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Abstract—Defect detection plays an important role in product
quality assurance in many industrial applications. Air-coupled
ultrasound defect detection setups have the advantage that they
are non-destructive and do not contaminate the investigated ma-
terials. However, this approach comes with some challenges due
to the weak signaling response of the defects. Thus, sophisticated
signal separation methods are required. To address this chal-
lenge, low-rank-plus-sparse recovery (LRPSR) is proposed and
compared with state-of-the-art machine learning (ML) methods.
The results obtained show that the LRPSR method achieves
comparable results in terms of detection rate to those achieved
by ML. Yet, for a small training data set, the LRPSR approach
outperforms the ML algorithms. The small training data set
is important for detecting defects of different production lines
without having a time-consuming training process. In addition, a
lower standard deviation of the detection rate of the LRPSR
method is observed, which shows its suitability for real-time
processing.

Index Terms—Non-destructive testing, air-coupled ultrasound,
low-rank-plus-sparse recovery, machine learning, deep learning,
gradient boosting trees, rpca

I. INTRODUCTION

In the processing and production industry, the competition
towards high quality outcomes at low costs has been increasing
steadily. Special requirements are needed for a real-time
testing technology during the producing process, which is
important for quality control [1]. Thus, the measurement setup
needs to be easy to use and has to have low maintenance costs
and low system prices.
An efficient examination method is guaranteed by air-coupled
ultrasound measurement setups. They satisfy the needed re-
quirements during industrial processing but, in turn, lead to
a new challenge. However, a significant challenge is the high
reflection loss due to the impedance difference between air and
most test materials. Besides, there are also strong refraction
effects caused by the different sound velocities [2], [3]. As a
remedy, special ultrasonic transducers use adaptation layers
to reduce the impedance difference to air and thus reduce
reflection losses. An ultrasonic measurement setup was used
in related work in [4], where plastics samples were examined
for defects. The examination revealed a detection rate of 83 %.
Consequently, defect detection using the air-coupled ultra-

sound is a demanding task due to the signaling responses
of the defects that are weaker than the signaling response of
the sample. Thus, signal separation methods are required for
defect detection. An interesting observation, which serves as
the motivation for the proposed method, is that the number
of defects in a defective sample is typically limited because
the quality of the production is very high in general, and thus,
defects occur very rarely. Further, the signaling response of
the sample itself can be represented mathematically as a low-
rank structure. Therefore, the overall signaling response of a
sample with defects is a combination of low-rank and sparse
components. Thus, in this work, low-rank-plus-sparse recov-
ery (LRPSR) is proposed to separate the sample’s signaling
response and the defects. Here, our objective is to decompose
the overall signaling response of a sample with defects as a
low-rank matrix (sample) and a sparse matrix (defects). As one
of the popular approaches of low-rank-plus-spares recovery,
the robust principal component analysis (RPCA) [5] is utilized
in this work.
In [6], surface defect detection based on RPCA and entity
sparsity pursuit (ESP) was proposed, utilizing three real-world
and one synthetic defect data sets for evaluation. Our approach
is different from [6], as our focus on defect detection is based
on an air-coupled ultrasound measurement system. Further, in
this work, we examine the effect of reducing the training data
size using the RPCA approach, and we compare the results
with machine learning (ML) approaches. The contributions of
this work can be summarized as follows:

• We are investigating the suitability of the RPCA approach
on air-ultrasound based defect detection for (near) real-
time applications.

• We cast air-ultrasound based defect detection as a low-
rank plus sparse recovery problem.

• We compare our model-based RPCA approach with data-
driven ML approaches like support vector machines
(SVM) [7], k-nearest neighbors (k-NN) [8], deep learning
(DL) [9] and gradient boosting trees (GBT) [10].

