk’s elements, which means an abrupt change
in the direction or directional flow loss. In contrast to [8],
which only changed the “offending entries” that triggered the
activation of the warning rule, we propose to preserve its
gradient direction as much as possible; this is described next.

Assuming that f is linear, then FISTA’s extragradient rule
(2) can be written as

∇f(yk) = ∇f(xk + γk(xk − xk−1)) (16)
= (1 + γk)∇f(xk)− γk∇f(xk−1); (17)

due to its structure, (17) can be considered as kind of over-
relaxation applied to the gradient. As mentioned in Section
II-D, it could promote stability problems. To deal with it,
whenever an instability event occurs, we propose to apply an
under-relaxation:

∇f(yk) = β∇f(xk) + (1− β)∇f(xk−1) (18)

where β < 1 is the under-relaxation parameter. Since (6) can
be regrouped as in (16), it is worth mentioning that we are
only altering the gradient ∇f(yk) but not the point at which
it is evaluated.

As noted in [20], in general the current solution xk tends
to match the support of x∗ after a given number of iterations.
Thus if we consider (8), in this scenario, ∇f(yk) prioritizes
the partial direction to the elements associated with the support
of the sparse solution. Consequently, if an instability event
occurs, we proposed to replace the current gradient by (7):

1While not presented here due to space constrains, it can be fully
reproduced via our companion software [25], [26]

∇f(yk) = ∇fS(yk), (19)

which can be interpreted as another type of under-relaxation.
Finally, for this latter correction, our experimental analysis1

also points out that it is necessary to preserve the support of
the sparse solution in each iteration, thus the support of yk is
limited to that of xk, i.e. yk = supp(xk)� yk.

Algorithm 2: Proposed stability correction algorithm

1 if ‖∇fk‖∞ > µ · τk−1 then
2 Corrections: ∇fk = (18) or (19)
3 τk = τk−1, c = max(cMIN, ρ · c) (used in (5))
4 else
5 τk = ‖∇fk‖∞

V. COMPUTATIONAL RESULTS

Our experiments were carried out on an Intel i7-7700HQ
CPU (2.80 GHz, 6MB Cache, 8GB RAM). Analogous to
[8], we evaluate our algorithms and others ones in the con-
volutional sparse coding (CSC) problem and the convolution
dictionary learning (CDL) problem, (20) and (21) respectively:

arg min
{xm}

1

2

∑
k

‖
∑
m

dm ∗ xm − s‖22 + λ
∑
m

‖xm‖1, (20)

arg min
{xk,m}{dm}

1

2

∑
k

‖
∑
m

dm∗xk,m − sk‖22 + λ
∑
k

∑
m

‖xk,m‖1

s.t. ‖dm‖2 ≤ 1 ∀m, (21)

where x represents a feature map, d is a filter bank, and s is
an observed image that in the CDL case is called training set.

The following robustifying stability algorithms are exam-
ined in this testing section
• BaseCorr: The robustifying algorithm as presented in [8].
• ModBaseCorr: Same as BaseCorr algorithm, but using

a trust bound (15), with µ 6= 1, as a warning rule.
• PropCorr1: The proposed algorithm (see Algorithm 2)

using (18) as the gradient correction.
• PropCorr2: The proposed algorithm using (19) as the

gradient correction.
The experiments are divided into two cases, the CSC and

CDL problems solved via the FISTA method2 (i) with an ill-
chosen fixed SS and (ii) with the adaptive SS (5). Due to space
constraints, we only assess the first case in the CSC context.
For the CSC problem, we consider one different gray-scale
observed image (“Bridge” and “Barbara”) in each case. These
images are corrupted with additive Gaussian noise σ = 0.1.
For the CDL problem, we use 10 gray-scale training images
of size 256 × 256 pixels, cropped and rescaled from a set
of images obtained from the MIRFFLICKR-IM dataset [28].
The adjustable parameters used for both optimization problems
and the robustifying stability algorithms are summarized in

2The FISTA algorithms used to solve the CSC and CDL problems are
extracted from [13] and [27].
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Table I. Furthermore, we heuristically found that the optimal
multiplicative factor µ of the trust bound3 is 1.053 and 1.10
for PropCorr1 and PropCorr2 respectively, while the under-
relaxation parameter β is equal to 0.95.

