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Abstract—Portfolio selection (or portfolio optimization) has
been a fundamental problem in the financial investment world
since the modern portfolio theory (a.k.a. mean-variance analysis)
was introduced by Harry Markowitz in 1952. The goal of
portfolio selection is to assign different portions of dollars to the
underlying assets according to a certain investment target. In
practice, to overcome the high sensitivity to inevitable estimation
errors of the input parameters, regularization techniques have
been introduced for portfolio stabilization. Besides, regularization
techniques have been shown to be capable of achieving some
other goals like selecting sparse portfolios and grouping assets
whose returns exhibit colinearity. While achieving such merits,
acclaimed regularizers like the /;-norm may bring an adverse
effect on the original portfolio design target. In this paper, a novel
framework for vast portfolio selection is proposed via the lens
of submodular set functions, which can select a sparse portfolio
according to the influence that each asset exerts on the overall
portfolio risk. An efficient and convergent algorithm based on
the alternating direction method of multipliers is developed for
problem resolution. The superiority of the proposed portfolio
selection framework is demonstrated with numerical simulations
on real market data.

I. INTRODUCTION

Portfolio selection (or portfolio optimization) is a funda-
mental problem in finance, which aims at assigning different
portions of dollars to the underlying assets according to a
certain investment target. In the early days, portfolio selection
was commonly done based on the personal expertise of
investors. In 1952, Markowitz ushered in the modern era of
portfolio selection by introducing the mean-variance analysis
[1], leading to the renowned mean-variance portfolio (MVP).
The idea of MVP later becomes the backbone of the large
majority of portfolio selection frameworks in the financial
industry [2]. Despite its mathematical elegance, the vanilla
MVP is prohibited by practitioners in the real financial world
since the resulting portfolio weights are highly sensitive to
the inevitable estimation errors in the asset expected returns
and the asset return covariance matrices [3], which will result
in unstable portfolio weights. Apart from that, the existence
of multicollinearity in asset returns can cause extremely long
and short positions with vanilla MVP, leading to high gross
exposure of the portfolio [4]. Furthermore, the above issues
can be more pronounced in the vast portfolio selection cases
(i.e., the asset universe is large) [5].
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To tame the troublesome instability and colinearity issues
in vanilla MVPs, regularization procedures have been adopted
for portfolio selection [6]-[8]. With proper regularizers, the
regularized MVPs (RMVPs) can not only stabilize the portfo-
lio weights but also promote sparsity (i.e., only select a subset
of assets) which is essential for vast portfolio selection [3].
One of the most famous regularizers therein is the ¢;-norm
that is largely used in portfolio selection and many others [9]-
[11], with which the RMVPs can realize sparsity and stabilize
the allocation. However, the ¢;-norm becomes invalid in the
presence of the long-only constraint (i.e., portfolio weights
must be nonnegative) as it degenerates to a constant. Besides,
the RMVP with ¢;-norm will randomly select one or several
among the assets that are highly correlated [12], resulting in in-
consistent portfolio weights over different investment periods
and cause high portfolio turnovers and hence high transaction
costs [13]. To overcome the defects of the ¢;-norm, some
weighted ¢;-norms have been introduced. E.g., the sorted ¢;-
norm [14], [15] becomes prevailing in the portfolio selection
field since with it the RMVPs can not only realize stable and
sparse portfolios, but also group the highly correlated assets
to which the same weights will be assigned [16]. Besides
that, the sorted /;-norm still works in the long-only case.
Note that many other regularizers have also been used in
portfolio selection, such as the ¢3-norm (with which RMVPs
can stabilize the allocation but cannot promote sparsity) [17],
the combination of the ¢;-norm and the /.,-norm (a variation
of the sorted ¢1-norm) [12], and so on.

Although some issues of the vanilla MVP can be alleviated
with regularizations, it is acknowledged that the inclusion of
the regularizers like the ¢;-norm will inevitably influence the
original objective (e.g., portfolio risk minimization), which is
a burning question in the field of portfolio selection [16]. To
address this, we consider constructing regularizers for RMVP
from a previously unconsidered perspective, that is, develop-
ing regularizers via the lens of submodular set functions. It
can be seen that the aforementioned widely-used regularizers
are all defined from the continuous optimization perspective,
while the asset selection procedure involved in vast portfolio
selection can be naturally regarded as a discrete optimization
problem [18]. Therefore, regularizers can also be developed
with set functions from the discrete optimization standpoint
[19], through which new regularizers can be obtained.

