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Abstract—The phase retrieval problem studies the recovery
of the original signal from its phaseless Fourier intensity mea-
surement. Unlike traditional phase retrieval algorithms that only
recover the discrete approximation of the original signal, the
recently proposed super resolution phase retrieval theories first
realize continuous-domain phase retrieval of sparse signals. How-
ever, these current methods maintain too strict restriction on the
scattering function and there is unnecessary redundancy in the
parameter estimation models. This paper proposes a novel super
resolution sparse phase retrieval method suitable for arbitrary
scattering function and can reduce nearly half of the redundant
parameters. First, after a recursive data processing procedure,
we use Prony’s method to calculate the support intervals. Then,
the support of the original signal can be restored through
a reordering algorithm. Finally, under the premise of known
support, recovering the amplitude is equivalent to solving a series
of nonlinear equations, which can be solved by Chebyshev’s
method. The simulation results verify the effectiveness of the
proposed method.

Index Terms—super resolution phase retrieval; sparse signal;
scattering function.

I. INTRODUCTION

Phase retrieval is a widespread inverse problem recovering
a signal from the magnitude of its Fourier transform [1]. It
is concerned by various fields, including crystallography [2],
coherent diffraction imaging [3], radar waveform optimization
[4], astronomical imaging [5], and more [1].

Over the past decade, many novel phase retrieval algorithms
have been developed, such as PhaseLift [6], GESPAR [7],
DOLPHIn [8], Wirtinger Flow [9], CoRK [10], PRIME [11],
etc. However, these approaches usually recover the original
signal in the discrete domain, that is, model the original signal
as a discrete vector, which is a discrete approximation of orig-
inal signal. In recent years, some explorations of continuous-
domain phase retrieval have been published [12], [13]. In [12],
Beinert et al. model the original signal as a parameterized
sparse signal in the continuous domain, and restore these
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parameters through Prony’s method. However, the method in
[12] only provides the recovery method of stream of Dirac
and B-spline function, which is not suitable for sparse signals
under other bases. In [13], Baechler et al. use a compact
structure that considers the original signal is the convolution
of the Dirac stream and the fixed scattering function. Never-
theless, the method in [13] relies on the assumption that the
frequency spectrum of the scattering function is a box function,
which limits the applicable range of this method. In addition,
the estimation models in [12] and [13] contain unnecessary
redundant parameters, which will be interpreted in Section III.

This paper considers the continuous model in [12] and
[13], and proposes a novel phase retrieval framework that
is applicable to sparse parameterized signals with arbitrary
scattering function. Our method is divided into three steps.
First, use Prony’s method to calculate the support interval set
of the original signal after applying a recursive data processing
procedure. Second, obtain the original signal support set from
the support interval set through a reordering algorithm. Finally,
use Chebyshev’s method to recover the amplitude parameters.
The main contribution of this paper is in the first step. We point
out that if the scattering function is known, the requirement
that the frequency spectrum of the scattering function is a
box function is unnecessary. Besides, the number of unknown
parameters in the location estimation is only half of that in
the model of [12] and [13]. In this paper, we only discuss the
one-dimensional case.

The rest of this paper is organized as follows: Section II
states the problem; Section III presents our research motiva-
tion; Section IV introduces the proposed method; Section V
provides simulation results; Section VI concludes this paper.

II. PROBLEM STATEMENT

Consider a parameterized sparse signal of the form

x(t) =

K∑
i=1

ciφ(t− ti) = (

K∑
i=1

ciδ(t− ti)) ∗ φ(t), (1)
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which can be determined by 2K parameters {ci}Ki=1, {ti}Ki=1,
and φ(t) is the scattering function known beforehand. To avoid
a heavier notation, we assume ti, ci, and the range of φ(t)
belong to R, which is easily extended to C.

In phase retrieval problem, the measurement of x(t) is the
square of its Fourier intensity |Fx|, which is given by

|Fx(ω)|2 :=
∣∣∣ ∫ ∞
−∞

x(t) · e−jwtdt
∣∣∣2. (2)

Setting Ω as the sampling frequency, the underlying problem
in this paper is to recover original signal x(t) from the
measurement samples {|Fx(nΩ)|2}N−1

n=0 , which is equiva-
lent to recover 2K parameters {ci}Ki=1 and {ti}Ki=1 from
{|Fx(nΩ)|2}N−1

n=0 .

III. MOTIVATION

In this section, we first briefly introduce the methods in [12]
and [13], and then introduce our research motivation.

An essential method to realize continuous-domain phase
retrieval is Prony’s method, which can be summarized as the
following Lemma 1.

