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Abstract—In this paper we consider a Nonnegative Matrix Fac-
torization (NMF) model on complex numbers, in particular, we
propose a group complex-NMF (cNMF) model that subsumes the
phase-consistency complex NMF for the audio Blind Source Sep-
aration (aBSS). Using Wirtinger calculus, we propose a gradient-
based algorithm to solve cNMF. The algorithm is then further
accelerated using a heuristic extrapolation scheme. Numerical
results show that the accelerated algorithm has significantly faster
convergence.

Index Terms—Nonnegative Matrix Factorization, Blind source
separation, Phase, Wirtinger calculus, Algorithm, Extrapolation

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) [1], [2] is the
problem of finding two nonnegative matrices, W and H, from
a matrix X ∈ Rm×n

+ such that X u WH. Factors W,H
are usually computed by tackling a non-convex optimization
problem which are notoriously hard to solve. By extending
from Rm×n to Cm×n, complex NMF (cNMF) introduces more
variables, which makes the problems even more difficult to
solve. Given X ∈ Cm×n and r, it is defined as follows

min
W∈W,H∈H,Θ∈Ω

D(X|F) +R(F), F := `(W,H, eiΘ), (cNMF)

where the sets W = Rm×r
+ , H = Rr×n

+ , Ω = [−π, π]m×n×G

are all convex, the function D measures the distance between
X and F. For simplicity in this paper we focus on the
Euclidean norm, using D(X|F) = 1

2‖X−F‖2F . We refer the
reader to [3] for the general case of β-divergences. The term
R is a regularization known as the consistency; which will be
discussed in Section II-B.

The estimator F is computed via the function ` :W×H×
Ω → Cm×n that produces a matrix to fit X. Three examples
of ` are:

rank-1 1-phase: F = WH� eiΘ, (1a)

rank-1 multi-phase: F =

r∑
j=1

(
wjh

j � eiΘj

)
, (1b)

grouped multi-phase: F =

G∑
j=1

(
WrjH

rj � eiΘj

)
, (1c)
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where W,H are real and eiΘ is complex, � is the Hadamard
product, i =

√
−1 and ei(·) is the component-wise complex

exponential. For fitting the phase angle of X, Model (1a)
introduces the angle Θ. Let wj ,h

j denote the jth column
of W and jth row of H, respectively. We have

WH� eiΘ =
( r∑

j=1

wjh
j
)
� eiΘ,

so (1b) considers the more general case where each rank-1
factor wjh

j has its own phase eiΘj ; this model was introduced
in earlier papers on complex NMF [4], [5].

In this paper we introduce (1c), which we refer to as the
grouped multi-phase model as a natural generalization of (1b);
see Section II.
Application cNMF finds applications whose data belongs to
the complex domain, a typical example is the audio Blind
Source Separation (aBSS) [6]–[8]. It is also related to phase
retrieval [9] and finds applications in optics. In this paper
we use aBSS as an illustration, which we discuss further in
Section II.
Contribution and organization This paper has two contribu-
tions. First we introduce cNMF with (1c), which generalizes
cNMF (1b) studied in [4], [5]; see also [10]. The model (1c)
comes naturally from (1b), but it has never been addressed, to
the best of our knowledge. Then, the main contribution of this
paper comes in the design of a single algorithm framework
for solving cNMF that covers the variants in (1). Although
W,H in cNMF are real, in general we can treat W,H,Θ
as complex variables, and use a systematic approach based on
the notion of Wirtinger calculus [11], [12] to design gradient-
type algorithm to solve cNMF; see Section III. Furthermore,
we adapt the heuristic extrapolation strategy from [13]–[15]
to our proposed Wirtinger gradient scheme to solve cNMF,
which significantly accelerates its convergence; see Section IV
for numerical experiments.
Scope of the paper This paper focuses on algorithmic
aspects. We do not benchmark the proposed algorithms with
other frameworks on performance w.r.t. aBSS as dedicated
data preprocessing, post-processing and parameter tuning are
required.

II. CNMF MODELS AND ABSS
This section serves as the literature review and background

of the paper. We first present how real NMF as in [7], [8]
is used to solve single-channel aBSS as shown in Fig.1, then
we move to the cNMF previously studied in [4], [5]. Finally
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we describe how to generalize these model to the grouped
multi-phase model.
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Fig. 1. The processing pipeline as in [7], [8] on using NMF to solve aBSS.