TABLE I: Summary of the parameters used in our experiments

Experiment Problem Image λ cMIN c ρ

1. fixed SS CSC Bridge 0.6 1 1 1

2. adp. SS CSC Barbara 0.2 0.1 0.2 to 1 0.9
CDL 10 training images 0.1 0.1 0.3 to 0.5 0.9

In the first group of experiments, we will focus on analyzing
the contribution of the instability warning rule and the gradient
correction stage by keeping constant the SS.
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(d) Correction event record

Fig. 1: CSC - A comparison of the FISTA with and without
robustifying stability algorithms for several fixed SS values.

In Figures 1 (a)-(d), we report the progress of the function
value and ‖∇fk‖∞, and the activation of stability correction
events when solving the CSC problem via FISTA with fixed SS
αk from 0.01 to 0.05. As can be observed in the Figures 1(a)
and 1(c), while the functional value of FISTA with fixed SS
αk = 0.01 (blue line) converges monotonically, the evolution
of ‖∇fk‖∞ is not monotonous, there are small increments
between iteration 30 and iteration 50. Furthermore, it easy
to note that a larger SS can provide a faster convergence,
but also can generate stability issues (orange line). For the
case of αk = 0.03, all considered algorithms can address
the stability problems, and thereby achieve the same point of
convergence. However, when comparing our warning rule for
the same gradient correction (purple and yellow lines in the

3The multiplicative factor µ was related to the minimum number of ∇fk’s
elements that can be greater in magnitude than τk−1 without causing loss of
directional flow.
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(c) SS sequence #1
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(d) SS sequence #2
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(f) Correction event record #2

Fig. 2: CSC - A comparison of the FISTA with and without
robustifying stability algorithms for the adaptive SS (5).

Figure 1(d)), our rule helps to considerably reduce the number
of correction events (whose computational cost isn’t trivial),
which are not really necessary since the base algorithm and our
modification of it (purple and yellow lines) attains the same
performance in terms of functional value decay with respect to
number of iterations. On the other hand, when comparing the
two variants of gradient correction with respect to the baseline
(green/PropCorr1, red/PropCorr2 and yellow/BaseCorr lines
in the Figures 1(a) and 1(d)), we can see that only a good
gradient correction was needed to get the best convergence
performance. Another characteristic to consider is that our
proposed algorithms (PropCorr1 and PropCorr2) have a greater
range of effectiveness that allows the usage of the larger step-
sizes, see the Figures 1(a) and 1(b).

As mentioned before the adaptive SS (5) has a good perfor-
mance, but it depends of an adequate selection of the multi-
plicative factor c. In Figure 2(a), we illustrate the experimental
results for four values of c = {0.2, 0.3, 0.4, 0.5}, where
the best value is c = 0.3, nevertheless, there is no guarantee
that this value works in the same CSC problem with other
settings. In CDL problem, each training image has a SS and
therefore each SS should have an associated optimal value of
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c to get the best performance, but in practice a single value is
chosen. It can be seen in the Figures 2 and 3 that, for CSC and
CDL problems, our algorithms (green and red lines) provide
the best convergence behavior and allow to preserve a stable
increasing SS sequences (behind both algorithms achieve good
large c values for each image). As expected, the number of
correction events of our algorithms is also much lower than
the base algorithm (cyan line). Generally speaking, our two
correction versions are competent, however, each one has an
advantage over the other one. PropCorr1 is more generic, not
limited to `1 regularized problems, and PropCorr2 is simpler
in terms of computational complexity.
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Fig. 3: CDL - A comparison of the FISTA with and with-
out robustifying stability algorithms for the adaptive SS (5).
The presented evolution of the SS and correction event are
associated to one of the ten training image.