• Our results show that the RPCA approach is more robust
since it has a smaller standard deviation of the defect
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Fig. 1: Ultrasound measurement setup photograph and
schematic. The sample is placed on the rotating plate.

detection rates for the same amount of training data
compared with data-driven ML approaches. This shows
that the proposed method is better at classifying variations
in the data, even if they did not appear in the training set.
In addition to that, based on our results, our approach
performs better than the ML approaches for a small
training data set. This is important for the detection of
defects of different production lines without having a
time-consuming training process.

II. SYSTEM OVERVIEW

This section is organized as follows. In the first subsection
II-A, the measurement setup is presented. The following
subsection describes the underlying system model. Based on
the system model, synthetic data is used to generate a larger
data set. The generation of the synthetic data is presented in
subsection II-C.

A. Measurement Setup

In this work, an ultrasonic measurement setup as shown
in Fig. 1 (a) is utilized. The measurement setup consists of
a transmitter (TX ) and a receiver transducer (RX ) of type
CF200 from SONOTEC GmbH [11], [12]. Two types of
defects were utilized, foam glued on the samples (approx.
1 mm thickness) and drilled holes on the samples’ surface.
During the measurement, the transducers are moved along a
track beside the tested sample. For each step of the track,
measurements are recorded while the sample is rotated 360
degrees. To obtain these measurements, a rectangular input
signal with 9 volts amplitude is used. Regarding the received
signal, the time required for the signal to travel from TX to
RX is called time-of-flight (TOF, τ , (Fig. 2 Part 1)).
In the following, the structure of the received signal (RS)
is analyzed in more detail. As can be seen in Fig. 2, the
received signal is divided into three parts. Besides the TOF,
the maximum of the first signal wave and the signal trace
after the first signal wave are shown in Fig. 2 RS, Part 2 and
Part 3. The RS Part 2 corresponds to the line-of-sight. The
RS Part 3 consists of many influences like multipath, mode
conversion and other influences of the ultrasound channel.
The main difference between the received signals through air,
defect-free samples, and defective samples is the TOF and the
resulting RS Part 2. This is due to the speed of ultrasound
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Fig. 2: Separation of the received signal (RS). Part 1: The
time-of-flight. Part 2: The maximum of the first signal wave.
Part 3: The signal trace after the first signal wave.

in different media, which causes this behavior. For example,
air (330m/s [13]) has a lower ultrasonic speed than a defect-
free sample (polyethylene (PE): 2000m/s [13]). The signal
traversing through a defect-free sample reaches the receiver
earlier since ultrasound has a higher speed through solids. The
received signal is weaker through a sample with foam due
to the higher attenuation. Additionally, it reaches the receiver
with a larger delay. The TOF differences and the influence of
differing acoustic impedance by traversing through different
media are used to detect defective samples.

B. System Model

A simplified system model of the measurement setup is
established based on the following assumptions and simplifica-
tions. For instance, only the line-of-sight is considered over a
distance d, and the transducers are assumed to be circular plane
pistons with diameter D [14]. For this reason, impairments
by the propagation through the ultrasound channel to the
receiver such as mode conversion, reflections, and interference
of multi-path propagation will be neglected and dumped into
the additive noise. With these assumptions, the received signal
at timestamp t, position p (where 1 ≤ p ≤ P ), and q-th angle
position (where 1 ≤ q ≤ Q), yp,q(t), is given as

yp,q(t) = hp,q(t) ∗ x(t) + n(t). (1)

Here, the x(t) is the input signal, hp,q(t) is the system
response of the ultrasonic channel including the transducers at
position p corresponding to the q-th angle position, and n(t)
is the receiver noise. In eq. (1), the ∗ represents convolution
operation. As shown in Fig. 1 (b), the investigated sample
was rotated to record a set of received signals yp,q(t). Here,
Q is the number of rotating angle positions corresponding to
360 degrees and P is the total number of positions alongside
the positions track. Let the matrix Yp ∈ RT×Q be the set
of received signals at position p alongside the positions track.
Here, T is the number of timestamps. Also, let Yi

p, i = 1, 2, 3,
be the component of Yp which corresponds to part i of the
received signal as shown in Fig. 2.