A. Real NMF on single-channel aBSS

Let [r] := {1, 2, · · · , r}. Assume r audio sources {sj ∈
RL}j∈[r] are linearly mixed as x =

∑
j sj , aBSS aims to

recover sj from the observation of their mixture x ∈ RL. We
follow the data processing pipeline (Fig. 1) to estimate these
sources. First we compute X = Ψω(x), where Ψω denotes the
Short-Time Fourier Transform (STFT) with an analysis win-
dow ω, and X is the spectrogram containing the distribution of
“energy” of the signal across time-frequency coordinates. Such
information can be extracted by NMF methods through the
computation of W,H that respectively capture the frequency
and temporal patterns [8], [16]. NMF is used here since both
the frequency spectrum and time activations are nonnegative.

For aBSS with NMF methods, the input matrix V typically
corresponds to the amplitude spectrogram derived from X as
V (k,m) = |X(k,m)| for all k,m. Then we find W,H by
solving the (real) NMF problem:

[W,H] = min
W,H

1

2
‖V −WH‖2F s.t. W ∈ W,H ∈ H. (2)

From WH, each rank-1 matrix wjh
j ∈ RK×M

+ is converted
to a component spectrogram Yj ∈ CK×M by multiplying
wjh

j element-wise with the phase of the mixture spectrogram
X as follows: Yj = wjh

j � eiΘ, where phase spectrogram
eiΘ ∈ CK×M is defined by Θ(k,m) = ∠X(k,m) with
the argument function ∠ that returns the angle of the input
complex number. Finally, Ψ†ω̃Yj is computed to generate

the vector yj ∈ RL, where Ψ†ω̃ is the pseudo-inverse of Ψ
associated to the synthesis windows ω̃.
Usual assumptions when using NMF for aBSS Under some
conditions we expect the vectors yj to accurately estimate the
sources sj . Two of these assumptions are:
• Consistency: each Yj is consistent w.r.t. to Ψ.
• Rank-1 source: each source is well-approximated by a

rank-1 matrix.
Relaxing these assumptions lead to model (1b) and (1c).

B. Complex NMF and consistency

By directly consider factorizing X instead of V, we arrive
at cNMF (1a). We now explain the regularizer term. As
Fourier transform is not surjective, this implies that a matrix
P ∈ CK×M does not necessarily corresponds to the STFT of
a vector. In that case, we say that P is not consistent w.r.t.
Ψω [5], [10], [17]–[19]. Since the phase is not considered
for the computation of W,H in (2), it is possible for the
aforementioned pipeline to produce inconsistent Yj , although
X is always consistent. To generate consistent solutions, we
can consider the phase-consistent [5], [10], [17]–[19] cNMF:

min
W∈W,H∈H,Θ∈Ω

D(X|F) +R(F), R(F) =
λ

2
‖E(F)‖2F (3)

where λ is a penalty weight (nonnegative scalar), and the term
E is the phase-inconsistency error defined as

E(F) := F−ΨωΨ†ω̃F = BF, B := I−ΨωΨ†ω̃, (4)

we call a matrix P consistent if E(P) = 0.

C. Multi-phase and group factorization

We now discuss how (3) can be generalized by cNMF (1b),
which is then naturally extended to cNMF (1c).
Multi-phase Note that there is only one Θ in (3), meaning all
the r rank-1 component amplitude spectrograms wjh

j share
the same phase. The multi-phase model considers the general
case that different sources can have a different phases. In this
case, Θ ∈ Rm×n×r is a 3rd-order tensor, where the jth frontal
slice of it, denoted as Θj , corresponds to the phase angle of
the jth source estimate. This leads to the model cNMF (1b).
Group factorization NMF [7], [8] and cNMF (3) assume
each source is well-approximated by a rank-1 matrix in the
factorization, and the factorization rank r corresponds to
the number of sources. Such an assumption only holds for
relatively simple data, and in practice complex real-world
audio sources cannot be well-approximated by a rank-1 term.
Here we consider using a grouping of rank-1 components to
approximate the amplitude part of a source, in this way we
arrive at cNMF (1c), where Wrj ,H

rj are rank-rj nonnegative
matrices with rj columns or rows, respectively. In this case,
we are considering a rank-r NMF with r =

∑G
i=1 ri and G is

the total number of groups (number of sources). Immediately,
we see a drawback of such model: having more parameters, in
particular the parameters r1, · · · , rG which correspond to the
model orders. As model order selection is a research topic on
its own, in this paper we do not deal with the strategy to tune
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these parameters, instead we fix their value for the numerical
experiments based on simple prior inspection of the data. For
example, a simple heuristic is to use the SVD to numerically
check what is the rank of each portion of the data.