VI. CONCLUSIONS

FISTA is a gradient-based algorithm that can present stabil-
ity issues (oscillation or divergence) when the SS is wrongly
chosen or estimated. In this article, we have proposed an
efficient algorithm to detect and correct potential stability
issues in FISTA. Compared to its predecessor robustifying
algorithm, for `1 regularized problems as CSC and CDL, our
algorithm has shown to have a better instability warning rule
that reduces possible false alerts. Furthermore, our adequate
gradient corrections allowed to avoid future stability issues
and obtained the best convergence performance.
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[11] R. Gu and A. Dogandzić, “Projected nesterov’s proximal-gradient
algorithm for sparse signal recovery,” IEEE Transactions on Signal
Processing, vol. 65, no. 13, pp. 3510–3525, July 2017.

[12] M. Florea and S. Vorobyov, “A robust fista-like algorithm,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 4521–4525.

[13] G. Silva and P. Rodriguez, “Fista: achieving a rate of convergence
proportional to k−3 for small/medium values of k,” in European Signal
Processing Conference (EUSIPCO), 2019, pp. 1–5.

[14] Y. Yuan, “Step-sizes for the gradient method,” AMS IP Studies in
Advanced Mathematics, vol. 42, no. 2, p. 785, 2008.

[15] J. Barzilai and J. Borwein, “Two-point step size gradient methods,” IMA
Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, 1988.

[16] Y. Nesterov, “How to make the gradients small,” Optima, vol. 88, pp.
10–11, 2012.

[17] J. Nocedal, A. Sartenaer, and C. Zhu, “On the behavior of the gradient
norm in the steepest descent method,” Computational Optimization and
Applications, vol. 22, pp. 5–35, 04 2002.

[18] Z. Allen-Zhu, “How to make the gradients small stochastically: Even
faster convex and nonconvex sgd,” in Advances in Neural Information
Processing Systems 31, 2018, pp. 1157–1167.

[19] L. Balles, F. Pedregosa, and N. Le Roux, “The geometry of sign gradient
descent,” arXiv e-prints, pp. arXiv–2002, 2020.

[20] J. Nutini, M. Schmidt, and W. Hare, “”active-set complexity” of prox-
imal gradient: How long does it take to find the sparsity pattern?”
Optimization Letters, vol. 13, no. 4, pp. 645–655, 2019.

[21] L. Ghaoui, V. Viallon, and T. Rabbani, “Safe feature elimination
for the lasso and sparse supervised learning problems,” CoRR, vol.
abs/1009.3515, 09 2010.

[22] J. Eckstein and D. Bertsekas, “On the douglas-rachford splitting method
and the proximal point algorithm for maximal monotone operators,”
Math. Program., vol. 55, no. 3, pp. 293–318, Jun. 1992.

[23] F. Iutzeler and J. Hendrickx, “A generic online acceleration scheme
for optimization algorithms via relaxation and inertia,” Optimization
Methods and Software, vol. 34, no. 2, pp. 383–405, 2019.

[24] A. Beck, First-Order Methods in Optimization. SIAM, 2017.
[25] G. Silva, “Robustifying stability algorithms - matlab code,”

https://sites.google.com/a/pucp.edu.pe/gsilva/software.
[26] P. Rodriguez, “Simulations for first order methods - python code,”

https://gitlab.com/prodrig/f2o-master.
[27] G. Silva and P. Rodriguez, “Efficient convolutional dictionary learning

using partial update fast iterative shrinkage-thresholding algorithm,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 4674–4678.

[28] M. J. Huiskes, B. Thomee, and M. S. Lew, “New trends and ideas in
visual concept detection: the mir flickr retrieval evaluation initiative,” in
Proceedings of the international conference on Multimedia information
retrieval, 2010, pp. 527–536.

2068