In this paper, a submodular set function that can indicate the
risk of sparse portfolios (i.e., the risk control set function) is
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induced from the global minimum variance portfolio (GMVP),
based on which a novel regularizer called risk control norm
(RCN) is proposed. Regularized by RCN, RMVPs can select
sparse portfolios according to the influence that each asset
exerts on the overall portfolio risk. To solve the resulting
portfolio selection problems, an efficient and convergent algo-
rithm based on the alternating direction method of multipliers
(ADMM) [20] is further developed, which is scalable and
especially amenable to vast portfolio selection scenarios. It
should be noted that the RCN can also be applied to many
other portfolio selection problems or under additional portfolio
constraints and the proposed ADMM algorithm is applicable
with slight modifications. Furthermore, many existing regular-
izers such as the #;-norm and sorted ¢;-norm can be obtained
through submodular set functions and new regularizers can be
developed by following the similar scheme of designing RCN.
Numerical simulations on real market data will showcase
the superiority of the proposed RCN regularized portfolio
selection framework.

II. PORTFOLIO SELECTION VIA THE RISK CONTROL NORM
A. The Risk Control Set Function o2(K)

Consider N available financial assets in the market with
asset returns at time ¢ denoted by r; = [r1,... ,rNyt]T. For
a portfolio defined by w = [w1, ..., wy]" that represents the
proportion of dollars invested on the N assets, its expected
return is given by

ww)=E [WTI‘t] =wlE[r] =wlp,
where g = [p1,..., un]" is the expected return vector of the
N assets. And the variance of the portfolio, commonly called
portfolio risk, is calculated by

o*(w)=FE “WTI‘t — u(w)|2] =wlEw,

where ¥ = E {(rt — ) (ry — u)T} is the covariance matrix
of the N asset returns.

Based on the portfolio risk o%(w), the renowned GMVP
problem [1] is given by

minimize wlXw

w
subjectto 17w =1,

(1)

where 17w = 1 denotes the portfolio budget constraint with
1 denoting the all-one vector.

Lemma 1 ( [21]).l The optimal solution of the GMVP problem
11

: >
(l) is w* = 1Ts—17°

Denote ' = {1, ..., N} as the index set of all the available
assets. Suppose we target at designing a sparse portfolio and
use K = {j1,...,7x} €N with K = |K| (the cardinality of
K) to denote the index set of the active assets in the sparse
portfolio. Then, we can obtain the active asset weight vector
wi € RE, which is a subvector of w. Accordingly, the active
asset return vector and the active asset-active asset covariance
matrix can be defined as pu € R¥ (a subvector of u) and
Six € REXK (a submatrix of X), respectively.

Based on Lemma 1, the risk of a sparse optimal GMVP for
a given cardinality level K is given by

13t byt |
2 *T * K<KK KKK
() = wi Texwi = ———=2 | s
1
121,
K“KK+K

where the all-one vector 1x € RX. The 02(K) is a set
function, which can be used to control the risk of the portfolio
w by properly selecting the active asset in . In this paper,
o2(K) will be named as the risk control set function. For
portfolio optimization problems, their design objectives can
be jointly optimized with o2(K) to select sparse portfolios,
through which sparse portfolios can be selected according to
the influence that each asset exerts on the overall portfolio risk.
As a matter of fact, directly minimizing o2(K) can make the
problem resolution prohibitive due to the high computational
complexity resulting from its combinatorial nature. In the next
section, we will resort to find a convex continuous substitution
for the risk control set function.