C. Synthetic Data

It is challenging to generate a large data set based on
the measurement data only as the measurements are time-
consuming. Therefore, numerical simulations are used to gen-
erate a large synthetic data set. As the frequency response of
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Fig. 3: Sketch of ultrasonic image type sinogram (B-scan).
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Q
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the input and received signal are known, the system response
and thus the frequency response of hp,q(t) (Hp,q(f)) can
be estimated using the Fourier transform of the input signal
(X(f)) and received signal (Yp,q(f)). The analysis of the
synthetic data shows highly similar behavior to the measured
data. Thus, the synthetic data is used to enlarge the data set.

III. EXAMINATION METHODS

In this section, the proposed RPCA approach for defect
detection is presented. Furthermore, four state-of-the-art ML
algorithms are used as a comparison to the RPCA approach.
The data used in this investigation are obtained using the
measurement setup introduced in II-A and the simulations
introduced in II-C. The investigated materials are polyethylene
(PE) and Teflon (PTFE) with diameters of 30 − 80 mm.
In air-coupled ultrasound, the inner structures of the object
examined can be shown using the sinogram (B-scan) images
[15]. Therefore, they are utilized for defect detection using
the RPCA approach. The received signal sets of all positions
(Yp ∀ p ∈ {1, .., P}) are used to generate the B-scan. This
works as follows. Let the B-scan be B ∈ RP×Q. In order
to generate the B-scan, P × Q measurements are required.
For this, the maximum of each column of the matrix Y2

p

(maximum of RS Part 2) was used. Let this vector which
contains Q number of maxima be given by vlp ∈ RQ×1,
with vlp = [v1lp, . . . , v

Q
lp], for the position p. Now, the B-

scan is given by [vl1 · · ·vlp · · ·vlP ]
T as shown in Fig. 3. In

the following, the RPCA approach and ML algorithms are
described.

A. Robust principle component analysis

Here, the decomposition of the signaling responses of the
defects and the sample from the B-scan B is discussed. An
important observation is that the sample response has a low-
rank property (i.e., few linearly independent column vectors in
the matrix). Further, the defects (foam/drilled holes) response
is sparse in nature (few nonzero entries in the matrix). Thus,
to identify defects, the rank and sparse properties are utilized.
Let the responses of the defects (foam) and the sample be
S,L ∈ RP×Q, respectively. This leads to B = S + L.
Now, the estimation of S and L can be formulated as an

optimization problem, as given below [5], [16]. Here, main
objective is to estimate the S and L from B.{

L̂, Ŝ
}
= min

L, S
rank (L) + λo ‖ S ‖0,

s.t. ‖B −L− S‖2F ≤ ε.
(2)

Here, rank (·) is the rank of a matrix and it is defined as
the maximal number of linearly independent columns of the
matrix. The regularization parameter is λo and error bound is
ε, which is a very small positive value. The `0−norm of a
matrix (number of nonzero elements in the matrix) is given
as ‖·‖0. The term ‖·‖F in eq. (2) is the Frobenius norm.
Note that the optimization problem in (2) is non-convex and
difficult to solve exactly [17], [18]. Therefore, the nuclear
norm (or sum of singular values of the matrix) is used as
a convex approximation of the rank. Further, the `1−norm
is used as the convex approximation of the `0−norm. There
are many ways to solve the problem given in eq. (2) [5],
[19]. Here, the iterative thresholding approach is utilized due
to its computational efficiency. For classification using the
RPCA approach, to identify defective samples, the following
hypothesis is used

No defects H0 :‖ S ‖22≤ δ,
Defects are present H1 :‖ S ‖22> δ.

(3)

Here δ is a threshold used to classify defective samples. To
obtain δ, training data consisting of defect-free and defective
samples are used. Next, based on the eq. (3) the defective and
defect-free samples are classified.