Now, we see that real NMF (2)⊆ cNMF (1a) = (3)⊆ cNMF
(1b) ⊆ cNMF (1c). Thus it is meaningful to study how to
effectively solve cNMF, which is the main subject of the next
section. Note that fitting a complex matrix is in general harder
than fitting a real matrix, this can be easily understood since
the equality between two numbers is a stronger assumption
on C than R as it requires the equality in both modulus and
phase. Furthermore, we recall that in [4], [5], sophisticated
algorithms based on the MM framework with multiplicative-
type update are derived to solve cNMF (1a), which are not
suitable here since they cannot directly be used to solve
cNMF (1c). Moreover, these algorithms can potentially have
slow convergence rates. In fact, multiplicative-type updates
are well-known to convergence slower than gradient-based
algorithms for NMF when using the Frobenius norm [20]; see
also [2], [21] and the references therein. In the next section,
we derive a fast gradient-based algorithm to solve cNMF.

III. ALGORITHMS FOR CNMF MODELS

Here we first review the background on Wirtinger calculus
(W-calculus) [11] following similar approach presented in [22,
Section 6], and then we present our method to solve cNMF.
For details on W-calculus, see [12].

A. W-derivatives on real-valued function of complex variable

In general, functions defined on Cn are not holomorphic,
i.e., they are not complex-differentiable on their domain. A
first naive approach would be to consider a related function
defined on R2n such that calculus rules on R can be used.
However, this approach can be rather tedious. W-calculus pro-
vides an alternative equivalent formulation, with compact and
elegant notation. The core ideas are the W-differential operator
and the use of conjugate coordinate [z, z∗]> when computing
the full gradient. Denote ∂zf = ∂f

∂z for a differentiable f
and let z∗ = z̄, the W-derivative w.r.t. z = x + iy ∈ C,
x, y ∈ R, and its conjugate z∗ := x − iy, respectively, are
∂zf =:= 1

2 (∂xf − i∂yf), and ∂z∗f := 1
2 (∂xf + i∂yf). If f is

real-valued,
(∂zf)∗ = ∂z∗f. (5)

For real-valued multi-variable function f : Cn 3 z =
[z1, z2 . . . , zn]> → w = f(z) ∈ R, the partial gradient w.r.t.
z and z∗, and the full gradient are:

∂zf :=

∂z1f...
∂znf

 , ∂z∗f :=

∂z∗
1
f

...
∂z∗

n
f

 and ∇f :=

 ∂zf

∂z∗f

∗ ,
(6)

where the full gradient ∇f consists of the partial gradients
∂zf and ∂z∗f . As we work on real-valued f , then applying
(5) in (6) means that we only need to compute one partial
gradient, as the other one is its conjugate. We are now ready
to discuss how to solve cNMF.

B. The gradient-update steps

We now discus how to solve cNMF. For simplicity here we
focus on cNMF with F = WH�eiΘ, that is, (1a). The same
approach applies to the other cNMF models. In general, we
solve (3) by the (inexact) Block Coordinate Descent (BCD):
we alternate on solving each sub-problem on one block of
variables while fixing the others at their most recent value.
We now discuss how to solve each subproblem.
Subroblem in W This subproblem has the following form

min
W≥0

f :=
1

2
‖(WH)�D−X‖2F +

λ

2
‖B
(
(WH)�D

)
‖2F , (7)

where D = eiΘ. We solve (7) by iterating the projected
gradient step (proximal gradient step)

Wk+1 = Re
{

argmin
W

〈
∇Wf(Wk,Hk,Θk),W

〉
+
Lk

W

2
‖W −Wk‖2

}
+ i+(Re{W})

=
[
Re
{

Wk −
1

Lk
W

∇Wf(Wk)
}]

+

(8)

where Re( · ) takes the real part, Lk
W is the Lipschitz constant

of the gradient at iteration k, i+ is the indicator function of the
nonnegative orthant that encodes the non-negativity constraint,
and [ · ]+ = max{ · , ε } with ε a small positive value. Using
W-derivative, the gradient w.r.t. the Hermitian WH is

