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Abstract—The problem of joint design of transmit waveforms
and receive filters is desirable in many application scenarios
of multiple-input multiple-output radar systems. In this pa-
per, the joint design problem is investigated under the signal-
to-interference-plus-noise ratio (SINR) performance metric, in
which case the problem is formulated to maximize the SINR at
the receiver side subject to some practical transmit waveform
constraints. A numerical algorithm is proposed for problem
resolution based on the manifold optimization method, which has
been shown to be powerful and flexible to address nonconvex
constrained optimization problems in many engineering appli-
cations. The proposed algorithm is able to efficiently solve the
SINR maximization problem with different waveform constraints
under a unified framework. Numerical experiments demonstrate
the proposed algorithm outperforms the existing benchmarks in
terms of computation efficiency and achieves comparable SINR
performance.

Index Terms—MIMO system, SINR maximization, waveform
constraints, manifold optimization, Riemannian gradient descent.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar systems have
attracted a lot of attentions due to its flexibility in transmitting
different waveforms through multiple transmit antennas [1].
For different application scenarios, the waveforms in a MIMO
radar system can be properly designed to achieve a desired
target measured by a specific performance criterion, which
may not be possible in the classical phased-array radar systems
[2]. Hence, the intriguing property of waveform diversity has
provided the MIMO radars numerous appealing features like
higher resolution property and better parameter identifiability
property.

The problem of joint design of transmit waveforms and
receive filters is desirable in many application scenarios of
the MIMO radar systems. In this paper, we study the joint
design problem to maximize the signal-to-interference-plus-
noise ratio (SINR) performance metric at the system receiver
side subject to some practical transmit waveform constraints
[3], [4]. The problem is intrinsically nonconvex due to the
highly nonconvex fractional objective and the nonconvex
waveform constraints. Since no analytical solution to the
SINR maximization problem can be attained, many iterative
algorithms have been applied to solve it in the literature.
One of the classical methods is the sequential optimization

This work was supported in part by the National Nature Science Foundation
of China (NSFC) under Grant 62001295 and in part by the Shanghai Sailing
Program under Grant 20YF1430800.

algorithm combined with the semidefinite relaxation (SDR)
with randomization for rank-1 solution reconstruction [5].
Solving an SDR in each iteration has been argued to incur high
computational complexity [6], which is not applaudable and
amenable to large-scale problems and real-time signal process-
ing applications. In order to reduce the complexity, a widely
used method is to resort to the majorization-minimization
(MM) method [7]. The MM method converts the original
nonconvex problem to a series of relatively simpler problems
to be solved in each iteration by choosing a proper upper-
bound function. The MM-based algorithm has been shown to
be efficient for the SINR maximization problem [8]. Besides,
due to its flexibility in choosing the upper-bound function,
the MM-based algorithm is able to handle various practical
waveform constraints which are not feasible by SDR method.

Recently, the manifold optimization has shown its advan-
tages in dealing these nonconvex optimization problems for
applications in many engineering fields [9]. In manifold opti-
mization, amounts of constrained optimization problems in the
Euclidean space can be regarded as unconstrained optimization
problems on the manifolds [10]. Therefore, unconstrained
optimization methods (such as the gradient descent) can be
implemented on the manifold. Similar to other fields, manifold
optimization methods have been exploited for problem solving
in MIMO radar systems. In [11], a manifold optimization
method called Riemannian gradient descent (RGD) has been
applied for transmit beampattern synthesis under the unimodu-
lar constraint which is modeled as the complex circle manifold
(CMM). However, besides unimodular constraint there are
several other waveform constraints which have practical appli-
cability with the consideration of hardware configuration. Be-
sides that, there are few literature studying the joint design of
transmit waveforms and receive filters for SINR maximization
problem [5], [8], [12]. In this paper, the SINR maximization
problem will be studied based on manifold optimization under
multiple waveform constraints, where the projection operators
and the retraction operators of each manifolds are leveraged
to handle the waveform constraints. Numerical results depict
that the proposed structure-aware algorithm outperforms the
state-of-the-art methods in terms of computation efficiency
and is able to achieve comparable SINR’s. Recently, there is
an independent research work on manifold optimization for
the SINR maximization problem [13], which is different from
this paper in some aspects. First, this paper considers several
waveform constraints in the problem formulation. However,
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[13] only considers the constant modulus constraint. Second,
two papers are different in problem formulations. This paper
considers SINR formulation for colocated radars; however,
[13] considers airborne colocated radars for the MIMO-STAP
setting [14]. Third, although both papers are based on the high-
level conceptual idea of manifold, the algorithms proposed are
quite distinct. This paper chooses first to reduce the receiver
variable and then to optimize the waveform vector as a single-
block optimization problem. However, [13] directly optimizes
the receiver and waveform vector on the product manifold.
Forth, two papers are different in the numerical comparisons,
where this paper gives a detailed numerical comparisons with
several existing algorithms, namely, SDR and two MM-based
algorithms, but [13] only compares with SDR.