B. Machine Learning Approaches

In order to compare the results of the RPCA approach with
alternative approaches, four state-of-the-art ML algorithms are
employed. Three of these approaches are used for feature-
based classification, whereas the deep learning approach is
used for image-based classification. The data set used to train
and test these algorithms consist of both measurement and
synthetic data.

1) Approaches for Feature-Based Classification: Eight fea-
tures are extracted from the received signals to train and test
the ML algorithms, among them the maximum of the first
signal wave (maximum of RS Part 2), pulse duration, and the
intensity of the the received signal. The training is performed
in a supervised manner to distinguish between defective and
defect-free samples. In [20], the gradient boosting trees show
the best total average classification accuracy compared to
eleven state-of-the-art classification algorithms followed by
SVM. For this reason, in this work, the two basic ML
approaches, k-NN [8], [20], and SVM [7], [20] are applied
besides the newer and more efficient GBT [10], [20].

2) Approach for Image-Based Classification: For image-
based classification, deep learning is applied as a newer
approach besides the GBT. Images of defective and defect-free
B-scans are used as input data of the deep learning algorithm.
The deep learning model was pre-trained on a large image
dataset (i.e., ImageNet). The pre-trained network used in this
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Training data portion [%] k-NN SVM GBT DL RPCA
100 % 98.53 % ± 0.00 95.29 % ± 0.40 98.82 % ± 0.40 99.41% ± 0.62 98.09 % ± 0.40
75 % 98.53 % ± 0.52 95.15 % ± 1.52 98.53 % ± 0.74 97.06 % ± 4.96 98.09 % ± 0.62
50 % 98.38 % ± 0.33 89.85 % ± 6.56 98.82 % ± 0.66 98.68 % ± 1.09 97.79 % ± 0.52
25 % 97.21 % ± 1.90 92.50 % ± 3.83 98.82 % ± 1.12 96.32 % ± 2.44 97.80 % ± 0.73
10 % 86.47 % ± 5.24 88.52 % ± 2.47 95.00 % ± 2.72 79.56 % ± 6.03 97.94 % ± 0.62
5 % 74.85 % ± 9.48 86.47 % ± 3.98 88.82 % ± 1.21 73.82 % ± 11.68 94.41 % ± 0.39

TABLE I: Five-fold cross validation results comparison of k-NN, SVM, GBT, DL and the RPCA approaches.

work is SqueezeNet-v1.1 [9]. With transfer learning [21], it
was adapted to solve the defect detection in this work. The
convolutional layers of the network extract the classification
features. The last layer and the final classification layer can
be used to detect defective samples. The two layers contain
information of combining the features of the network into class
probabilities. These two layers have to be replaced by new
layers adapted to the new data set to retrain the network.

IV. RESULTS

In this section, the results are presented. First, the result
of the RPCA approach is shown and then compared with the
results of the ML methods.

A. Robust Principle Component Analysis Approach Result

In this subsection, the result of the RPCA approach is
discussed. Fig. 4 shows a PTFE sample decomposition with
a 50 mm diameter by the RPCA approach. Here, Fig. 4 (a)
shows a B-scan of the 50 mm sample. The reconstructed total
response (L+S) is shown in Fig. 4 (b). The sparse component
(defect/foam) and the low-rank segment (i.e., sample), which
are decomposed by the RPCA approach, are shown in Fig. 4
(c) and Fig. 4 (d). Based on the results given in Fig. 4 (d), it
is observed that the RPCA approach can successfully identify
the defect (foam) of the PTFE 50 mm sample from the B-scan
given in 4 (a). In general, defect detection with B-scans are
based on the visual inspection. Thus, to have defect detection
without visual inspection, the hypothesis given in eq. (3) is
used. Fig. 5 shows the process of determining the threshold
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Fig. 4: Decomposition of the B-scan of a 50 mm sample by
RPCA approach.
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(δ) using the training data. Here, δ is calculated based on the
training data as given in

δ =
1

2

(
max

(
‖Sd‖22

)
−min

(
‖Sdf‖22

))
, (4)

where Sdf and Sd are the sparse components of the RPCA
decomposition of the defect free and defective training data
set, respectively. Afterwards, the obtained threshold is used
for the classification (i.e., defect detection) of the test data.