Lemma 1: [14] If a sequence {sn|n ∈ K} can be expressed
as the form

sn =

K∑
i=1

αiu
n
i , (3)

where K ⊆ Z, αi, ui ∈ C, αi 6= 0, and ui 6= uj for i 6= j,
then unknown variables {αi}Ki=1 and {ui}Ki=1 can be estimated
from 2K continuous non-zero measurements sn.
Proof: see, e.g., [14], [15], [16].

Defining the auto-correlation function (ACF) of x(t) is
Ax(t) given by

Ax(t) = x(t) ∗ x(−t), (4)

the methods in [12] and [13] both rely on the key relationship
that the Fourier transform of Ax(t) is the measurement |Fx|2,
i.e.,

Ax(t) = F−1
[
|Fx|2

]
, (5)

which is also known as Winner-Khintchine formula. Consider
(1) and (4), we have

Ax(t) =

K∑
k=1

K∑
l=1

ckclψ(t− (tk − tl)) (6)

=
[ K∑
k=1

K∑
l=1

ckclδ(t− (tk − tl))
]
∗ ψ(t), (7)

where ψ(t) is the ACF of φ(t). Define αm = ckcl, βm =
tk − tl, um = e−jΩβm , m = 1, 2, . . . ,M , then according to
(5) we have

|Fx(nΩ)|2 =

M∑
m=1

αmu
n
m|Φ(nΩ)|2, (8)

where M = K2 − K + 1, Φ(ω) is the Fourier transform
of φ(t). If we assume that |Φ(ω)|2 is a constant for some
neighborhood of ω around zero (i.e. the scattering function is

sinc function or Dirac function), then parameters {αm}Mm=1

and {um}Mm=1 can be properly estimated by Prony’s method
according to Lemma 1. The subsequent steps in [13] are able
to recover the original parameters {ci}Ki=1 and {ti}Ki=1 from
{αm}Mm=1 and {um}Mm=1. However, we point out:
• When the scattering function is known, it is unnecessary

to require its frequency spectrum to be a box function.
• Considering (7), it is easy to see that there is redundancy

in the parameters to be estimated in (8). For example,
tk − tl and tl − tk will be estimated as two parameters,
but they carry exactly the same information. Redundant
parameters will increase the length of the constructed
annihilating filter1, which will reduce its efficiency and
noise resilience.

To remove the restriction that the frequency spectrum of
the scattering function must be a box function and eliminate
the redundancy in the estimation model, we propose a novel
continuous-domain sparse phase retrieval method. The method
proposed in this paper can be applied when the scattering
function is known, regardless of its form (not necessarily sinc
function or Dirac function). At the same time, compared with
the method in [13], the number of parameters to be estimated
is greatly reduced.

IV. THE PROPOSED METHOD

A. Support Intervals Recovery
Consider (1), the Fourier transform of x(t) is

Fx(ω) = Φ(ω)

K∑
i=1

cie
−jωti . (9)

Thus the measurement can be written as

|Fx(ω)|2 =|Φ(ω)

K∑
i=1

cie
−jωti |2 (10)

=|Φ(ω)|2 ·
∣∣∣ K∑
i=1

cie
−jωti

∣∣∣2. (11)

Set c = [c1, c2, . . . , cK ]T, γω =
[e−jωt1 , e−jωt2 , . . . , e−jωtK ]T, then (11) can be rewritten as

|Fx(ω)|2

|Φ(ω)|2
= cTγω · (cTγω)H (12)

= cT · (γωγH
ω)︸ ︷︷ ︸

Γω

·c̄. (13)

Considering Γω is a Hermitian matrix, thus (13) is a quadratic
form. Then we have

|Fx(ω)|2

|Φ(ω)|2
=

K∑
i=1

K∑
j=1

γω(ij)cicj , (14)

where γω(ij) is the entry in the ith row and jth column of
the matrix Γω . Since γω(ij) = ejω(tj−ti), it is easy to see the
relationship

γω(ij)cicj + γω(ji)cjci = 2cicj cos
(
ω(ti − tj)

)
. (15)

1A core step of Prony’s method [14].
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Therefore, we can rewrite (14) as

|Fx(ω)|2

|Φ(ω)|2
= ‖c‖22 + 2

[
c1c2 cos

(
ω(t1 − t2)

)
+

c1c3 cos
(
ω(t1 − t3)

)
+ ...+

cK−1cK cos
(
ω(tK−1 − tK)

)]
. (16)

Note here ‖c‖22 is a known quantity. If we assume that
the scattering function is of finite length, and the scattering
functions at different support positions in the original signal
do not overlap, then we can infer that

‖c‖22 =

∫∞
−∞ |Fx(ω)|2dω∫∞
−∞ |φ(t)|2dt

, (17)

according to Parseval’s theorem. Defining f(ω) =
1
2

(
|Fx(ω)|2
|Φ(ω)|2 − ‖c‖

2
2

)
and α′m = cicj , β′m = ti − tj ,

i < j, we have

f(ω) =
M∑
m=1

α′m cos(ωβ′m), (18)

where M = K(K − 1)/2. The sampled form of (18) is

f(nΩ) =

M∑
m=1

α′m cos(nΩβ′m), n = 0, 1, . . . , N − 1. (19)

So far, we can see (19) is somewhat similar to (3). Applying
a relationship in [17] that

cos(nθ) =

bn2 c∑
k=0

((
n−k
k

)
+
(
n−1−k
k−1

))
(−1)k2n−1−2k cosn−2k(θ),

(20)
we can obtain form (3) from (19).