B. The Risk Control Norm ¢ (w)

We first give several useful results.
Definition 2. [Lovasz extension [22]] Given a set function F’
with F(#) = 0 and w € RY, its Lovdsz extension f : RY —
R is given by

N
Fw) = (F(Kn) = F (Kn-1)) [wj, |
n=1
where (j1,...,jn) denotes one permutation of {1,...,N}
such that |w;, | > ... > |w,y| and K,y = {j1,...,jn} "
Definition 3. [Submodular set functions [23]] Consider N =
{1,..., N} with N = |NV] and its power set (i.e., the set of all
subsets) denoted by N , a set function F : 2N 5 R is said to
be submodular if and only if, for any subsets A C B C N and
an element ¢ € N'\B, it follows that F' ({A,c}) — F (A) >
(F({B,c}) — F(B)).
Proposition 4 ( [24]). Assume submodular set function F' is
non-decreasing and strictly positive for all singletons, then it’s
Lovdsz extension f(w) is a norm and it is the convex hull of
F(supp(w)) on the unit {-ball with supp(w) denoting the
support of w.

In this section, we will try to find a continuous surrogate of
o2(K), where a natural candidate is its convex hull [25]. In
general, computing the convex hull of a set function is NP-
hard, while the convex hull of a submodular set function that
satisfies the condition in Proposition 4 can be easily obtained
through its Lovasz extension [22]. However, it can be proved
that the o2(K) is not submodular, hence we will first find a

submodular substitute for o2(K). Observing that

a2(K) <Zkklly < 1Zxkllp < 1Zenlle 2)
holds for all K, where S nr € RE*Y s defined as the active
asset-all asset covariance matrix (a submatrix of ). And it can

The subscript n in notation X, has been uesd to denote the cardinality
level of the set, i.e., |[KCp| = n.
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N

Ly(w,z,u(z),v(y)) =w Zw —ngw’ p+ Z Nz |+ (1Tw—1) +y" (w—2z) +

n=1
N

=wlSw —npwlp+~y Z A

n=1

[N

[(1TW - 1)2 +|lw— zHg}

zj, | + g {(1TW -1+ u)2 +|w—z+ V||§] + const.,

(AL)

be verified ||Xi || is actually submodular while ||kl
and || Xk are not, hence we will choose || X x| as the
submodular substitute for o%(K). Furthermore, since || Zxn|| -
satisfies all the conditions in Proposition 4, its Lovasz exten-
sion ¢ (w) is a convex norm, which is given by

N

N
(b (W):Z(||EK:71.N||F_HEK:W.71N||F) |an|:Z )\jnlen| ;
n=1

(RCN)
where A, = [|Zk, v llp = | B, |-

In this paper, we will name ¢ (w) as the risk control
norm (RCN) since it measures the portfolio risk, and the
RCN will be incorporated as a convex surrogate of o2(K)
in the vast portfolio selection problems as a regularizer. It is
also worth mentioning that the above scheme of inducing the
RCN from the portfolio risk can also be adopted to develop
regularizers based on other criteria. Besides, some existing
popular regularizers like the commonly used ¢;-norm and the
sorted ¢1-norm in portfolio selection literature can also be
explained from the viewpoint of submodular set functions [26].

It should be noted that although ¢ (w) takes the form of a
weighted ¢;-norm, different from the traditional weighted /¢;-
norm with heuristic constant weights, the weights of ¢ (w) is
adaptively derived from || 3 ||, representing the influence
that each asset exerts on the overall portfolio risk. To be
more specific, in 02(K) the asset with lower risk will be
assigned with lower weight, and vice versa. In view of this,
under a given sparsity level the RCN regularized portfolio
tends to choose assets that will contribute lower risks to the
whole portfolio, while the popular ¢;-norm and sorted /-
norm cannot attain this property. To explain this in another
way, if we exchange the portfolio allocation weights of two
assets (assume the portfolio allocation weights of them are
different), the values of ¢;1-norm and sorted ¢;-norm will not
change, while the value of RCN will change if the risks of
these two assets are different, through which the superiority of
RCN is obvious. This conjecture becomes the main motivation
for designing this RCN for vast portfolio selection problems
which will be detailed in the next section.

C. Risk Control Norm Regularized Portfolio Optimization

In this paper we mainly investigate the RMVP optimization
problem regularized by RCN which is given by
wiSw —gw’ p+ ¢ (w)

w
subjectto 17w =1,

minimize
(RMVP-RCN)

where 1 and v are tuning parameters. As a special case,
if . = 0 it becomes the regularized GMVP (RGMVP)

problem. Problem (RMVP-RCN) is convex, for which efficient
algorithms with global optimality guarantee can be derived.