∂WHf = H
(
DH � (QF−X)>

)
:= g(W>), (9)

where Q := I + λBHB and F is a linear function of W:

F = (WH)�D. (10)

As W is real, by (5), the gradient of f w.r.t. W is the transpose
of g(W>). For the Lipschitz constant LW of the gradient (9),
let ∆W = W1 −W2 and ∆g = g(W>

1 )− g(W>
2 ), we have

‖∆g‖2
(9)
=

∥∥∥∥H(DH �
[
Q
(
F>(W>

1 )− F>(W>
2 )
)])∥∥∥∥

2
(10)
=

∥∥∥∥H(DH �
[
Q
((

∆WH
)
�D

)>])∥∥∥∥
2

≤
∥∥H∥∥2

2

∥∥DH �D>
∥∥

2
‖Q‖2︸ ︷︷ ︸

LW

‖∆W‖2.

(11)
Subproblem in H By taking transpose, the subproblem on
H is symmetric to (7), we use the same approach to solve it.
Suproblem in Θ Based on (7), the subproblem in Θ is

min
D∈D

f(D) :=
1

2
‖A�D−X‖2F +

λ

2
‖B(A�D)‖2F , (12)

where A = WH and D = eiΘ. Note that we use the change
of variable D to replace Θ as the variable, and note that since
complex exponential has unit norm, this requires an additional
constraint

∣∣[D]ij
∣∣ = 1, so that D in (12) is the set of complex

matrices whose elements have a magnitude equal to one. Note
that the set D is nonconvex, which affects the convergence
analysis; see the discussion in Section III-C.
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To solve (12) and update D, we follow the same approach
as for (8), and use

Dk+1 = PD

{
Dk −

1

Lk
D

∇Df(Dk)
}
, (13)

where PD is the projection onto the set D. Take D as W
in (7) with H set to I, the the same update (9) can be used
with LD = ‖A�A‖2‖Q‖2. Lastly, we get Θk from Dk by
Θ = ∠D.

C. The overall algorithm and convergence

Algorithm 1 shows the simplified pseudo-code of the overall
algorithm. At first glance it looks tempting to apply some well-
established convergence analyses for, say proximal gradient
method and block coordinate descent to derive the theoretical
convergence of the algorithm. However, we emphasize that
the algorithm is a heuristic and we currently do not have a
rigorous proof of convergence. It is important to note that
cNMF involves complex variables, while the aforementioned
convergence analyses are all built upon the assumption that the
objective function sits in R, hence it is unclear how to apply
convergence analysis from the real case on the complex case.
Furthermore, if it turns out the “real analysis” can be applied
on such a complex problem, the convergence analysis is still
nontrivial as the update step of D involves a projection onto
a nonconvex set, leading to theoretical complications from the
projection PD in the update (13).

Although we do not have theoretical convergence, we have
observed empirically that the algorithm decreases the objective
function; see Section IV and in particular Figure 3.

Algorithm 1: Alternating Projected Wirtinger gradient
Result: W,H,Θ that solves cNMF (1a)
Initialize W0,H0,Θ0,D0 = eiΘ0 ,Q = I + λBHB;
for k = 1, 2, . . . do

Get Wk+1 using (8) and (11);
Get Hk+1, Dk+1 similarly as W;
Get Θk+1 from Dk+1;

end

D. Acceleration by heuristic extrapolation

Algorithm 1 can be accelerated using extrapolation, and we
adopt the framework of Heuristic Extrapolation and Restart
(HER) [13]–[15], which has been shown to be very ef-
fective on accelerating the convergence of NMF-type algo-
rithms with the Frobenius norm. In a nutshell, HER is a
numerical extrapolation scheme based on the extrapolation on
the sequence {Wk,Hk}k=1,2,... using an auxiliary sequence
{Ŵk, Ĥk}k=1,2,... as follows:

Wk+1 = Update(Ŵk, Ĥk),

Ŵk+1 =
[
Wk+1 + βk(Wk+1 −Wk)

]
+
,

Hk+1 = Update(Ŵk+1, Ĥk),

Ĥk+1 =
[
Hk+1 + βk(Hk+1 −Hk)