II. JOINT TX-RX DESIGN FOR SINR MAXIMIZATION

A MIMO radar system with Nt transmit antennas and Nr
receive antennas is considered. Each transmit antenna can
emit individual waveform and the n-th sample emitted from
the Nt transmitters is s(n) = [s1(n), . . . , sNt(n)]T ∈ CNt

with n = 1, . . . , N , where N denotes the total number of
transmitted samples. The range-angle position of the target
to be tracked is configured as (r0, θ0) and usually we set
r0 = 0. Additionally, K signal-dependent interferers located
at (rk, θk) are also taken into account with the range position
rk ∈ {0, . . . , N} and the spatial angle θk ∈ {0, . . . , L}× 2π

L+1
for θk 6= θ0 with k = 1, . . . ,K and L denoting the number of
discrete azimuth sectors. Therefore, the signals at the receive
antennas can be represented by

x(n) = αar(θ0)at(θ0)T s(n) + d(n) + v(n), (1)

for n = 1, . . . , N . In Eq. (1), α is the complex amplitude of the
target with E

[
|α|2

]
= σ2

0 , and ar(θ) ∈ CNr and at(θ) ∈ CNt

are the propagation vector and the steering vector, respec-
tively with at(θ) = 1√

Nt

[
e−jπ0 sin θ, . . . , e−jπ(Nt−1) sin θ

]T
and ar(θ) = 1√

Nr

[
e−jπ0 sin θ, . . . , e−jπ(Nr−1) sin θ

]T
with

the transmit and receive antennas are both assumed to be
uniform linear arrays with half-wavelength separation. The
term d(n) denotes the K signal-dependent uncorrelated point-
like interferers as d(n) =

∑K
k=1 αkar(θk)at(θk)T s(n − rk),

where αk denotes a complex amplitude with E
[
|αk|2

]
= σ2

k.
The term v(n) ∈ CNt is a noise term with covariance σ2

vINt .
Let x = [x(1)T , . . . ,x(N)T ]T , s = [s(1)T , . . . , s(N)T ]T ,

and v = [v(1)T , . . . ,v(N)T ]T . We obtain the following
compact signal model as

x = αA(r0, θ0)s +
∑K
k=1 αkA(rk, θk)s + v, (2)

where A(rk, θk) =
[
IN ⊗ (ar(θk)at(θk)T )

]
Jrk with k =

0, · · · ,K is a Hermitian matrix with respect to position rk
and angle θk with a shift matrix Jrk ∈ RNtN×NtN given by

[Jrk ]
m,n

=

{
1, m− n = Ntrk
0, m− n 6= Ntrk

=[JT
−rk

]
m,n

.

For notational simplicity, we denote A(rk, θk) = Ak here-
after.

Let w ∈ CNrN be the response receive filters, the SINR
[15] at the receiver side can be calculated as

SINR =
σ2
0

∣∣wHA0s
∣∣2

wH(
∑K
k=1 σ

2
kAkssHAH

k )w + σ2
vw

Hw
. (3)

Finally, the joint design of transmit waveforms and receive
filters for SINR maximization (TxRx-SINR) problem is given
as

maximize
s, w

∣∣wHA0s
∣∣2

wH
∑K
k=1 ϑkAkssHAH

kw+wHw

subject to s ∈M,

(TxRx-SINR)

where ϑk = σ2
k/σ

2
v > 0, and M denotes different considered

waveform constraints to be detailed in the next section.