B. Comparison of the Machine Learning and the Robust
Principle Component Analysis Approach

In this subsection, a comparison of the ML approaches with
the RPCA approach is presented. For classification purposes,
the data was split into training and testing 80 % to 20 %,
respectively. A data set, with 680 samples, was used to train
and test the ML and RPCA approaches. Here, a hybrid of
measured and synthetic data was used to generate the data,
where the training and testing data contained 544 and 136 data
samples. The data consists of 320 measured and 360 simulated
samples. Note that, the data set contains equal percentages
of defect free and defective samples. In Table I, the defect
detection rates of the ML methods and the RPCA approach
and their standard deviation of a five-fold cross validation are
compared.
Applying the five-fold cross validation, the mean of the
detection rates (DR) is derived by averaging the runs. The
standard deviation (σDR) is a measure for the variation of
the density of probability around DR [22], [23]. Therefore, a
lower standard deviation means a better result. As shown in the
first row of Table I, using 100 % of the training data, the RPCA
approach achieves 98.09 % as DR. This is a comparable
result the state-of-the-art ML methods k-NN (98.53 %), SVM
(95.29 %), GBT (98.82 %) and DL (99.41 %) achieved.
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Reducing the training data step by step, the advantage of
RPCA approach becomes more evident. Using 25 % of the
training data, the DR is still comparable, but the σDR of
the RPCA approach is for the first time lower than all four
state-of-the-art ML methods. As the last step, only 5 % of
the training data was used. The DR of the RPCA approach
decreases to 94.41 % with a small σDR of ±0.39. In contrast,
the DR of the ML methods k-NN (74.85 %), SVM (86.47 %),
GBT (88.82 %), and DL (73.82 %) decreases stronger for
5 % of the training data set . In the comparison of defect
detection rates using the whole training data to the 5 % of the
training data, GBT and DL have decreased by approx. 10 %
and approx. 20 %, respectively. In contrast, RPCA has only
decreased about approx. 4 %.
Moreover, the σDR of the ML algorithms increases as training
data decreases. Especially DL (±11.68) has a very high σDR

compared to the RPCA approach (±0.39). The lower σDR

is an essential advantage of the RPCA approach compared to
the ML algorithms. This indicate that, the threshold δ can be
learned using a few samples in the RPCA approach. Thus,
the RPCA approach can be retrained quickly to detect defects
in different production lines without having a time-consuming
training process. In the comparison, the ML approaches rely
on features or images and need a larger training data set to
obtain a lower σDR. Thus, variations of data unseen in the
training phase are wrongly classified by the ML algorithms.
Achieving high and stable results with small training data sets
is an important step to be able to operate near real-time.

V. CONCLUSION

In this paper, the RPCA approach is compared to the state-
of-the-art ML approaches for defect detection by considering
various training data sizes. The investigations were performed
on an air-coupled ultrasound measurement setup. A hybrid
data set of measured and synthetic data was used for classi-
fication. The GBT (98.82 %) and DL (99.41 %) outperform
all other approaches using 100 % of the training data (680
samples). However, using only 5 % of the training data (34
samples), the mean of detection rates (DR) of the RPCA
approach reaches 94.0 %, which is the best and more stable
compared to the detection rates of the ML approaches k-
NN (74.85 %), SVM (86.47 %), GBT (88.82 %), and DL
(73.82 %). Thus, the DR of DL decreases significantly from
99.41 % to 73.82 % as the training data size decreases from
100 % to 5 %. Further, the standard deviation of the detection
rates of ML increases significantly compared to the RPCA
approach as training data size decreases from 100 % to 5 %.
The results showed that the proposed RPCA approach is
suitable to operate near real-time using a small training data
set. This advantage is important for detecting defects of
different production lines without having a time-consuming
training process.
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