]
+
,

where Update can be the gradient update as in (8), and
βk is the extrapolation parameter automatically tuned based
on the HER scheme. The acceleration effect of HER comes
from the combination of extrapolation, cheap restart (safe
guard mechanism) and a numerical scheme on updating the
extrapolation weight βk; see [14] for more details. Lastly, we
emphasize that currently there is no theoretical convergence
guarantee for the HER framework, but HER empirically works
well in practice; see Section IV.
Remark on HER In principle we can also extrapolate the
variable D in the same way as W and H. However we do
not perform extrapolation on the variable D. The reason is that
we empirically observed that not extrapolating D performs
better, although extrapolating D is still much faster than the
unextrapolated original gradient-descent algorithm.

Note that currently the theoretical understanding of the
HER mechanism is still very limited. Let us try to give a
partial explanation of the ineffectiveness of extrapolating D
in the HER framework on cNMF. Since D is to be projected
element-wise such that

∣∣[D]ij
∣∣ = 1, that is, all the elements

of D sits on the unit circle on the complex plane, then the
effect of extrapolating D ultimately is just a rotation on the
elements of D, and we hypothesize that the HER framework
is not a good set up for performing this kind of rotational
extrapolation, since it was original proposed for speed up NMF
computation in the Frobenius norm in the Euclidean geometry
on the rectangular coordinate system. Understanding how to
extrapolate D effectively is an interesting future research topic.

IV. EXPERIMENT

We present numerical results to confirm the effectiveness of
the proposed algorithm, and to show case the effectiveness of
the acceleration. The code is available at angms.science.
Before we go to the details of the experiment, we remark that:
• As mentioned in the beginning of the paper, the task

of aBSS itself contains highly involved data processing
pipeline such as parameter tuning, data pre-processing,
filtering and post-processing, which is not the focus of
this paper, so we do not focus on these issues and demon-
strate that the proposed algorithm has a fast convergence
in practice. We set λ = D(X|F0)

R(F0) in all the experiments,
where F0 = `(W0,H0, e

iΘ0) and W0,H0,Θ0 are
initialization of the variables W,H,Θ. This makes the
two terms in the objective function well balanced.

• We do not benchmark with the algorithms proposed in
[4], [5] because the codes are unavailable. See also the
discussion in the last paragraph in Section II-C.

We run Algorithm 1 (with and without HER, with the same
random initialization) on two data sets (see Fig. 2), which are
both real-world recording with some ambient noise: “Mary”,
X ∈ C256×714, a piano music phrase “Mary had a little lamb”;
and “Voice”, X ∈ C256×162, a speech of the letters “NMF”.
We run cNMF (1a) on Mary with r ∈ {3, 6} and on Voice with
r = 75. We run group cNMF (1c) on Voice with G = 3 and
two sets of rj : r1 = r2 = r3 = 15 and r1 = r2 = r3 = 25,
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(recall that r =
∑G

j=1 rj). All the experiments are repeated 20
times with different random initialization of (W0,H0,Θ0).
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Fig. 2. The spectrograms of the two datasets Mary and Voice.

Fig. 3 and Fig. 4 show the convergence results. First we
see that the HER framework significantly accelerates the
convergence. Second, comparing the result on cNMF (1a)
on Voice with r = 75 to group cNMF (1c) on Voice with
G = 3, r1 = r2 = r3 = 25 so r =

∑G
j=1 rj = 75, the group

models have a lower objective function value. This is expected
as group model uses more phase variables to fit the data.
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Fig. 3. Convergence of the objective function values D+R on cNMF tests.
x-axes are iteration. We do not show the time plots as the cost per iteration
of both algorithm is almost identical (HER adds a negligible cost [13]).
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Fig. 4. Convergence curves on group cNMF tests. Here the curves are the
mean over 20 experiments.

V. CONCLUSION

In this paper, we introduced the group cNMF model that
subsumes the existing cNMF and real NMF models. Using
Wirtinger calculus, we derived a general gradient-based algo-
rithm to solve cNMF. By using the heuristic extrapolation with
restart, we showed that, on a few preliminary numerical tests,
the accelerated algorithm has a much faster convergence.

Future works include studying the convergence of the al-
gorithm, performing tests with respect to the task of aBSS,

and consider replacing the Frobenius norm in the data fitting
term by β-divergences which is more appropriate for audio
data sets, and also study identifiability issues as in [8].
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