III. ALGORITHMIC FRAMEWORK

A. Optimization over a manifold

Consider a constrained optimization problem as follows:

minimize
x

f(x) subject to x ∈ R,

where R is a constraint set treated as a Riemannian manifold
embedded in an Euclidean space E ⊇ R equipping the
Riemannian metric [10]. Optimizing f(x) can be regarded as
an unconstrained optimization problem in the manifold M
rather than a constrained one with explicit constraint R in the
Euclidean space. Hence, numerous unconstrained optimization
algorithms like the gradient descent [16] can be utilized to
handle these manifold optimization problems.

In this paper, the gradient descent algorithm, a classical
unconstrained optimization method, will be implemented for
optimization over the Riemannian manifold, which hence is
named as Riemannian gradient descent (RGD) [10]. The idea
of RGD can be summarized as follows. Given an initializa-
tion x(0), a sequence

{
x(i)
}

is generated by RGD through
iteratively taking two steps until convergence. The first step is
“descent with projection” where the gradient of any smooth
extension of the objective function, i.e., f̄(x) with x ∈ E is
computed as ∇f̄(x(i)), i.e., the standard gradient in the Eu-
clidean space, then the Riemannian (manifold) gradient is ob-
tained by projecting ∇f̄(x(i)) onto the tangent space Tx(i)M
by an orthogonal projection at x(i) denoted by Projx(i)(·), and
finally x̄(i) is obtained by a descent step on Tx(i)M with
the direction Projx(i)(∇f̄(x(i))) and a prespecified stepsize
α(i). Due to the updated x̄(i+1) is on Tx(i)M rather than the
manifold M, a “retraction” at x̄(i) denoted by the operator
Retr(·) is applied in the second step to map it back to M. To
summarize, the update step of RGD at the i-th iteration is
x̄(i+1) = x(i) − γ(i)Projx(i)(∇f̄(x(i)))

[descent with projection]
x(i+1) = Retr(x̄(i+1)) [retraction],

where the stepsize γ(i) can be chosen to be constant or ac-
cording to a specific stepsize rule like the Armijo backtracking
line search [17] for convergence guarantee, and the projection
operator Projx(i)(·) and the retraction operator Retr(·) may
vary from manifolds.
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∇ḡ(s) =− 2

AH
0

(
K∑
k=1

ϑkAkss
HAH

k + I

)−1
A0s

+ 2γs−

sH
∂

∂s

AH
0

(
K∑
k=1

ϑkAkss
HAH

k + I

)−1
A0

 s

=− 2

AH
0

(
K∑
k=1

ϑkAkss
HAH

k + I

)−1
A0s

+ 2γs−

1NNt
⊗ sHAH

0

(
K∑
k=1

ϑkAkss
HAH

k + I

)−1
×

K∑
k=1

(
ϑkINNt ⊗Ak

[
∂ssH

∂s1
. . .

∂ssH

∂sNNt

]T
AH
k

)(
K∑
k=1

ϑkAkss
HAH

k + I

)−1
A0s

(4)

B. The projection and retraction operators in TxRx-SINR

In this section, we consider the projection operators and the
retraction operators w.r.t. different manifold constraints M’s
encountered in the Problem (TxRx-SINR). Three commonly
used manifold constraints are considered which are highly
nonconvex in the Euclidean space, namely the constant modu-
lus (CM) constraintMc = {s | |sn| = 1√

NNt
} [18] (including

the unimodular constraint, i.e., the CM with |sn| = 1), the
ε-uncertainty constant modulus (ε-CM) constraint Me =
{s | cm− ε1 < |sn| < cm + ε2 with 0 ≤ ε1 ≤ cm and 0 ≤ ε2}
[19], and the constant modulus and similarity (CM&S) con-
straint Ms = {s | |sn| = 1√

NNt
, ‖s− sref‖∞ ≤ ε, with 0 ≤

ε ≤ 2√
NNt
} [20].