Before giving a general conclusion, we first show a few
specific steps to reveal the law. Suppose {ξ[n]}N−1

n=0 is a
sequence that can be expresses as the form of (3), and we
define{

ξ[0] := f(0Ω) =
∑M
m=1 α

′
m

[
cos(Ωβ′m)

]0
,

ξ[1] := f(1Ω) =
∑M
m=1 α

′
m

[
cos(Ωβ′m)

]1
.

(21)

From (3) we can infer that

ξ[2] =

M∑
m=1

α′m
[

cos(Ωβ′m)
]2
. (22)

But unlike (21), the question now is how can we get the value
of ξ[2]. Consider (19) and (20), we have

f(2Ω) =

M∑
m=1

α′m cos(2Ωβ′m)

=

M∑
m=1

α′m

[
2
[

cos(Ωβ′m)
]2 − 1

]
= 2 ·

M∑
m=1

α′m
[

cos(Ωβ′m)
]2

︸ ︷︷ ︸
ξ[2]

−
M∑
m=1

α′m︸ ︷︷ ︸
ξ[0]

. (23)

Thus we have

ξ[2] =
1

2

(
f(2Ω) + ξ[0]

)
. (24)

Similar to (23), according to (19) and (20), it is easy to verify
that

f(3Ω) =

M∑
m=1

α′m cos(3Ωβ′m)

=

M∑
m=1

α′m

[
4
[

cos(Ωβ′m)
]3 − 3 cos(Ωβ)

]
= 4 · ξ[3]− 3 · ξ[1],

and

ξ[3] =
1

4

(
f(3Ω) + 3ξ[1]

)
. (25)

Therefore, we can conclude a general expression that

ξ[n] := 21−N
(
f(nΩ)−Gn

)
, (26)

where

Gn =

bn2 c∑
k=1

((
n−k
k

)
+
(
n−1−k
k−1

))
(−1)k2n−1−2kξ[n−2k]. (27)

Since (26) is a recursive formula, as long as ξ[0] and ξ[1]
are determined, the value of {ξ[n]}N−1

n=2 can be deduced by
(26) and (27).

To be clear, the above steps allow us to obtain {ξ[n]}N−1
n=0

from {f(nΩ)}N−1
n=0 , and ξ[n] can be expanded as

ξ[n] =

M∑
m=1

α′m
[

cos(Ωβ′m)
]n
. (28)

Then according to Lemma 1, the unknown parameters
{α′m}Mm=1 and {cos(Ωβ′m)}Mm=1 can be estimated accurately
by Prony’s method. Since our goal in this subsection is
to recover support intervals, we only need to calculate
{cos(Ωβ′m)}Mm=1. If we choose sampling frequency properly,
satisfying

Ω <
π

max(|β′m|)
, (29)

then {β′m}Mm=1 can be uniquely determined from
{cos(Ωβ′m)}Mm=1 by applying a simple inverse cosine
function.

B. Support Recovery

As we have obtain the support interval set D := {β′m|β′m =
ti − tj , i < j,m = 1, 2, . . . ,M}. Note these differences are
unlabeled that we do not know the order of the elements in D.
To recover support set {ti}Ki=1 from D, we can directly use
the algorithm in [13], which is shown as Algorithm 1.
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Fig. 1. Demonstrations of super resolution sparse phase retrieval under two different scattering functions.

Algorithm 1 Support Recovery [13]
Input: A set of K(K−1)/2 differences D = {di}Mi=1 ordered

by their absolute value.
Output: A support set of K points X̂ such that their pairwise

differences generate support interval set D.
1: Initialize X̂2 = {0, dM}, P2 = D \ X̂2.
2: for K = 2, ..., k − 1 do
3: x̂k+1 = arg minp∈Pk

∑
x̂∈X̂k

mind∈D |p− x̂− d|2.
4: X̂k+1 = X̂k ∪ x̂k+1, Pk+1 = Pk \ x̂k+1.
5: end for
6: return X̂K .