It also need to be mentioned that apart from the RMVP and
RGMVP problems, the RCN can also be extended to other
portfolio selection problems like the index tracking portfolio
[27] and the hedge portfolio [28] and it can also be applied
under additional portfolio constraints [29].

III. ADMM ALGORITHM FOR RCN REGULARIZED
PORTFOLIO OPTIMIZATION

In the section, we will develop a problem-tailored and
scalable algorithm to tackle problem (RMVP-RCN). It should
be noted that although problem (RMVP-RCN) is convex, it
cannot be programmed by the disciplined convex program-
ming language CVX [30] or other off-the-shelf solvers due to
the special structure of A;_ . To handle this issue, an efficient
algorithm based on ADMM [20] will be developed. Besides,
due to its ability in variable splitting, ADMM is efficient in
“arbitrary-scale” optimization problems, which is beneficial to
the vast portfolio selection problems.

For the algorithm development, an auxiliary variable z is
firstly introduced and then problem (RMVP-RCN) can be
rewritten as follows:

minimize w!Xw —nw’lpu+ ¢ (z)

w
subjectto 17w =1, w = z.

3)

The augmented Lagrangian function of (3) is then given in
(AL), where p > 0 is a constant penalty parameter, the scaled
dual variables are accordingly defined as u £ Sz and v £ Jy
respectively, and const. represents the constant term. Based on
ADMM, the variables (w,z,u,v) will be updated cyclically
by minimizing (AL).

The w-minimization step. To minimize L, over w, we
first find a majorized function of (AL).
Lemma 5 (Quadratic Majorization [13]). Let A € RY, at any
given point wt) € RN the following relation holds w™ Aw <
Ypwlwr2w? (A —gI) w) +wOT (I — A) w®, with the
equality attained at w = w®) and the constant 1 is greater
than the largest eigenvalue of A.

Based on Lemma 5, a majorized function of (AL) with
respect to variable w is

F(®) ) () ¢
T (w, 20, u® v® | w®)
=ypwlw + 2w’ (T + gllT —ypDw® —pwlp

+ p(u® — 117w + g lw—z+ v||§ + const.

=+ g)HW —m®|2 + const.,
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where ¥ > Ao (2 +5117) and m® 2 =2 (2

+2117 — YD) w® —pp+ p (u® = 1) 1 4 p (v — 2]

Instead of minimizing the original problem (AL), problem
(4) will be minimized to update w(**t1) which is given by
wit+t) :argmin{(w + g)Hw —m®|2 + cst.}
-1
20+

[2(2 + 511T —ypDw® —np )

+p(u = 1)1+ p(v(® = 20)].

The z-minimization step. The augmented Lagrangian func-
tion L, in terms of variable z is

LW, z2,u® v 1) = Lz — a2 476 (2) + cst.

where n(Y) £ w(t+1)  v() By replacing ¢ (z) with its dual
norm, the updating for variable z is a proximal step [31] as

N N
minimize  max Lllz—n® |2+ >0 ka2,

_ € ©)
subjectto 1"k < |[Znn|lp,
which can be solved via decomposition algorithms [24].
Dual variable update. The updating rule for the dual
variables v and v are accordingly given by

wlHD) (0 1Ty (4D _

GO+ G0 g+ 1)

)

In summary, variables (w,z,u,v) will be updated cycli-
cally until some convergence criteria are attained. The overall
algorithm is outlined in Algorithm 1.

Algorithm 1 The ADMM Alg. for Prob. (RMVP-RCN)

Input: 3, p, v, and ¢ > Amax (Z + £117).
Initialize w(® = 11, 29 =v(© =0, u(® =0, t = 0.
Repeat

1) Updating variable w via Eq. (5);
2) Updating variable z by solving Prob. (6);
3) Updating variables u and v via Eq. (7);
4) t+—t+1
Until the termination criteria are satisfied.
Output: w®).

We also outline the convergence result in the following.

Lemma 6 ( [32]). The ADMM Algorithm 1 converges globally
to the optimal solutions of problem (RMVP-RCN).
Remark 7. The proposed ADMM can be extended to some
other RCN regularized portfolio selection problems and/or
applied under additional portfolio constraints (e.g., leverage,
turnover, self-financing, holding) with slight modifications.