The projection operator. The projection operator
Projs(i)(·) at the iterate s(i) ∈ M with M taking Mc’s or
Ms’s is the same and has a closed-form solution. This result
is classical in manifold optimization and can be easily proved
by first showing the complex scalar case and then extending
it to to the complex vector case [10]. For any u ∈ CNNt , the
projection operator for these two constraints is given by

Proj
Mc/Ms

s(i)
(u) = u− Re

{
u∗ � s(i)

}
� s(i)� 1

|s|
, (5)

where � denotes the Hadamard product. The ε-CM constraint
describes an annulus manifold, the projection operator of
which is given by

ProjMe

s(i)
(u) = u, (6)

The retraction operator. The retraction operators Retr(·)’s
w.r.t. differentM’s can be solved in closed-forms. For a given
u ∈ CNNt , a unified retraction function can be employed to
handle all the manifold constraints, which is given by

Retr(u) = arg min
s∈M

‖s− u‖2 , (7)

where specifically the solution w.r.t. Mc is given by
Retr(u) = u �

(√
NNt|u|

)−1
with |·| and (·)−1 applied

element-wisely, w.r.t.Ms can be found in [21], and w.r.t.Me

is given in [19].

IV. SOLVING THE TXRX-SINR PROBLEM VIA RGD

Now we are ready to derive the RGD algorithm for Prob.
(TxRx-SINR). Noting that this problem is invariant to a scaling
in w, i.e., if w is optimal to Prob. (TxRx-SINR), then so is
aw with a 6= 0. For a fixed s, the resolution of w can be
transformed to be a convex problem as follows:

minimize
w

wH
[∑K

k=1 ϑkAkss
HAH

k + I
]
w

subject to wHA0s = 1,
(Rx Prob.)

to which a closed-form solution for w is obtained by [22]

w?=

[∑K
k=1 ϑkAkss

HAH
k + I

]−1
A0s

sHAH
0

[∑K
k=1 ϑkAkssHAH

k + I
]−1

A0s
. (Optim. Rx)

Substituting (Optim. Rx) into the original Prob.
(TxRx-SINR), we get the subproblem for the transmit
waveforms as

minimize
s

−sHAH
0

[
K∑
k=1

ϑkAkss
HAH

k +I

]−1
A0s

subject to s ∈M,

(Tx Prob.)

where the waveform constraints M can take different forms
as discussed in Sec. III-B.

To solve the original Prob. TxRx-SINR, it suffices to solve
the Prob. (Tx Prob.) for s and then obtain w by (Optim. Rx).
In this paper, we propose to solve (Tx Prob.) via the RGD
method as introduced in Sec. III-A. For convergence concern,
the objective of problem (Tx Prob.) will be augmented with
a constant term γsHs (γ is a prescribed constant, the choice
of which guarantees the monotonicity of “projection” step in
RGD) to control the monotonicity of the retraction operator
Retr(·). Then we define the “augmented” objective function
for problem (Tx Prob.) as

g(s) = −sH(AH
0

[
K∑
k=1

ϑkAkss
HAH

k + I

]−1
A0)s + γsHs.

The gradient of a smooth extension of the objective function
denoted by ḡ(s) (extending g(s) to the Euclidean domain)
is given in (4) where ⊗ denotes the Kronecker product and
∂ssH

∂sn
(n = 1, . . . , NNt) is a matrix calculated by ∂ssH

∂sn
=

[s, 0 , . . . , 0]Jrk/Nt
+ JTrk/Nt

[s, 0 , . . . , 0]
H with the shift

matrix Jrk/Nt
∈ RNtN×NtN defined in Sec. II.

Finally, the proposed RGD algorithm for TxRx-SINR is
summarized in Algorithm 11.
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Fig. 1: Convergence rate comparisons.