C. Amplitude Recovery

Recover the amplitude {ci}Ki=1 when the support set {ti}Ki=1

is known is equivalent to solving a problem of a system
of nonlinear equations. Again, we set c = [c1, c2, . . . , cK ]T.
Defining skl := cos

(
Ω(tk − tl)

)
, the nonlinear equations we

need to solve is {gn(c) = 0}N−1
0 , where

gn(c) :=

K∑
k=1

K∑
l>k

ckcls
n
kl − ξ[n], (30)

To solve the nonlinear equations {gn(c) = 0}N−1
0 , a variant

of Chebyshev’s method in [18] can be used. Defining vector
g = [g0(c), g1(c), . . . , gN−1(c)]T.This iterative method can
de summarized as

c0 and p ∈ (0, 1] given,
g′(ct)δt = −g(ct), t > 0,

zt = ct + pδt,

g′(ct)qt = − 1
p2 ((p− 1)g(ct) + g(zt)),

ct+1 = ct + δt + qt.

(31)

D. Analysis & Comparison

From (18), we know the number of parameters to be
estimated in the proposed method is M =

(
K
2

)
= K(K−1)/2,

where the model in [13] contains K2−K+1 parameters to be
estimated as can be seen in (8). This shows that our method
reduces the number of parameters to be estimated by nearly
half.

TABLE I
PERFORMANCE COMPARISON

The method in [13] Proposed method
Number of parameters

to be estimated
K2 −K + 1

K(K−1)
2

Complexity O(K6) O(K6)

Scattering function
sinc function or
Dirac function

arbitrary function

The computational complexity of the method in [13] is
O(K6), where K is the sparsity of the original signal. The
proposed method adds a recursive procedure as described
in (26) and (27) to calculate {ξ[n]}N−1

n=0 . From (26) and
(27), we can see calculating ξ[n] requires bn2 c additions and
bn2 c + 1 multiplications. Thus the computational complexity
of calculating {ξ[n]}N−1

n=0 is O(N2). Because the number of
parameters to be estimated in our model is K(K − 1)/2,
according to Lemma 1, we know that N = K(K − 1) and
thus the computational complexity of the recursive procedure
is O(K4). Therefore, the total computational complexity of
proposed framework is O(K4) +O(K6) = O(K6), which is
the same as the method in [13].

Besides, another advantage of the proposed method is that
it is suitable for arbitrary known scattering function given
some mild conditions (such as the finite-length condition we
assumed before (17)). The performance comparison between
the proposed method and the method in [13] is summarized
in Table I.

V. SIMULATION RESULTS

To verify the method proposed in this paper, we selected two
general finite-length scattering functions to form the original
signal under the same support and amplitude. We sampled
the phaseless Fourier intensity distribution of the two original
signals, and then used the proposed method to recover the orig-
inal signal. The sampling and reconstruction results are shown
in Fig. 1. It can be seen that for general scattering function
without special characteristics in the frequency domain, the
method in this paper can accurately reconstruct the support
and amplitude of the original signal.
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To further compare the recovery accuracy between the
proposed method and the existing method in [13], we test the
recovery errors of the two methods under different sparsity
and different noise levels. Selecting sparsity as K = 3, 4, 5,
we add white Gaussian noise with SNR ranging from 120 dB
to -60 dB, and calculate the Normalized Square Error (NSE)
of the reconstructed signal and the original signal as

NSE(xr,xo) =
‖xr − xo‖22
‖xo‖22

, (32)

where xr is the reconstructed signal and xo is the original sig-
nal. The Normalized Mean Square Error (NMSE) is averaged
over 100 Monte Carlo simulations for every (K,SNR). The
simulation results are shown in Fig. 2. The results show that
both methods can not reconstruct the signal accurately in the
low SNR region, and the NMSE decreases with the increase
of SNR. When the sparsity is small, the recovery errors of the
two methods are similar. But when the sparsity increases, the
NMSE of the proposed method is steadily lower than that of
[13] in the high SNR region.

-60 -40 -20 0 20 40 60 80 100 120
SNR (dB)

10-10

10-5

100

N
M

S
E

The proposed method (K=3)
The existing method (K=3)
The proposed method (K=4)
The existing method (K=4)
The proposed method (K=5)
The existing method (K=5)

Fig. 2. Recovery error vs. noise SNR under sparsity K = 3, 4, 5.

VI. CONCLUSION

The existing super resolution sparse phase retrieval meth-
ods have too high limitation on the scattering function and
contains unnecessary redundancy in estimation model. This
paper provided a strategy to achieve super resolution sparse
phase retrieval under arbitrary scattering function. In addi-
tion, by designing a recursive data processing procedure, the
proposed method can reduce the number of parameters to be
estimated by nearly half without increasing the computational
complexity. Simulation results show that the proposed method
can effectively reduce the recovery error.
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