IV. NUMERICAL SIMULATIONS
In this section, the superiority of RCN will be demonstrated
based on the historical data of S&P 500 stocks from the
U.S. market. The RGMVP and RMVP selection problems
are considered. In-sample and out-of-sample performance are
given in Section IV-A and Section IV-B. In the out-of-sample
performance evaluation stage, the rolling-window scheme will

be used, which has a lookback window with length of 252
days (i.e., trading days for one year) for obtaining the optimal
portfolio and a window length of 22 days (i.e., trading days
for one month) to test the portfolio performance, that is, the
portfolio will be updated per month based on the one-year
data ahead of that month.

A. RGMVP with RCN and ¢1-Norm
Sparsity promoting property of the RGMVPs. We first

check the sparsity promoting property of RGMVP with RCN
and ¢;-norm. The available asset universe is chosen randomly
from the S&P 500 with NV = 50 and a time span of 252. The
sparsity levels of RGMVP, RGMVP-/;-norm, and RGMVP-
RCN with different + controlling the cardinality of w are
depicted in Fig. 1. Both RGMVP-/;-norm and RGMVP-RCN
can achieve sparse portfolios, while for RGMVP-{;-norm,
the sparsity level stops increasing when -y is larger than a
breakpoint, which is due to the regularizer “degenerates” to a
constant [16].

500+

——RGMVP-{;-norm 3
‘5 ——RGMVP-RCN 128
40 o GMVP

~———RGMVP-£;-norm
——RGMVP-RCN
© GMVP

s s 4 2 o 2 "
10 10 C 10 10 10 0 5 10 15 20 25 20 35
Tuning parameter N

Fig. 1: Sparsity and volatility of RGMVP Withkdifferent v.

Volatility profiles of the RGMVPs. The comparison of
volatility profiles (i.e., portfolio risk) of the RGMVP-RCN and
the RGMVP-/;-norm is presented in Fig. 1. We can see that
the volatility of RGMVP-RCN and RGMVP-/; -norm is larger
than the volatility of the GMVP portfolio, while RGMVP-
RCN achieves lower volatility than RGMVP-/;-norm does
under the same sparsity level.

We further examine how the out-of-sample performance
scale with the asset universe where we have chosen N = 15,
30, 50, and 100. Comparison results between RGMVP-RCN
and RGMVP-/;-norm in terms of volatility are listed in Table
I, where the sparsity level and volatility are averaged over six
months and x* indicating that such sparsity level cannot be
achieved. It can be seen that RGMVP-RCN can achieve lower
volatility than RGMVP-/;-norm does in all cases.

B. RMVP with RCN and {1-Norm

In the context of RMVP problems, the comparisons between
RMVP-/;-norm and RMVP-RCN in terms of the cumulative
returns over 96 months with the same sparsity level (i.e., the
sparsity ratios are the same and we have chosen 10% here) are
presented. The out-of-sample results are shown in Fig. 2. The
comparison is benchmarked by the MVP and S&P 500, which
demonstrates RMVP-RCN can achieve a certain sparsity level
with lower volatility than RMVP-/;-norm in the long run.

V. CONCLUSIONS

In this paper, a novel regularizer named risk control norm is
brought up via the lens of submodular set functions, based on
which a general vast risk control norm regularized portfolio
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TABLE I: Out-of-sample performance in terms of volatility of different assets universe scales.

Sparsity Level

N RGMVP —m ~10% ~30% ~50% ~T0% ~50%
15 RCN 25.64% ~ 25.88% ~ 26.64% ~ 27.20% ~ 27.61% ~ 30.38%
£1-norm 25.64% ~ 25.89% ~ 26.83% ~ 27.33% * *
30 RCN 23.77% ~ 23.83% ~ 24.57T% ~24.91% ~ 25.77% ~26.17%
£1-norm 23.77% ~ 24.09% ~ 25.31% ~ 26.09% * *
50 RCN 22.57% ~ 22.66% ~ 23.88% ~ 25.02% ~ 25.60% ~ 27.28%
£1-norm 22.57% ~ 22.80% ~ 24.39% ~ 25.69% * *
100 RCN 21.45% ~ 21.45% ~ 21.85% ~ 22.54% ~ 24.03% *
£1-norm 21.45% ~ 21.52% ~ 22.00% ~ 23.39% ~ 24.92% *
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