Algorithm 1 Solving TxRx-SINR problem via RGD
Initialize: i = 0, s(0), γ, β, τ , σ
While not converge do

1. Compute ∇ḡ(s(i)) according to Eq. (4)
2. Compute Projsk(∇g(s(i))) according to Eq. (5) or Eq. (6)
3-1. [constant stepsize] γ(i) = γ
3-2. [Armijo back-tracking linesearch [17]] γ(i) = τβm

with m the smallest non-negative integer such that

g(s(i))−g(s(i)−τβm∇g(s(i))) ≥ στβm‖Projs(i)(∇g(s(i)))‖22

4. s̄(i+1) = s(i) − γ(i)Projs(i)(∇g(s(i)))
5. s(i+1) = Retr(s(i)) according to (7)
6. i = i+ 1
end while

Compute w according to (Optim. Rx)

V. NUMERICAL EXPERIMENTS

In this section, we compare the performance of our proposed
RGD algorithm with the state-of-the-art methods in the liter-
atures. The simulation is conducted on the MATLAB2019b
platform under a PC machine with an Intel i7–10700 CPU
and 16GB RAM. For the MIMO radar system settings, the
range-angle position of the target to be tracked is configured
as (0, 15◦), the power of which is |α0|2 = 30dB. Three fixed

1A well-chosen stepsize γ(i) is to ensure the decrease of the objective
function g (·) in the “descent with projection” step of RGD.

TABLE I: Runtime comparisons under CM constraint.

Algorithm (Nr, Nt, N )
(4,4,4) (10,10,4) (10,10,8) (15,15,8) (10,10,30)

RGD-Armijo 0.0197sec. 0.3729sec. 0.7536sec. 4.3909sec. 74.3386sec.
MM-SQUAREM 0.7969sec. 1.2813sec. 2.2971sec. 29.7969sec. 518.7628sec.

RGD 0.7031sec. 3.7134sec. 10.3421sec. 173.4153sec. 1026.127sec.
MM 1.875sec. 4.0156sec. 20.3203sec. 207.6719sec. 1231.6143sec.
SDR 35.1021sec. 31.4375sec. 431.7156sec. 620.8147sec. 2029.9058sec.

interferers are located at the range-angle positions (0,−50◦),
(1,−10◦), and (2, 40◦), respectively. The power of each
interferer is |αj |2 = 20dB for j = 1, 2, 3. The variance
of the noise is σ2

v = 0dB. The orthogonal linear frequency
modulation (LFM) waveforms are set as the initial and also
the reference waveforms in the CM&S constraint. The space-
time LFM waveform matrix is

S(0)(k, n) =
ej2πk(n−1)/Nejπ(n−1)

2/N

√
NNt

, (8)

where k = 1, · · · , Nt and n = 1, · · ·N , based on which we
obtain the initialization iteration s(0) = vec

(
S(0)

)
.

We first compare the performance of the TxRx-SINR prob-
lem with CM constraint between the two proposed algorithms,
i.e., the RGD algorithm and the RGD with Armijo rule denoted
as RGD-Armijo (for parameters in the Armijo back-tracking
rule, we have set σ = 1, β = 0.85, and τ = 0.4) with
the benchmark methods, namely SDR, MM, and MM with
SQUAREM acceleration denoted as MM-SQUAREM under
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three different waveform constraints. The collocated MIMO
radar parameters are chosen as Nt = 10, Nr = 10, and N = 8.
In Fig. 1a, it can be shown that all methods converge to the
same SINR. As expected, SDR is the most time-consuming
one. RGD-Armijo converges faster than RGD and both of
them perform better than MM. MM-SQUAREM is much faster
than MM due to the acceleration scheme, but is still slower
than RGD-Armijo. Similar convergence results are observed
for the TxRx-SINR problem with other constraints, namely
the CM&S constraint (similarity parameter ε = 1/

√
NtN ),

and the ε-CM constraint, which are shown in Fig. 1b and Fig.
1c, respectively.
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Fig. 2: Range-angle ambiguity function for CM constraint.

To further test the scalability of the proposed algorithms,
cases with different (N , Nr, Nt) are evaluated with compar-
isons to the benchmark methods under the CM constraint. The
runtimes are reported in Table I. To evaluate the performance
of the MIMO ambiguity function shaping via the designed
waveforms from our proposed RGD algorithm. We plot the
ambiguity function (the expression of ambiguity function is
chosen as in [23]) in Fig. 2, which can capture the inherent
resolution properties of the MIMO radar systems [24]. In Fig.
2, it can be observed that the ambiguity function resembles a
thumbtack, the maximum value of which is located at (0, 15◦)
marked by a circle. For the interferers, their locations are
marked by rectangles. Values of interferers in the ambiguity
function are relatively small. Fig. 2 also provides the angle
slice at the range r = 0 and the range slice at the angle
θ = 15◦. It can be observed that there are cliffs at angle
θ = 40◦,−10◦, and −50◦ with range r = 2.

VI. CONCLUSIONS

In this paper, we have considered the SINR maximization
problem in MIMO radar subject to multiple practical wave-
form constraints by jointly designing the transmit waveforms
and receive filters. A manifold optimization algorithm called
RGD is proposed for problem resolution. Numerical results
validate the superiority of the proposed algorithms.

REFERENCES

[1] J. Li and P. Stoica, Eds., MIMO radar signal processing. Hoboken,
NJ: Wiley, 2009.

[2] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal
Processing Magazine, vol. 24, no. 5, pp. 106–114, Sep. 2007.

[3] Z. Zhao and D. P. Palomar, “MIMO transmit beampattern matching
under waveform constraints,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 3281–3285.

[4] R. Zhou, Z. Zhao, and D. P. Palomar, “Unified framework for minimax
MIMO transmit beampattern matching under waveform constraints,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 4150–4154.

[5] G. Cui, H. Li, and M. Rangaswamy, “MIMO radar waveform design
with constant modulus and similarity constraints,” IEEE Transactions
on Signal Processing, vol. 62, no. 2, pp. 343–353, Jan. 2014.

[6] Z. Luo, W. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Processing Magazine,
vol. 27, pp. 20–34, 2010.

[7] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[8] L. Wu, P. Babu, and D. P. Palomar, “Transmit waveform/receive filter
design for MIMO radar with multiple waveform constraints,” IEEE
Transactions on Signal Processing, vol. 66, no. 6, pp. 1526–1540, Mar.
2018.

[9] J. Hu, X. Liu, Z.-W. Wen, and Y.-X. Yuan, “A brief introduction to
manifold optimization,” Journal of the Operations Research Society of
China, vol. 8, no. 2, pp. 199–248, Jun. 2020.

[10] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on
matrix manifolds. Princeton: Princeton University Press, Dec. 2008.

[11] K. Alhujaili, V. Monga, and M. Rangaswamy, “Transmit MIMO radar
beampattern design via optimization on the complex circle manifold,”
IEEE Transactions on Signal Processing, vol. 67, no. 13, pp. 3561–3575,
Jul. 2019.

[12] Z. Zhao, “Joint transmit waveforms and receive filters design for large-
scale MIMO beampattern synthesis,” in 2020 IEEE 11th Sensor Array
and Multichannel Signal Processing Workshop (SAM). IEEE, 2020, pp.
1–5.

[13] J. Li, G. Liao, Y. Huang, Z. Zhang, and A. Nehorai, “Riemannian
geometric optimization methods for joint design of transmit sequence
and receive filter on MIMO radar,” IEEE Transactions on Signal
Processing, vol. 68, pp. 5602–5616, 2020.

[14] B. Tang and J. Tang, “Joint design of transmit waveforms and receive
filters for MIMO radar space-time adaptive processing,” IEEE Transac-
tions on Signal Processing, vol. 64, no. 18, pp. 4707–4722, Sep. 2016.

[15] A. Aubry, A. DeMaio, A. Farina, and M. Wicks, “Knowledge-aided
(potentially cognitive) transmit signal and receive filter design in signal-
dependent clutter,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 49, no. 1, pp. 93–117, Jan. 2013.
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